KR100659458B1 - Spalling prevention method of high strength concrete using fire-proof mortar of self-leveling - Google Patents

Spalling prevention method of high strength concrete using fire-proof mortar of self-leveling Download PDF

Info

Publication number
KR100659458B1
KR100659458B1 KR1020060026737A KR20060026737A KR100659458B1 KR 100659458 B1 KR100659458 B1 KR 100659458B1 KR 1020060026737 A KR1020060026737 A KR 1020060026737A KR 20060026737 A KR20060026737 A KR 20060026737A KR 100659458 B1 KR100659458 B1 KR 100659458B1
Authority
KR
South Korea
Prior art keywords
weight
parts
mortar
strength concrete
filling
Prior art date
Application number
KR1020060026737A
Other languages
Korean (ko)
Inventor
권영진
김재환
한병찬
Original Assignee
(주)에이엠에스 엔지니어링
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에이엠에스 엔지니어링 filed Critical (주)에이엠에스 엔지니어링
Priority to KR1020060026737A priority Critical patent/KR100659458B1/en
Application granted granted Critical
Publication of KR100659458B1 publication Critical patent/KR100659458B1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • C04B14/46Rock wool ; Ceramic or silicate fibres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0625Polyalkenes, e.g. polyethylene
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • E04B1/941Building elements specially adapted therefor
    • E04B1/943Building elements specially adapted therefor elongated
    • E04B1/944Building elements specially adapted therefor elongated covered with fire-proofing material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Building Environments (AREA)

Abstract

A method for preventing high strength concrete from being broken by using fireproof filling mortar having self-filling property is provided to effectively suppress temperature increase of high strength concrete and iron bars by blocking heat transfer to members in a fire, to prevent coating concrete from being broken, to prevent section of the member from being broaden, and to form a fireproof heat blocking layer by injecting/hardening fireproof filling mortar into a space between the concrete member and a finishing panel. A method for preventing high strength concrete from being broken by using fireproof filling mortar having self-filling property comprises the steps for forming a fireproof heat blocking layer at a space unit(08) between a high strength concrete member and a finishing panel(04); manufacturing fireproof filling mortar(06) having high fireproof heat blocking function and self-filling property by a mixer(201) in a construction field; and injecting/hardening the fireproof filling mortar into the space unit through an injection hole(205) installed at a joint unit(07) of the finishing panel by using a transferring device formed with an inputting hopper(202), a transferring unit(203), and a transferring hose(204).

Description

자기충전성을 갖는 내화충전모르타르를 사용한 고강도콘크리트의 폭열방지공법{Spalling prevention method of high strength concrete using fire-proof mortar of self-leveling}Spalling prevention method of high strength concrete using fire-proof mortar of self-leveling}

도 1은 본 발명의 자기충전성을 갖는 내화충전모르타르의 제조/시공플로우 및 이를 사용한 폭열방지공법의 시공모식도를 나타낸 도면이다.1 is a view showing the construction schematic diagram of the production / construction flow of the refractory filling mortar having a self-filling property of the present invention and the method of preventing thermal expansion using the same.

도 2는 본 발명의 자기충전성을 갖는 내화충전모르타르를 사용한 고강도콘크리트 기둥부재의 폭열방지공법을 나타낸 도면이다.Figure 2 is a view showing the thermal expansion prevention method of the high-strength concrete pillar member using a refractory charging mortar having a self-charging of the present invention.

도 3은 본 발명의 자기충전성을 갖는 내화충전모르타르를 사용한 고강도콘크리트 벽체의 폭열방지공법을 나타낸 도면이다.3 is a view showing a method of preventing thermal expansion of a high-strength concrete wall using fire-resistant mortar having a self-charging property of the present invention.

도 4은 본 발명의 자기충전성을 갖는 내화충전모르타르를 사용한 고강도콘크리트 보부재의 폭열방지공법을 나타낸 도면이다.Figure 4 is a view showing the thermal expansion prevention method of the high-strength concrete beam member using a refractory filling mortar having a self-charging of the present invention.

도 5는 본 발명의 실시예 및 비교에의 내화성능을 평가하기 위한 시험체의 단면모식도를 나타낸 도면이다.5 is a view showing a cross-sectional schematic diagram of a test body for evaluating the fire resistance performance in the Examples and comparison of the present invention.

