KR100665533B1 - Nano disperse dyes by using nanoemulsion - Google Patents

Nano disperse dyes by using nanoemulsion Download PDF

Info

Publication number
KR100665533B1
KR100665533B1 KR1020050036773A KR20050036773A KR100665533B1 KR 100665533 B1 KR100665533 B1 KR 100665533B1 KR 1020050036773 A KR1020050036773 A KR 1020050036773A KR 20050036773 A KR20050036773 A KR 20050036773A KR 100665533 B1 KR100665533 B1 KR 100665533B1
Authority
KR
South Korea
Prior art keywords
dye
nano
dyeing
nanoemulsion
emulsion
Prior art date
Application number
KR1020050036773A
Other languages
Korean (ko)
Other versions
KR20060114731A (en
Inventor
최재홍
강민주
전정민
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020050036773A priority Critical patent/KR100665533B1/en
Publication of KR20060114731A publication Critical patent/KR20060114731A/en
Application granted granted Critical
Publication of KR100665533B1 publication Critical patent/KR100665533B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B67/00Influencing the physical, e.g. the dyeing or printing properties of dyestuffs without chemical reactions, e.g. by treating with solvents grinding or grinding assistants, coating of pigments or dyes; Process features in the making of dyestuff preparations; Dyestuff preparations of a special physical nature, e.g. tablets, films
    • C09B67/0071Process features in the making of dyestuff preparations; Dehydrating agents; Dispersing agents; Dustfree compositions
    • C09B67/008Preparations of disperse dyes or solvent dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Coloring (AREA)

Abstract

본 발명은 나노에멀젼을 이용한 나노 분산염료에 관한 것으로, 더욱 상세하게는 0.5 데니어 이하의 초극세사의 염색 가공시 나타나는 세탁견뢰도 및 일광견뢰도 저하, 가공 원가 상승, 환경적 문제 등을 해소하기 위해 초극세사에 대한 친화성을 향상시키며 표면 반사광의 감소로 극세사의 color yield를 증가시킴은 물론, 염색시 분산안정성과 균염성을 위한 조제를 사용하지 않아도 균일한 염색성을 얻을 수 있다는 점에서 환경친화적이고 경제적인, 나노에멀젼을 이용한 나노 분산염료에 관한 것이다.The present invention relates to a nano-dispersion dye using a nanoemulsion, and more particularly, in order to solve the microfibers to solve the laundry fastness and daylight fastness decrease, processing cost increase, environmental problems, etc. that appear during the dyeing process of ultrafine microfibers of 0.5 denier or less It is environmentally friendly and economical in that it improves affinity and decreases the surface reflected light to increase the color yield of microfiber, and also obtains uniform dyeing without using dispersing stability and uniformity during dyeing. It relates to a nano dispersed dye using an emulsion.

상기한 목적을 달성하기 위한 본 발명에 따른 나노 분산염료는, SLS(Sodium Laurylsulfate) 1~10wt%, 증류수 70~90wt%, 카프릴릭 트리글리세라이드(Caprylic triglyceride) 5~20wt%로 조성되며 그 평균입도는 100~150nm인 나노에멀젼을 통해 제조되는 것을 특징으로 한다.Nanodispersion dye according to the present invention for achieving the above object, SLS (Sodium Laurylsulfate) 1 ~ 10wt%, distilled water 70 ~ 90wt%, Caprylic triglyceride (Caprylic triglyceride) 5-20wt% and the average Particle size is characterized in that it is prepared through a nanoemulsion of 100 ~ 150nm.

본 발명에 따른 나노 분산염료는 또한, 상기와 같은 구성의 나노에멀젼에, 염료를 D.M.F.에 용해시킨 염액을 주입시켜서 제조되는 것을 특징으로 한다.The nano-dispersion dye according to the present invention is also prepared by injecting a salt solution in which the dye is dissolved in D.M.F.

나노에멀젼, 나노 분산염료 Nano Emulsion, Nano Disperse Dyes

Description

나노에멀젼을 이용한 나노 분산염료{Nano disperse dyes by using nanoemulsion}Nano disperse dyes by using nanoemulsion

본 발명은 나노에멀젼을 이용한 나노 분산염료에 관한 것으로, 더욱 상세하게는 0.5 데니어 이하의 초극세사의 염색 가공시 나타나는 세탁견뢰도 및 일광견뢰도 저하, 가공 원가 상승, 환경적 문제 등을 해소하기 위해 초극세사에 대한 친화성을 향상시키며 표면 반사광의 감소로 극세사의 color yield를 증가시킴은 물론, 염색시 분산안정성과 균염성을 위한 조제를 사용하지 않아도 균일한 염색성을 얻을 수 있다는 점에서 환경친화적이고 경제적인, 나노에멀젼을 이용한 나노 분산염료에 관한 것이다.The present invention relates to a nano-dispersion dye using a nanoemulsion, and more particularly, in order to solve the microfibers to solve the laundry fastness and daylight fastness decrease, processing cost increase, environmental problems, etc. that appear during the dyeing process of ultrafine microfibers of 0.5 denier or less It is environmentally friendly and economical in that it improves affinity and decreases the surface reflected light to increase the color yield of microfiber, and also obtains uniform dyeing without using dispersing stability and uniformity during dyeing. It relates to a nano dispersed dye using an emulsion.