*** 도면의 주요부분에 대한 부호의 설명 ****** Explanation of symbols for main parts of drawing ***

01 : 고강도콘크리트01: High Strength Concrete

02 : 부재의 주근02: the main root of the member

03 : 부재의 부근03: vicinity of member

04 : 마감패널04: Finishing Panel

05 : 마감패널 부착용 앵커05: Finishing panel attachment anchor

06 : 내화충전모르타르(또는 내화/차열층)06: fireproof mortar (or fireproof / heat shield layer)

07 : 마감패널의 이음부(또는 줄눈부)07: Joints (or joints) of the finishing panel

08 : 부재의 표면과 마감패널 사이의 공간부08: space between the surface of the member and the finishing panel

101 : 건조모르타르101: dry mortar

102 : 흡열물질102: endothermic material

103 : 마이크로 유기섬유103: micro organic fiber

104 : 고성능감수제104: high performance water reducing agent

105 : 배합수105: compounding water

201 : 모르타르믹서201: Mortar Mixer

202 : 투입호퍼202: hopper

203 : 압송펌프203: pumping pump

204 : 압송호스204: pressure hose

205 : 주입구205: injection hole

301 : 내화시험시 온도측정위치301: Temperature measuring position during fire resistance test

302 : 내화시험시 폭열유무 관찰위치302: Observation position of the presence of heat during the fire test

본 발명은 신설 또는 기설된 고강도콘크리트 부재의 화재발생시 폭열저항성을 향상시키기 위하여 고강도콘크리트 부재의 표면과 마감패널(04) 사이에 형성된 공간부(08)에 내화충전모르타르(06)를 주입 충전하여 내화차열층을 형성하는 공법에 관한 것이며, 상기와 같이 구성됨으로서 화재발생시 고강도콘크리트 부재의 폭열발생을 방지함과 동시에 내부의 콘크리트(01) 및 철근(02, 03)의 온도상승을 효과적으로 억제할 수 있는 고강도콘크리트 부재의 폭열방지공법에 관한 것이다.The present invention is injected and filled with refractory filling mortar (06) in the space portion 08 formed between the surface of the high-strength concrete member and the finishing panel 04 in order to improve the thermal resistance in the event of a fire of a new or existing high-strength concrete member The present invention relates to a process for forming a heat shield layer, and is configured as described above to prevent the thermal explosion of the high-strength concrete member in the event of a fire and at the same time effectively suppress the temperature rise of the concrete (01) and the reinforcing bars (02, 03). The present invention relates to a method for preventing thermal expansion of a high strength concrete member.

일반적으로 빌딩, 주상복합아파트, 공공시설 등의 초고층 철근콘크리트구조물에 있어서 보통강도콘크리트를 사용할 경우에 비하여 고강도콘크리트를 사용할 경우 화재 등에 의해 극도의 고온하에 노출되면 콘크리트의 표면으로부터 파편이 비산되는 폭열현상이 발생하게 된다. 이러한 폭열현상은 고온가열에 의해 콘크리트 내부의 수분이 증발할 때에 내부조직이 치밀한 고강도콘크리트의 경우에는 수증기가 배출되는 통기로가 없기 때문에 수증기압이 극단적으로 상승하여 발생하는 것으로 알려져 있으나, 그 상세한 메커니즘은 아직까지도 규명되지 않은 실정이다.In general, high-strength reinforced concrete structures such as buildings, residential complexes, and public facilities, when using high-strength concrete, are exposed to extreme high temperatures by fire, etc., and fragments are scattered from the surface of concrete. This will occur. This thermal expansion phenomenon is known to occur due to the extremely high water vapor pressure in the case of high-strength concrete where the internal structure is dense when the moisture inside the concrete evaporates due to the high temperature heating, because there is no aeration path through which the water vapor is discharged. It has not been identified yet.

전술한 폭열현상이 고강도콘크리트 부재에 발생하게 되면 단면결손이 발생함과 동시에 피복두께의 감소에 의해 내부 철근의 온도상승을 유발하며, 그 결과 부재의 구조내력이 급격히 저하되는 것으로 알려져 있다. 한편, 설계기준강도가 80MPa급의 고강도콘크리트 부재는 주로 초고층건축물 등에 적용되기 때문에 건축기준법에 따라 소요의 내화성능(구조내력상 지장을 초래하는 변형, 파괴 및 그 외의 손상을 일으키지 않을 것, 즉 비손상성)이 요구된다.When the above-described thermal expansion phenomenon occurs in the high strength concrete member, cross-sectional defects occur and the temperature of the internal reinforcement is caused by the decrease in the coating thickness, and as a result, the structural strength of the member is known to be drastically lowered. On the other hand, high strength concrete members with 80MPa class design strength are mainly applied to high-rise buildings, etc., so that the fire resistance performance required by the Building Standards Act (do not cause deformation, destruction, and other damages that lead to structural strength problems, namely Bison) Homology) is required.

이에 따라, 고강도콘크리트 부재에 있어서 전술한 폭열현상을 방지하기 위한 공법이 다양하게 제안되었으며, 예를 들면, a) 고강도콘크리트 부재의 표면을 박판의 강판으로 피복하는 방법(강판피복공법); b) 고강도콘크리트 비빔시 용융점이 낮은 유기재료(구체적으로는, 직경 5~100㎛, 길이 3~40mm인 유기섬유)를 0.02~0.5용적% 혼입하여 제조하는 공법(내폭열콘크리트공법); c) 각종 내화패널을 고강도콘크리트 부재의 표면에 앵커로 부착하는 공법(내화패널부착공법), d) 각종 내화도료를 고강도콘크리트 부재의 표면에 도포하는 공법(내화도료도포공법) 등이 제안되고 있다.Accordingly, various methods have been proposed for preventing the above-described thermal expansion phenomenon in high-strength concrete members, for example: a) a method of coating the surface of the high-strength concrete member with a thin steel sheet (steel coating method); b) a method of manufacturing by mixing 0.02 to 0.5% by volume of an organic material having a low melting point (specifically, an organic fiber having a diameter of 5 to 100 µm and a length of 3 to 40 mm) in high-strength concrete bibeam (explosion-resistant concrete method); c) A method of attaching various fireproof panels to the surface of the high strength concrete member with an anchor (fireproof panel attachment method), and d) a method of applying various fireproof paints to the surface of the high strength concrete member (fireproof coating method) and the like have been proposed. .

그렇지만, 상기 a)의 강판피복공법은 복잡한 시공과정과 고비용이 소요될 뿐만 아니라 화재시 강판이 화열에 의해 급격히 손상을 입게 된다. 또한, 상기 b)의 내폭열콘크리트공법은 유기섬유의 혼입에 의해 고강도콘크리트 비빔시 화이버볼(Fiber-ball) 현상이 발생되거나 유동성이 크게 저하되어 타설작업이 곤란하게 될 우려가 있다. 또한, 상기 c)의 내화패널부착공법은 화재발생시 화열의 차단성능은 양호한 반면, 시공과정이 복잡하고 고비용이 소요되며, 상기 내화패널에 더하여 마감재가 부착되어야 하므로 부재의 단면이 크게 증대될 우려가 있다. 한편, 상기 d)의 내화도료도포공법은 시공이 간편하고 부재단면이 증대될 우려가 없는 반면, 화재발생시 소요의 내화성능을 만족시키지 못하는 등의 문제점이 지적되고 있다.However, the steel sheet coating method of a) requires a complicated construction process and high cost, and the steel sheet is suddenly damaged by fire in case of fire. In addition, in the b-resistant concrete method of b), fiber-ball phenomenon occurs when the high-strength concrete bibimbly occurs due to the incorporation of organic fibers, or the fluidity may be greatly reduced, thereby making the casting work difficult. In addition, while the fireproof panel attaching method of c) has a good heat shielding performance in the event of a fire, the construction process is complicated and expensive, and a finishing material must be attached to the fireproof panel so that the cross section of the member may be greatly increased. have. On the other hand, while the fireproof coating method of d) is easy to construct and there is no fear of increasing the cross-section of the member, problems such as failing to meet the required fire resistance performance in the event of a fire has been pointed out.

일반적으로 초고층의 주상복합아파트나 사무소빌딩 등에 있어서 고강도콘크리트는 기둥, 보, 벽체 등의 주요구조부재에 주로 사용되며, 고강도콘크리트 부재의 보호 및 외관상의 목적으로 부재에 앵커(05)를 고정시킨 후 각종 마감패널(04) 을 부착하여 표면을 마감하는 방법이 사용된다. 즉, 마감패널(04)과 고강도콘크리트 부재의 표면 사이에는 약 5~40mm의 공간부(08)가 형성된다. In general, high-strength concrete in high-rise columnar apartments and office buildings, mainly used for the main structural members such as columns, beams, walls, etc., after fixing the anchor (05) to the member for the purpose of protection and appearance of the high-strength concrete member A method of finishing the surface by attaching various finishing panels 04 is used. That is, a space portion 08 of about 5 to 40 mm is formed between the finish panel 04 and the surface of the high-strength concrete member.