최근 바이오, 신약개발, 의료, 환경 에너지, 정보통신 등의 광범위한 분야에서 나노기술을 접목하여 기존 기술의 한계를 타개하고자 지속적인 연구 및 투자가 진행되고 있다. 섬유 분야에서도 나노기술을 접목한 여러 가공기술의 연구 사례가 보고되고 있다. 은 나노 입자를 섬유 표면에 처리하여 항균성을 높인 가공기술이 이에 해당한다고 하겠다.Recently, research and investment are continuously under way to overcome the limitations of existing technologies by incorporating nanotechnology in a wide range of fields such as biotechnology, new drug development, medical care, environmental energy, and information and communication. In the field of textiles, research cases of various processing technologies incorporating nanotechnology have been reported. The processing technology that increases the antibacterial effect by treating the silver nanoparticles on the fiber surface corresponds to this.

따라서, 아직까지 염료 또는 염색 분야에서 나노 기술을 접목한 기술이나 논문이 보고된 적은 거의 없지만, 나노 기술을 접목한 연구 및 기술 개발은 환경문제와 에너지 문제를 안고 있는 염료, 염색 분야의 한계를 타개할 가능성을 가지고 있으므로 향후 다른 산업 기술 분야와 마찬가지로 지속적인 연구 및 투자가 필요하다고 할 수 있다.Therefore, there have been few reports of technology or papers incorporating nanotechnology in the dyeing or dyeing field, but research and technology development incorporating nanotechnology has overcome the limitations of the dye and dyeing fields that have environmental and energy problems. As it is possible to do so, it is necessary to continuously research and invest like other industrial technology fields in the future.

한편 분산염료는 불용성의 염료로서 밀링(milling)이란 공정을 통하여 입자크기를 작게 분쇄시켜 분산상태에서 소수성 섬유에 염색되는 염료이다.On the other hand, the disperse dye is an insoluble dye is a dye that is dyed to hydrophobic fibers in a dispersed state by milling the particle size through a process called milling (milling).

기존의 밀링 공정으로 입자크기를 최대 300nm까지 줄일 수 있으며, 상업화된 침염용 분산염료의 평균입도는 800nm~1000nm 정도이다. 분산염료로 염색하는 섬유는 주로 폴리에스테르(polyester)로서, 이는 130℃의 고온, 고압에서 염색되는데, 고온, 고압에서 염색을 행하기 때문에 에너지가 많이 드는 단점이 있다. 또한 염색시 염욕에 조제를 다량 사용하여야만 한다. 더욱이 현재 초극세사의 염가공 기술의 문제점도 지적되고 있다. 초극세사는 일반적으로 단사 섬도가 0.5데니어 이하 수준의 섬유를 지칭하는데, 통상적으로 0.05~0.5데니어급 섬유가 주 대상이나 최근 0.1데니어 미만의 원사로 범위가 좁아지고 있다. 초극세사는 주로 인조 스웨이드, 인공피혁, 투습방수 고밀도 직물, 실크 유사(silk like) 소재 및 청소용 천(wiping cloth) 등으로 폭넓게 적용되고 있다.The existing milling process can reduce the particle size up to 300nm, and the average particle size of commercialized disperse dyes for dyeing is about 800nm ~ 1000nm. Fiber dyed with a disperse dye is mainly polyester (polyester), which is dyed at a high temperature, high pressure of 130 ℃, there is a disadvantage that energy is high because the dyeing at high temperature, high pressure. In addition, large amounts of preparation should be used in dye baths. Moreover, the problem of ultra-fine dyeing technology is also pointed out. Microfiber generally refers to fibers having a single yarn fineness level of 0.5 denier or less. Typically, 0.05 to 0.5 denier fibers are the main target, but the range has narrowed to less than 0.1 denier recently. Microfiber is widely applied mainly to artificial suede, artificial leather, moisture-permeable high-density fabrics, silk like materials, and wiping cloths.