따라서, 본 발명에서는 화재발생시 부재로의 화열전달을 차단하여 부재 내부의 고강도콘크리트(01) 및 철근(02, 03)의 온도상승을 효과적으로 억제하면서 피복콘크리트의 폭열을 방지하고, 더욱이 부재의 단면을 증대시키지 않는 고강도콘크리트 부재의 폭열방지공법을 개발하고자 하였으며, 이를 해결하기 위해 자기충전성을 갖는 내화충전모르타르(06)를 고강도콘크리트 부재의 표면과 마감패널(04) 사이의 공간부(08)에 주입 경화시킴으로서 내화차열층을 형성하는 폭열방지공법을 제공하고자 한다.Therefore, in the present invention, it prevents the thermal expansion of the coated concrete while effectively suppressing the temperature rise of the high-strength concrete (01) and the reinforcing bars (02, 03) inside the member by blocking heat transfer to the member during a fire. It was intended to develop a method of preventing thermal expansion of a high strength concrete member that does not increase. To solve this problem, a refractory mortar (06) having self-filling properties is placed in the space portion (08) between the surface of the high strength concrete member and the finishing panel (04). An injection hardening method is to provide a heat prevention prevention method for forming a refractory heat shield layer.

상기의 목적을 달성하기 위하여, 본 발명에서는 신설 및 기설된 고강도콘크리트 구조물에 있어서 고강도콘크리트 부재의 표면과 마감패널(04) 사이에 형성된 공간부(08)에 자기충전성을 갖는 내화충전모르타르(06)를 압송장치에 의해 주입 경화시켜 내화차열층을 형성하는 고강도콘크리트 부재의 폭열방지공법을 제공하고자 한다. 또한, 본 발명의 폭열방지공법에 있어서 내화차열층을 구성하는 내화충전모르타르(06)의 조성물을 제공하고자 한다.In order to achieve the above object, in the present invention and the existing high-strength concrete structure, refractory filling mortar having self-charge property in the space portion 08 formed between the surface of the high-strength concrete member and the finishing panel 04 The present invention is to provide a method for preventing thermal expansion of a high-strength concrete member that forms a refractory heat shielding layer by injection-curing by a pressure feeding device. In addition, the present invention is to provide a composition of the refractory filling mortar (06) constituting the refractory heat shield layer in the heat-treatment prevention method of the present invention.

이하에 본 발명을 도면을 참조하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the drawings.

본 발명의 첫번째 양태는 고강도콘크리트 부재의 표면과 마감패널(04) 사이에 형성된 공간부(08)에 내화차열층을 형성시키는 고강도콘크리트 부재의 폭열방지공법에 관한 것이며, 상기의 내화차열층은 우수한 내화차열성능 및 자기충전성을 갖는 내화충전모르타르(06)를 믹서(201)에 의해 현장에서 제조한 후, 투입호퍼(202)와 압송장치(203) 및 압송호스(204)로 구성된 압송장치를 사용하여 마감패널의 이음부(또는 줄눈부)(07)에 미리 설치해 둔 주입구(205)를 통해 공간부(08)로 상기의 내화충전모르타르(06)를 주입 경화시켜 형성되는 것을 특징으로 한다.The first aspect of the present invention relates to a method of preventing heat radiation of a high strength concrete member to form a refractory heat shielding layer in the space portion 08 formed between the surface of the high strength concrete member and the finishing panel 04. After the refractory filling mortar (06) having refractory heat shielding performance and self-charging property is manufactured on-site by the mixer 201, a feeding device composed of an input hopper 202, a feeding device 203 and a feeding hose 204 It is characterized in that it is formed by injection-hardening the refractory filling mortar (06) to the space portion 08 through the injection hole 205 pre-installed in the joint (or joint) portion 07 of the finishing panel using .

즉, 상기의 내화충전모르타르(06)는 공장에서 미리 건조모르타르(프리믹스타입)로 제조된 혼합물을 믹서(201)에 투입한 후 배합수(105)만 계량 첨가하여 현장에서 간편하게 제조되며, 비빔직후 내화충전모르타르(06)의 유동성, 즉 무타격시 테이블플로우값은 200mm 이상, 양호하게는 250mm 이상의 것으로 자기충전성을 갖는 바람직하다. 이와 같이 제조된 굳지 않은 상태의 내화충전모르타르(06)는 곧바로 투입호퍼(202)로 배출되며, 투입호퍼(202)에 모아진 내화충전모르타르(06)는 압송펌프(203) 및 압송호스(204)를 통해 주입구(205)와 연결된 압송호스의 선단부분까지 운송된다. 이때, 압송펌프(203)의 종류는 별도의 제한이 없으나 스네이크식 또는 스퀴즈식의 압송펌프를 사용하는 것이 바람직하며, 압송호스(204)는 플렉시블호스를 사용하는 것이 바람직하고, 그 내경은 별도의 제한이 없으나 30~80mm의 것이 바람직하다.That is, the refractory filling mortar (06) is prepared in the factory by simply adding the mixed water 105 to the mixture 201 prepared in advance in the factory in a dry mortar (premix type) in the factory, and immediately after the bibim The fluidity of the refractory filling mortar 06, that is, the table flow value at the time of no hitting, is preferably 200 mm or more, preferably 250 mm or more, and is preferably self-filling. The refractory filling mortar (06) of the thus-not hardened state is immediately discharged into the hopper 202, and the refractory filling mortar (06) collected in the hopper 202 is the pumping pump 203 and the pumping hose 204. It is transported to the front end portion of the pressure feed hose connected to the inlet 205 through. At this time, the type of the pump pump 203 is not limited separately, but it is preferable to use a snake pump or a squeeze pump pump, it is preferable that the pump hose 204 uses a flexible hose, the inner diameter is separate There is no limitation, but 30-80mm is preferable.

이와 같이 압송호스(204)의 선단까지 운송된 내화충전모르타르(06)은 마감패널(04) 사이의 이음부(07)에 미리 설치된 주입구(205)를 통해 마감패널(04)과 고강도콘크리트부재의 표면 사이에 형성된 공간부(08)에 충전하게 된다. 이때, 주입구(205)의 위치는 부재의 최하부측 줄눈부(07)에 설치하여 내화충전모르타르(06)가 부재의 최하부측부터 충전된 후, 압송펌프(203)의 압송력에 의해 부재의 상부측으 로 점점 압밀 충전되도록 하는 것이 바람직하며, 이렇게 함으로서 충전된 내화충전모르타르(06)에 공극이 발생되는 것을 방지할 수 있다.Thus, the refractory filling mortar (06) transported to the tip of the pressure feed hose (204) of the closing panel (04) and the high-strength concrete member through the inlet 205 pre-installed in the joint portion 07 between the finishing panel (04) The spaces 08 formed between the surfaces are filled. At this time, the position of the inlet 205 is installed on the lowermost joint portion 07 of the member, and after the refractory filling mortar 06 is filled from the lowermost side of the member, the upper portion of the member is driven by the pressure feeding force of the pressure pump 203. It is desirable to gradually consolidate the side to be filled, and by doing so, it is possible to prevent the generation of voids in the filled refractory filling mortar (06).

상기와 같이 공간부(08)에 내화충전모르타르(06)의 충전이 완료된 직후에는 주입구(205)와 압송호스(204)를 분리한 후, 충전된 내화충전모르타르(06)가 주입구(205)로부터 빠져나오는 것을 방지하기 위해 마개로 주입구(205)를 임시적으로 봉쇄하고, 이후에 줄눈재를 주입구(205)에 채워 표면을 마감하게 된다. 더욱이, 시공이 완료된 후에는 충전된 내화충전모르타르가 경화될 때까지 외부의 충격 등으로부터 보호되도록 적절한 보양을 실시하는 것이 바람직하다.Immediately after the filling of the refractory filling mortar 06 in the space portion 08 is completed as described above, the inlet 205 and the pressure feed hose 204 are separated, and the filled refractory filling mortar 06 is injected from the inlet 205. In order to prevent the exit of the inlet 205 is temporarily sealed with a stopper, the joint is then filled with the inlet 205 to finish the surface. Moreover, after the construction is completed, it is preferable to provide proper maintenance so as to be protected from external impact and the like until the refractory filling mortar is cured.