이러한 초극세사는 천연섬유보다 가늘다는 특징에서 기인되는 여러 가지의 장점으로 인하여 천연섬유로는 표현될 수 없는 감성 및 기능을 직편물 상에서 표출시킬 수 있기 때문에 중요한 고부가가치 신합섬 소재로서 평가되고 있다. 그러나 초극세화가 진행될수록 비표면적이 기하 함수적으로 증가되어 2~3데니어 수준의 정상적인 원단과 동일한 색상을 얻기 위해서는 염료 투입량이 증가되어야 한다. 또한 세탁견뢰도[세탁견뢰도는 섬유제품의 세탁시 탈색(물빠짐) 정도와 다른 섬유제품에 대한 오염정도를 평가하는 시험방법으로서 염색된 섬유제품의 품질을 결정하는 가장 중요한 요소이다. sample을 첨부백포와 함께 세탁하여 sample의 퇴색 및 첨부백포의 오염정도를 본다. 오염정도는 gray scale을 이용하여 비교하고 1~5급으로 나뉜다.] 및 일광견뢰도[Light fastness or Colorfastness to Light, 일광견뢰도는 염색물의 일광에 대한 변퇴색의 정도를 나타내는 것으로서, 태양광에 직접 노광시키거나 태양광과 매우 유사한 인공광원을 사용한 장치를 이용하여 측정한다. 시험편과 표준청색염포(Blue Scale), 혹은 시험편만을 적당한 광원하에서 “바로 눈에 뜨일 수 있는 정도의 퇴색”에 이르기까지 퇴색시켜 시험편과 표준청색염포의 시험 전후의 변퇴색 정도를 비교하여 등급을 결정하거나, 혹은 시험편이 표준퇴색 되기까지에 소용되는 표준퇴색 시간을 측정하여 등급을 결정한다. 등급이 높을수록 견뢰도가 좋은 것으로 판정을 한다.] 저하, 가공 원가 상승, 폐수다량 발생 등의 문제점이 수반된다.Such microfiber yarns have been evaluated as important high value-added new synthetic material because they can express sensibility and function that cannot be expressed by natural fibers on the knitted fabric due to various advantages resulting from thinner than natural fibers. However, as the ultrafineness progresses, the specific surface area increases geometrically, and dye input amount must be increased to obtain the same color as a normal fabric of 2-3 denier levels. In addition, laundry fastness is the most important factor in determining the quality of dyed textile products as a test method for evaluating the degree of discoloration (dripping) and contamination of other textile products. Wash the sample with the attached bag and observe the degree of fading and contamination of the attached bag. The degree of contamination is compared using the gray scale and classified into grades 1 to 5.] and light fastness or color fastness to light, which indicates the degree of discoloration to daylight of the dyeing, and is directly exposed to sunlight. Or using an artificial light source that is very similar to sunlight. Determine the grade by comparing the specimen and the standard blue dye, or only the specimen, under the appropriate light source to the "appropriate fading" and comparing the degree of discoloration before and after the test of the specimen and the standard blue dye. Alternatively, determine the grade by measuring the standard fading time required until the specimen fades. The higher the grade, the better the fastness.] There are problems such as deterioration, increase of processing cost and generation of waste water.

본 발명은 상기한 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목 적은 분산염료를 안전한 상태의 나노 에멀젼으로 형성하여 초극세사 염색시 염착성을 높이며 분산염료로 염색시 다량 사용해왔던 조제를 필요로 하지 않는 친환경적 염료를 제공하는 데 있다.The present invention has been made to solve the above problems, the purpose of the present invention is to form a disperse dye in a safe state of the nano-emulsion to increase the dyeability of ultra-microfiber dyeing and does not require the preparation that has been used in large quantities when dyeing with a disperse dye To provide environmentally friendly dyes.

상기한 목적을 달성하기 위한 본 발명에 따른 나노 분산염료는, SLS(Sodium Laurylsulfate) 1~10wt%, 증류수 70~90wt%, 카프릴릭 트리글리세라이드(Caprylic triglyceride) 5~20wt%로 조성되며 그 평균입도는 100~150nm인 나노에멀젼을 통해 제조되는 것을 특징으로 한다.Nanodispersion dye according to the present invention for achieving the above object, SLS (Sodium Laurylsulfate) 1 ~ 10wt%, distilled water 70 ~ 90wt%, Caprylic triglyceride (Caprylic triglyceride) 5-20wt% and the average Particle size is characterized in that it is prepared through a nanoemulsion of 100 ~ 150nm.

본 발명에 따른 나노 분산염료는 또한, 상기와 같은 구성의 나노에멀젼에, 염료를 D.M.F.에 용해시킨 염액을 주입시켜서 제조되는 것을 특징으로 한다.The nano-dispersion dye according to the present invention is also prepared by injecting a salt solution in which the dye is dissolved in D.M.F.

SLS(Sodium Laurylsulfate) 1~10wt%, 증류수 70~90wt%, 카프릴릭 트리글리세라이드(Caprylic triglyceride) 5~20wt%의 수치는 반복된 실험을 통해 정해졌다. 즉 염색은 기본적으로 물을 용매로 사용하므로 그 조건에 적합하게, 물에 오일이 분산된(O/W : oil in water) 형태로 만들기 위해 증류수를 오일보다 많이 사용하였고, 증류수, 오일 및 SLS의 비율은 원하는 나노사이즈의 에멀젼을 가장 잘 형성할 수 있게 실험적·경험적으로 구한 값이다.The values of SLS (Sodium Laurylsulfate) 1-10wt%, distilled water 70-90wt%, and Caprylic triglyceride 5-20wt% were determined through repeated experiments. That is, since dyeing basically uses water as a solvent, more distilled water was used than oil to make the oil in water (O / W) form suitable for the conditions. The ratio is the value obtained experimentally and empirically to best form the emulsion of the desired nanosize.