본 발명의 두번째 양태는 상기 고강도콘크리트 부재의 폭열방지공법에 사용되는 내화충전모르타르(06)의 조성물에 관한 것으로, 본 발명의 내화충전모르타르(06)는 a) 건조모르타르 100중량부; b) 흡열물질 5~50중량부; c) 마이크로 유기섬유 0.05~2.5중량부; d) 고성능AE감수제 0.5~3.0중량부; e) 배합수 20~60중량부로 구성된다.The second aspect of the present invention relates to a composition of the refractory filling mortar (06) used in the heat-resistant prevention method of the high-strength concrete member, the refractory filling mortar (06) of the present invention comprises a) 100 parts by weight of dry mortar; b) 5-50 parts by weight of endothermic material; c) 0.05 to 2.5 parts by weight of micro organic fibers; d) 0.5 to 3.0 parts by weight of a high performance AE reducing agent; e) 20 to 60 parts by weight of the blended water.

즉, 상기 a)의 건조모르타르는 당해 건조모르타르 100중량부에 대하여, 시멘트 30~70중량부; b) 고로슬래그미분말, 석회석미분말, 실리카흄, 플라이애시 중 1종 이상이 혼합된 혼화재 5~40중량부; c) 잔골재 1~30중량부; d) CSA계 팽창재 또는 수축저감재 1~10중량부로 구성된다. 여기서, 시멘트 종류에 대한 별도의 제한은 없으나 알루미나시멘트 또는 고로시멘트를 사용하거나 보통포틀랜드시멘트에 알루미나시멘트를 일부 혼합하여 사용하는 것이 바람직하며, 그 사용량은 30~70중량부, 양호하게는 35~55중량부가 바람직하다. 또한, 혼화재로 고로슬래그미분말, 석회석 미분말, 실리카흄, 플라이애시를 단독으로 사용하거나 이들 중 2종 이상을 혼합 사용할 수 있으며, 그 사용량은 5~40중량부, 양호하게는 20~30중량부가 바람직하다. 또한, 잔골재의 종류에 대해서는 별도의 제한이 없으나 규사의 사용이 바람직하고, 더욱이 부순골재 제조시 생산되는 500㎛ 이하의 건조석분을 사용하여도 되며, 그 사용량은 1~30중량부, 양호하게는 5~20중량부가 바람직하다. 즉, 1중량부 미만인 경우에는 건조수축에 의한 균열발생이 우려되며, 30중량부를 초과할 경우에는 제조시 유동성의 확보가 곤란하게 된다. 더욱이 CSA계 팽창재 또는 수축저감재는 내화충전모르타르(06)의 자기수축 및 건조수축을 제어하기 위해 사용되는 것으로, 그 사용량은 1~10중량부, 양호하게는 3~6중량부가 바람직하며, 1중량부 미만인 경우에는 첨가효과가 미미하고, 반면 10중량부를 초과할 경우에는 과다한 팽창을 유발하여 마감패널(04)에 유해한 외력을 작용하게 된다.That is, the dry mortar of a) is 30 to 70 parts by weight of cement based on 100 parts by weight of the dry mortar; b) 5 to 40 parts by weight of admixture mixed with at least one of blast furnace slag powder, limestone fine powder, silica fume and fly ash; c) 1 to 30 parts by weight of fine aggregate; d) 1 to 10 parts by weight of CSA-based expander or shrinkage reducing material. Here, there is no separate restriction on the type of cement, but it is preferable to use alumina cement or blast furnace cement, or use a mixture of alumina cement in a common portland cement, and the amount of use is 30 to 70 parts by weight, preferably 35 to 55 Weight part is preferable. In addition, as the admixture, blast furnace slag powder, limestone fine powder, silica fume, fly ash may be used alone or two or more kinds thereof may be mixed, and the amount thereof is preferably 5 to 40 parts by weight, preferably 20 to 30 parts by weight. . In addition, there is no restriction on the type of fine aggregate, but the use of silica sand is preferable, and dry stone powder of 500 μm or less produced in the production of crushed aggregate may be used, and the amount of the aggregate is 1 to 30 parts by weight, preferably 5-20 weight part is preferable. That is, if it is less than 1 part by weight, there is a fear of cracking due to dry shrinkage, and if it exceeds 30 parts by weight, it is difficult to secure fluidity during manufacture. Furthermore, the CSA-based expander or shrinkage reducing material is used to control self-shrinkage and dry shrinkage of the refractory filling mortar (06), the amount of which is preferably 1 to 10 parts by weight, preferably 3 to 6 parts by weight, preferably 1 weight If the amount is less than the addition effect is insignificant, on the other hand, if it exceeds 10 parts by weight, causing excessive swelling will act an external force harmful to the finish panel (04).

또한, 상기 b)의 흡열물질로는 직경 1~500㎛의 폴리프로필렌 분말, 직경 5mm 이하의 발포유리비드 또는 수지비드(예를 들면, 폴리프로필렌(PP)비드 또는 폴리에틸렌(PE)비드 등), 직경 5mm 이하의 경량골재 중 1종 이상이 사용되며, 양호하게는 발포유리비드 또는 수지비드의 사용이 바람직하다. 그 사용량은 5~50중량부, 양호하게는 8~30중량부가 바람직하며, 5중량부 미만인 경우에는 화재발생시 화열을 흡수하는 효과가 미미하고, 50중량부를 초과할 경우에는 내화충전모르타르의 제조시 소요의 유동성을 만족시키기 곤란하거나 경화후 결합력이 저하될 우려가 있다.As the endothermic material of b), polypropylene powder having a diameter of 1 to 500 µm, foam glass beads or resin beads having a diameter of 5 mm or less (for example, polypropylene (PP) beads or polyethylene (PE) beads, etc.), At least one of lightweight aggregates having a diameter of 5 mm or less is used, and preferably, foamed glass beads or resin beads are used. The amount is preferably 5 to 50 parts by weight, preferably 8 to 30 parts by weight, and less than 5 parts by weight, the effect of absorbing heat when fire occurs is insignificant. It may be difficult to satisfy the required fluidity or the bonding strength may decrease after curing.

한편, 상기 c)의 마이크로 유기섬유는 내화충전모르타르(06)의 건조수축 및 충격 등에 의한 균열을 제어하거나 화재시 내부의 수증기를 외부로 배출시키는 통 로의 역할을 하는 것으로, 직경이 5~100㎛이고 길이가 3~15mm인 단섬유가 바람직하며, 그 종류는 폴리프로필렌(PP)섬유, 폴리비닐알콜(PVA)섬유, 폴리에틸렌(PE)섬유, 나이론섬유, 아라미드섬유 등 별도의 제한은 없다. 그 사용량은 0.05~2.5중량부, 양호하게는 0.3~1.0중량부가 바람직하며, 그 사용량이 0.05중량부 미만인 경우에는 섬유의 첨가효과가 매우 미미하고, 반면 2.5중량부를 초과할 경우에는 내화충전모르타르 제조시 비빔성능이 크게 저하하거나 화이버볼 현상이 발생될 우려가 있다.On the other hand, the micro-organic fiber of c) serves to control the cracks caused by drying shrinkage and impact of the refractory filling mortar (06) or to discharge the water vapor to the outside in the event of a fire, the diameter of 5 ~ 100㎛ And short fibers having a length of 3 to 15 mm are preferred, and the type thereof is not limited in terms of polypropylene (PP) fibers, polyvinyl alcohol (PVA) fibers, polyethylene (PE) fibers, nylon fibers, aramid fibers and the like. The amount is preferably 0.05 to 2.5 parts by weight, preferably 0.3 to 1.0 parts by weight, and when the amount is less than 0.05 parts by weight, the effect of the addition of fibers is very small, whereas when it exceeds 2.5 parts by weight, the refractory filling mortar is produced. There is a risk that the bi-beam performance is greatly reduced or the fiber ball phenomenon occurs.

또한, 상기 d)의 고성능AE감수제는 내화충전모르타르의 제조 및 타설시 작업성능과 충전성능을 확보하기 위해 사용되는 것으로, 그 종류에 대해서는 별도의 제한이 없다. 그 사용량은 0.5~3.0중량부, 양호하게는 0.7~1.5중량부가 바람직하며, 그 사용량이 0.5중량부 미만인 경우에는 유동성의 확보가 곤란하고, 반면 3.0중량부를 초과할 경우에는 과도한 유동성에 의해 재료분리가 발생될 우려가 있다.In addition, the high-performance AE reducing agent of d) is used to ensure the work performance and filling performance during the manufacture and pouring of the refractory filling mortar, there is no particular limitation on the type. The amount is preferably 0.5 to 3.0 parts by weight, preferably 0.7 to 1.5 parts by weight, and when the amount is less than 0.5 parts by weight, it is difficult to secure fluidity, whereas when it exceeds 3.0 parts by weight, the material is separated by excessive fluidity. There is a risk of occurrence.