100~150nm는 수계에서 분산염료로 가능하도록 오일과 계면활성제의 종류, 그리고 물과의 비율 등을 실험해가는 과정에서 선정된 것이다. 특히 에멀전의 입자크 기는 광범위하여 1~10㎛의 macro에멀전, 100~1000nm의 nano에멀전, 50nm이하의 micro에멀전으로 나뉘는데 나노사이즈의 고유 물성을 갖기 위해서는 적어도 100nm급 정도의 사이즈를 가져야 하므로 100nm대로 만들려고 계획하고 실험하여 얻은 것이다.100 ~ 150nm was selected in the process of experimenting with oil and surfactant type and ratio of water to make it possible to disperse dye in water. Particularly, the particle size of emulsion is broadly divided into macroemulsion of 1 ~ 10㎛, nanoemulsion of 100 ~ 1000nm, and microemulsion of 50nm or less.To have nano-specific intrinsic properties, it should be at least 100nm size, so make 100nm. It was obtained by planning and experimenting.

상기와 같이 제조된 나노 분산염료를 사용할 경우에, 0.5데니어 이하의 초극세사 염색시 염착성을 높이며 종래 방법에 따른 염색시에 다량 사용하는 조제를 필요로 하지 않는 친환경적 효과를 얻을 수 있다.In the case of using the nano-dispersion dye prepared as described above, it is possible to obtain an environmentally friendly effect that does not require the preparation to use a large amount during dyeing according to the conventional method to increase the dyeability when dyeing microfibers of 0.5 denier or less.

본 발명의 실시예를 설명한다.An embodiment of the present invention will be described.

1. 나노 에멀젼(SLS / Water / Caprylic triglyceride)의 제조1. Preparation of nano emulsion (SLS / Water / Caprylic triglyceride)

오일 성분으로 Caprylic triglyceride, 계면활성제(surfactant)로는 음이온 계면활성제(anionic surfactant)인 SLS(Sodium Laurylsulfate)를 사용하였다. 증류수 87wt%에 SLS 3wt%을 용해시켜 70℃에서 oil Caprylic triglyceride 10wt%를 가한다. Homomixer (TOKUSHC KIKAS 社, Model ROBOMICX)로 70℃를 유지시키면서 rpm 4000으로 5분간 처리하였다. 이렇게 1차 에멀젼 시킨 시료를 Microfluidizer(Microfluidics Co., Model 110EH)를 이용하여 압력 1000bar로 3번 통과시켰다.Caprylic triglyceride as an oil component, SLS (Sodium Laurylsulfate), an anionic surfactant, was used as a surfactant. Dissolve SLS 3wt% in 87wt% of distilled water and add 10wt% oil caprylic triglyceride at 70 ℃. Homomixer ( TOKUSHC KIKAS, Model ROBOMICX) was treated for 5 minutes at rpm 4000 while maintaining 70 ℃. The first emulsified sample was The microfluidizer (Microfluidics Co., Model 110EH) was used three times at a pressure of 1000 bar.

2. 나노 분산염료 에멀젼의 제조2. Preparation of Nano Disperse Dye Emulsion

나노입자로 만들고자 하는 염료(diperse dye) 7종을 presscake 상태로 유기용매 D.M.F.에 용해시켜 염료 용액(dye solution)을 만들었다. 다음은 SLS/Water/Caprylic triglyceride로 된 나노 에멀젼(nanoemulsion)과 위 염료 용액(dye solution)을 각각 80℃로 온도를 높이고, 나노 에멀젼을 교반시키면서(온도 80℃유지) dye solution을 한 방울씩 서서히 첨가(dropwise)하였다. 다음으로 5분간 교반시킨 후에 Sonicator UP 200s(ultraschollprozessor)로 cycle 1, ampltude 100%에서 15분간 처리하였다.      Seven dyes to be made into nanoparticles (diperse dye) were dissolved in an organic solvent D.M.F. in a presscake state to make a dye solution. Next, increase the temperature of the nano-emulsion (nanoemulsion) and gastric dye solution of SLS / Water / Caprylic triglyceride to 80 ℃, respectively, and slowly drop a drop of dye solution while stirring the nanoemulsion (maintain temperature of 80 ℃) Dropwise. Next, the mixture was stirred for 5 minutes and then treated with Sonicator UP 200s (ultraschollprozessor) for 15 minutes at cycle 1, ampltude 100%.

Figure 112005023115067-pat00001
Figure 112005023115067-pat00001

Figure 1. 나노 입자 형성 메카니즘의 가설Figure 1. Hypothesis of nanoparticle formation mechanism