또한, 상기 e)의 배합수로는 수도수의 사용이 바람직하며, 그 사용량은 20~60중량부, 양호하게는 35~55중량부가 바람직하다. 즉, 사용량인 20미만인 경우에는 내화충전모르타르의 비빔이 곤란하거나, 경화후 고강도로 되어 화열에 의해 자체의 폭열을 발생시킬 위험성이 있으며, 반면 55중량부를 초과할 경우에는 점성이 약해져 재료분리의 우려가 있다.Moreover, the use of tap water is preferable as the compounded water of e), and the usage-amount is 20-60 weight part, Preferably 35-55 weight part is preferable. In other words, if the amount used is less than 20, it is difficult for the beam of refractory filling mortar to become difficult, or it becomes high strength after curing, which may cause its own explosion due to heat. There is.

이하, 본 발명의 실시예에 대하여 상세하게 설명하고자 하며, 본 발명의 범위가 이들 실시예에 한정된 것은 아니다. Hereinafter, embodiments of the present invention will be described in detail, and the scope of the present invention is not limited to these examples.

(실시예 및 비교예)(Examples and Comparative Examples)

실시예 1 및 2는 본 발명의 고강도콘크리트 부재의 폭열방지공법에 사용되는 자기충전성을 갖는 내화충전모르타르(06)의 조성물에 관한 것으로, 실시예 1 및 2에 사용된 배합사항은 표 1에 나타낸 바와 같다. 즉, 표 1에 나타낸 바와 같이 실시예 1 및 2에 사용된 건조모르타르 및 배합수의 배합사항은 모두 동일하며, 실시예 1의 경우 흡열물질 20중량부, 마이크로 유기섬유 0.3중량부, 고성능AE감수제 1.0중량부이고, 실시예 2의 경우 흡열물질 5중량부, 마이크로 유기섬유 1.5중량부, 고성능AE감수제 1.4중량부이다. 한편, 비교예 1은 흡열물질과 마이크로 유기섬유를 혼입하지 않은 모르타르이며, 건조모르타르 및 배합수의 배합사항은 실시예 1 및 2와 동일하다.Examples 1 and 2 relate to the composition of the self-filling refractory mortar (06) having a self-filling property used in the heat-resistant prevention method of the high-strength concrete member of the present invention, the formulations used in Examples 1 and 2 are shown in Table 1 As shown. That is, as shown in Table 1, the mixing details of the dry mortar and the blended water used in Examples 1 and 2 are the same, and in the case of Example 1, 20 parts by weight of endothermic material, 0.3 parts by weight of microorganic fibers, and a high performance AE water reducing agent. 1.0 part by weight, in the case of Example 2 5 parts by weight of the heat absorbing material, 1.5 parts by weight of microorganic fibers, 1.4 parts by weight of a high-performance AE reducing agent. On the other hand, Comparative Example 1 is a mortar that does not mix the endothermic material and micro organic fibers, the mixing details of the dry mortar and the blended water is the same as in Examples 1 and 2.

표 1. 본 발명의 실시예와 비교예의 배합사항 및 실험결과Table 1. Compounds and Experimental Results of Examples and Comparative Examples of the Invention

구 분division 실시예1Example 1 실시예2Example 2 비교예1Comparative Example 1 비 고Remarks 배합 사항Formulation matter 건조 모르타르 (wt.%)Dry mortar (wt.%) 시멘트cement AA 3535 3535 3535 1종보통폴틀랜드시멘트Type 1 Ordinary Polland Cement BB 1010 1010 1010 알루미나시멘트Alumina cement 혼화재Admixture AA 2525 2525 2525 고로슬래그미분말Blast Furnace Slag Powder BB 33 33 33 실리카흄Silica fume 잔골재Fine aggregate 2525 2525 2525 규사(7호:6호=1:1)Silica sand (7: 6 = 1: 1) 팽창재Inflating material 22 22 22 CSA계 (덴카 NO-20)CSA series (Denka NO-20) 소계sub Total 100100 100100 100100 -- 흡열물질 (wt.%)Endothermic material (wt.%) 2020 55 00 PP비드(2.5mm 이하)PP beads (2.5mm or less) 마이크로 유기섬유Micro organic fiber 종