위 Fig 1은 나노 입자 형성의 메카니즘에 대한 가설이다. 첫 단계로, 연속상인 물(water) 안에서 오일(oil) 주위에 계면활성제(surfactant)가 흡착되어 안정한 나노에멀젼(nanoemulsion)이 형성된다. 이렇게 형성된 나노에멀젼상에 나노 입자로 만들고자 하는 염료(dye)를 적정한 용매에 녹여 투입시킨다. 세 번째 단계는 투입된 염료 용액(dye solution)이 확산(diffusion)에 의해 오일 코어(oil cores)에 들어간다. 여기서 용매(solvent)는 염료(dye)를 오일 코어(oil cores)에 들어갈 수 있도록 하는 운반 작용(transport)을 한다. 다음으로 오일 코어(oil cores)에 들어간 염료(dye)는 오일 코어(oil cores) 안에서 침전되고 용매는 밖으로 빠져나간다. 다섯 번째 단계에서는 오일 코어(oil cores)끼리 충돌하여 염료(dye)가 교환(exchange)된다. 그 후 핵(nluclei)이 형성되고 나노입자(nanoparticle)로 성장한다. 이때 나노입자(nanoparticle)의 성장 크기는 오일코어[oil cores(droplets)]의 크기에 제한된다.Figure 1 above is a hypothesis about the mechanism of nanoparticle formation. In the first step, a surfactant is adsorbed around the oil in the continuous water to form a stable nanoemulsion. The dye (dye) to be made into nanoparticles is dissolved in a suitable solvent on the thus formed nanoemulsion. In the third step, the injected dye solution enters the oil cores by diffusion. The solvent here has a transport that allows the dye to enter the oil cores. The dye that enters the oil cores then precipitates in the oil cores and the solvent escapes. In the fifth step, oil cores collide with each other and dye is exchanged. Then nuclei are formed and grow into nanoparticles. The growth size of the nanoparticles (nanoparticle) is limited to the size of the oil cores (oil cores (droplets)).

3. 염색3. Dyeing

Solvent Yellow 163 Solvent Yellow 163 C.I.Disperse Orange 30 C.I.Disperse Orange 30 C.I.Disperse Red 60 C.I.Disperse Red 60 C.I.Disperse Red 86 C.I.Disperse Red 86 C.I.Disperse Red 184 C.I.Disperse Red 184 C.I.Disperse Blue 62 C.I.Disperse Blue 62 C.I.Disperse Blue 337 C.I.Disperse Blue 337

- 상기 7종의 nano 분산염료의 에멀젼(2.5% o.w.f.) : 위 7가지 염료로 앞에서 언급한 방식으로 나노 분산염료 에멀젼을 만들어 fiber 100g당 2.5g을 사용하였다.  -Emulsion of the seven nano-disperse dyes (2.5% o.w.f.): The above seven dyes were used to make a nano-disperse dye emulsion in the manner described above was used 2.5g per 100g of fiber.

- 욕비 1:30 : fiber 1g당 염욕 30g을 사용하였다.  -Bath ratio 1:30: 30g of salt bath per 1g of fiber was used.

- pH 4 : 실험결과, 종래 분산염료(800nm~1000nm) 염색과 동일하게 약 산성 상태인 pH 4에서 가장 염착이 잘 되었으므로 본 연구에서는 pH 4에서 염색하기로 하였 다.  -pH 4: As a result of the experiment, dyeing at pH 4, which is weakly acidic, was performed at the pH 4, which is the same as the conventional disperse dyes (800 nm to 1000 nm).

- 시료 : regular 폴리에스테르(75den/24fil.), 폴리에스테르 해도사 스웨드 tricot직물(표면 : 해도사 0.05denier, 이면 : reg. PET사 2denier)  -Sample: regular polyester (75den / 24fil.), Polyester seaweed yarn suede tricot fabric (surface: sea island yarn 0.05denier, back side: reg. PET yarn 2denier)

- R.C. 조건: NaOH 0.5g/l, Na2S2O4 0.5g/l (R.C.=환원세정, 염색 후 섬유 표면에 붙어 세탁견뢰도를 떨어뜨리는 염료를 제거하는 공정)-RC condition: NaOH 0.5g / l, Na 2 S 2 O 4 0.5g / l (RC = reduction washing, dye dye attached to the fiber surface after dyeing to reduce the wash fastness)

Figure 112005023115067-pat00002
Figure 112005023115067-pat00002

- 염색 과정 : 염색 온도를 처음 50℃로 하여 시작한다. 130℃가 될 때까지 분당 2℃씩 상승시킨다. 130℃로 60분간 유지 후 70℃가 될 때까지 분당 2℃씩 내린다. 염색 후 위 조건으로 환원세정한다.  -Dyeing process: Start with the dyeing temperature set to 50 ℃ for the first time. Raise by 2 ° C per minute until it reaches 130 ° C. Hold at 130 ° C. for 60 minutes and then drop down 2 ° C. per minute until 70 ° C. After staining, reduce and wash under the above conditions.

4. 입자 크기와 안정성4. Particle size and stability

0.02㎛~0.1㎛의 마이크로에멀젼(microemulsion)이 통상의 에멀젼보다 많은 장점을 가지고 있지만 높은 계면활성제의 농도가 요구된다. 반면 나노에멀젼(nanoemulsion)은 보통 0.1㎛~1㎛의 작은 droplet size를 가지기 때문에 마이크로에멀젼에 가깝게 열역학적으로 안정하면서도 마이크로에멀젼과 같이 높은 계면 활 성제의 농도가 요구되지 않는다.Microemulsions of 0.02 μm to 0.1 μm have many advantages over conventional emulsions but high concentrations of surfactants are required. On the other hand, since nanoemulsions usually have small droplet sizes of 0.1 μm to 1 μm, thermodynamic stability close to microemulsions and high concentrations of surfactants such as microemulsions are not required.

본 발명에서 Microfluidizer로 처리한 SLS/Water/Caprylic triglyceride 나노 에멀젼과 이 나노 에멀젼에 D.M.F.에 용해시킨 분산염료 7종을 투입하여 만든 7종의 나노 분산염료 에멀젼(nano disperse dye emulsion)을 입도분석기 ELS-8000(OTSUKA ELEC. Co. Ltd)으로 평균입도를 측정하였다. 그 결과 SLS/Water/Caprylic triglyceride 나노 에멀젼의 평균입도는 137.8nm로 측정되었으며 7종의 염료(dye)를 투입하여 만든 나노 분산염료 에멀젼(nano disperse dye emulsion)의 평균입도는 110~133nm로 측정되었다.In the present invention, 7 types of nano disperse dye emulsions prepared by adding SLS / Water / Caprylic triglyceride nanoemulsion treated with Microfluidizer and 7 kinds of disperse dyes dissolved in DMF in the nanoemulsion particle size analyzer ELS- The average particle size was measured by 8000 (OTSUKA ELEC. Co. Ltd). As a result, the average particle size of SLS / Water / Caprylic triglyceride nano emulsion was measured to be 137.8nm, and the average particle size of nano disperse dye emulsion prepared by adding 7 kinds of dyes was 110 ~ 133nm. .

한편 에멀젼의 안정성을 예측하는 데 Zeta-potential이 많이 이용되고 있는데 zeta potential값의 절대값이 클수록 안정성이 좋다고 판단한다. 실험 결과 SLS/Water/Caprylic triglyceride 나노 에멀젼과 7종의 nano dye-emulsion은 Zeta Potential -37~-40mV로 측정되었으며, 이로써 안정성이 우수하다고 판단된다(아래 표 1 참조).Zeta-potential is widely used to predict the stability of emulsions. The greater the absolute value of zeta potential, the better the stability. As a result, SLS / Water / Caprylic triglyceride nanoemulsion and 7 kinds of nano dye-emulsion were measured with Zeta Potential -37 ~ -40mV, which is considered to be excellent stability (see Table 1 below).

Figure 112005023115067-pat00003
Figure 112005023115067-pat00003

5. 친환경성5. Eco-friendliness

일반적으로 모든 피염물 염색시 완제품의 염착성, 균염성 등을 향상시키기 위해 적절한 분산제나 균염제 등이 조제로 사용된다. 이때 사용되는 다량의 분산제나 균염제 등의 이용은 환경적인 문제와 비용 문제를 야기하는데, 나노 입자화한 분산염료를 에멀젼 상태로 조제 없이 염색한 결과 우수한 균염성을 나타내었다(아래 표 2, 직접 염색한 섬유를 촬영한 사진에서 보듯이 구김이 있지만 균염성이 향상된 것을 확인할 수 있다).Generally, in order to improve dyeing and leveling of the finished product, all disperse dyes are used as appropriate dispersing or leveling agents. At this time, the use of a large amount of dispersing agent or leveling agent causes environmental problems and cost problems, and the nano-particle dispersed dyes were prepared in an emulsion state without preparation. As you can see in the picture of one fiber, it has wrinkles, but it can be seen that its leveling ability is improved).

※ 표 2※ Table 2

Figure 112005023115067-pat00004
Figure 112005023115067-pat00004

6. 염색성6. Dyeing

제조한 나노에멀젼 분산 염료로 염색성을 실험해본 결과 기존 분산염료 보다 염착성은 떨어지나 섬도가 작은 해도사에 친화성이 크며 표면 반사광의 감소로 color yield가 향상되었다.As a result of the dyeability test with the prepared nanoemulsion dispersion dye, dyeability is lower than that of the existing dispersion dye, but the affinity is high for sea island with small fineness and the color yield is improved by reducing the surface reflection light.

구체적으로 염색 결과물의 K/S value와 Exhaustion yield(%) 측정하여 다음과 같은 결과를 얻었다.Specifically, the following results were obtained by measuring K / S value and Exhaustion yield (%) of the dyeing result.

Figure 112005023115067-pat00005
Figure 112005023115067-pat00005

Figure 112005023115067-pat00006
Figure 112005023115067-pat00006

먼저 K/S value(ccm(computer color matching))시스템으로 측정하여 염색된 색의 농도를 기계적으로 확인하는 수치)에 대해서 본다. 염색포의 K/S값 측정 결과, 종래의 분산염료로 염색한 경우 해도면의 color yield가 regular PET면보다 떨어지는 반면 나노 분산염료 에멀젼(nano disperse dye emulsion)으로 염색한 경우 해도면의 color yield가 더 높음을 알 수 있다.First, K / S value (measured mechanically to check the density of the dyed color by measuring with a computer color matching (ccm) system). As a result of measuring the K / S value of the dye cloth, the color yield of the islands was lower than that of regular PET when dyed with conventional disperse dyes, while the color yield of the islands was more when dyed with nano disperse dye emulsion. It can be seen that high.

종래 분산염료로 130℃에서 염색하면 해도면의 color yield가 regualr PET 면 보다 떨어졌다. 이러한 겉보기 농도의 차이는 섬유가 가늘어짐에 따라 섬유의 표면적이 증가하고 섬유표면의 난반사가 증대하기 때문이다. 이러한 현상 때문에 섬도가 다른 원사의 조합으로 구성된 소재를 동색으로 염색하기 위해서는 섬도가 작은 섬유사 쪽에 보다 많은 염료를 염착시킬 필요가 있다. 그러나 나노 분산염료 에멀젼(nano disperse dye emulsion)으로 해도사 폴리에스터 스웨드 tricot 직물을 130℃염색하면 해도면의 color yield가 regular PET 면과 비슷하거나 높았다. 이는 입자 크기가 감소하게 되면 산란광의 세기가 감소하고 흡수밴드 너비가 증가한다고 알려져 있으므로 염료크기가 나노사이즈가 됨에 따라 표면 반사광이 감소됨으로써 극세사의 color yield가 증가되기 때문으로 생각된다.When dyeing at 130 ° C. with conventional dyes, the color yield of the islands was lower than that of regualr PET. This apparent concentration difference is because as the fiber becomes thinner, the surface area of the fiber increases and the diffuse reflection on the surface of the fiber increases. Because of this phenomenon, in order to dye a material composed of a combination of yarns with different fineness in the same color, it is necessary to dye more dyes on the finer fiber yarn. However, the dye yield of the island-in-the-sea polyester suede tricot fabric at 130 ° C. with nano disperse dye emulsion was similar to or higher than that of regular PET cotton. This is because the decrease in particle size decreases the intensity of scattered light and increases the absorption band width. Therefore, it is thought that the microfiber color yield is increased by decreasing the surface reflection light as the dye size becomes nanosize.

다음으로 exhaustion yield (UV-Vis spectrophotometer를 이용, 염색 전과 염색 후 각 염욕에 있는 염료의 량을 측정하여 염료가 섬유에 흡착된 정도를 나타내는 것)에 대해 본다.Next, the exhaustion yield (using UV-Vis spectrophotometer is measured before and after dyeing to measure the amount of dye in each dye bath to indicate the degree of dye adsorption on the fiber).

종래의 분산염료의 exhaustion yield가 90% 이상인 것에 비하여 나노 분산염료 에멀젼의 exhaustion yield는 20~30%로 현저히 떨어지는 것으로 나타났다. 이는 염료 주위에 계면활성제(surfacant)가 둘러싸 분산염료가 가용화되어, 가용화된 분산염료는 폴리에스테르의 염색에 참여하기 어렵기 때문인 것으로 생각된다. 이때 surfactant micell은 분산염료를 안정하게 저장하는 역할을 한다. 폴리에스테르와 분산염료는 hydrophobic한 인력으로 염착되는데 surfactant micell 안에 가용화된 분산염료는 hydrophilic하기 때문에 polyester에 염착되기 힘들며, 나노에멀젼 상태가 열역학적으로 매우 안정하므로 분산염료가 surfactant micell 밖으로 빠져나오기 힘들어서 염착성이 떨어지는 것으로 추정된다.Compared with the conventional exhaustion yield of more than 90%, the exhaustion yield of the nanodisperse dye emulsion was found to drop significantly from 20 to 30%. It is thought that this is because the disperse dye is solubilized by surrounding a surfactant around the dye, and the solubilized disperse dye is difficult to participate in dyeing of the polyester. At this time, the surfactant micell stores a stable dispersion dye. Polyester and disperse dyes are dyed with hydrophobic attraction force, and the disperse dyes solubilized in surfactant micell are hydrophilic and difficult to dye on polyester. It is estimated.

그러나 해도사에서는 regular PET보다 exhaustion yield가 1.5~2배 높았다. 이로써 나노 분산염료는 섬도가 작은 섬유에 더 친화성(substantibity)이 큰 것으로 보인다.However, in sea islands, the exhaustion yield was 1.5 ~ 2 times higher than regular PET. This suggests that nano-dispersed dyes have a greater affinity for fibers with lower fineness.

상기한 본 발명에 따른 나노 분산 염료는 나노입자로 에멀젼화 하여 염색하므로 분산 안정성과 균염성 등을 위한 다량의 조제를 사용하지 않고도 좋은 염색성을 얻을 수 있어 친환경적이고 비용절감의 효과를 얻을 수 있다.Since the nano-disperse dyes according to the present invention are emulsified and dyeing with nanoparticles, it is possible to obtain good dyeing properties without using a large amount of preparation for dispersion stability and leveling, etc., thereby achieving eco-friendly and cost-effective effects.

특히 기존의 염료에 비해 초극세사에 대한 높은 친화력을 가지고 있으며, 표면 반사광을 감소시켜 color yield를 향상시킨다.In particular, it has higher affinity for microfiber than conventional dyes, and improves color yield by reducing surface reflection light.

Claims (2)

SLS(Sodium Laurylsulfate) 1~10wt%, 증류수 70~90wt%, 카프릴릭 트리글리세라이드(Caprylic triglyceride) 5~20wt%로 조성되고 그 평균입도는 100~150nm인 나노에멀젼을 이용하여 제조되는 것을 특징으로 하는,SLS (Sodium Laurylsulfate) 1 ~ 10wt%, distilled water 70 ~ 90wt%, Caprylic triglyceride (Caprylic triglyceride) 5 ~ 20wt% The average particle size is prepared using a nanoemulsion is 100 ~ 150nm doing, 나노에멀젼을 이용한 나노 분산염료.Nano dispersion dyes using nanoemulsions. 제1항에 있어서,The method of claim 1, 상기 나노에멀젼에, 염료를 D.M.F.에 용해시킨 염액을 주입시켜서 형성되는 것을 특징으로 하는,It is formed by injecting a salt solution in which the dye is dissolved in D.M.F. to the nanoemulsion, 나노에멀젼을 이용한 나노 분산염료.Nano dispersion dyes using nanoemulsions.
KR1020050036773A 2005-05-02 2005-05-02 Nano disperse dyes by using nanoemulsion KR100665533B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050036773A KR100665533B1 (en) 2005-05-02 2005-05-02 Nano disperse dyes by using nanoemulsion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050036773A KR100665533B1 (en) 2005-05-02 2005-05-02 Nano disperse dyes by using nanoemulsion

Publications (2)

Publication Number Publication Date
KR20060114731A KR20060114731A (en) 2006-11-08
KR100665533B1 true KR100665533B1 (en) 2007-01-09

Family

ID=37652310

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050036773A KR100665533B1 (en) 2005-05-02 2005-05-02 Nano disperse dyes by using nanoemulsion

Country Status (1)

Country Link
KR (1) KR100665533B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020045223A (en) * 2000-12-08 2002-06-19 성재갑 In-situ Preparation Of Microsphere In Personal Care Cleansing Composition, The Microsphere And Cleansing Composition Comprising The Same
KR20020063862A (en) * 1999-09-21 2002-08-05 알티피 파마 인코포레이티드 Surface Modified Particulate Compositions of Biological Active Substances

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020063862A (en) * 1999-09-21 2002-08-05 알티피 파마 인코포레이티드 Surface Modified Particulate Compositions of Biological Active Substances
KR20020045223A (en) * 2000-12-08 2002-06-19 성재갑 In-situ Preparation Of Microsphere In Personal Care Cleansing Composition, The Microsphere And Cleansing Composition Comprising The Same

Also Published As

Publication number Publication date
KR20060114731A (en) 2006-11-08

Similar Documents

Publication Publication Date Title
US7048771B2 (en) Dyeing textiles using nanoparticles
Mashaly et al. Dyeing of polyester fabric using nano disperse dyes and improving their light fastness using ZnO nano powder
EP3353343A1 (en) Textile fabrics with denim-like features
Kim et al. Improving the digital to garment inkjet printing properties of cotton by control the butyl acrylate content of the surface treatment agent
CN101525852A (en) Colored fabric and clothes
El-Khatib et al. Functionalization of natural fibers properties by using TiO (2) nanoparticles to improve its antimicrobial activity
KR100665533B1 (en) Nano disperse dyes by using nanoemulsion
Parvinzadeh et al. Textile softeners on cotton dyed with direct dyes: reflectance and fastness assessments
JP2019143278A (en) Fabric
Marti et al. Liposome as dispersing agent into disperse dye formulation
Blus et al. Effect of nonionic surfactants on the dyeing process of cellulose fibres with CI Reactive Blue 217
JP6001398B2 (en) Method for dyeing polyarylate fibers
DE60038558T2 (en) DENIMARY CLOTHING PIECE AND METHOD FOR THE PRODUCTION THEREOF
Wang et al. Acrylic yarns dyeing properties of cationic ultra-fine pigment modified by TDBAC
Xiu et al. Preparation of thermal transfer ink using disperse fluorescent yellow 82 for polyester substrates
CN110863368B (en) Washing-free high-color-fastness pad dyeing process for heavy polyester blanket cloth
Lai et al. Dyeing Properties of modified Gemini surfactants on a disperse dye—polyester system
Odvarka et al. The effect of dispersing agents on the dyeing of polyester with a disperse dye
CN102011239B (en) Lining for cloth, trousers and coat with the lining for cloth
JP2942315B2 (en) Thermochromic polyvinyl alcohol fiber and method for producing the same
Foisal et al. Burn out printing and dyeing of polyester-cotton blended knit fabric
Sampaio et al. Colored nanoparticles for ecological dyeing of cellulosic fibres
Maamoun et al. Improving printability of silk and polyamide substrates with madder nano-sized particles
Siriphet et al. Effect of Dye Dispersion Preparation on Disperse Dyeing Performance on Polyester Fabric
Ragheb et al. Investigation of the printability of henna before and after miniaturization on natural fabrics

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121128

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131120

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141119

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee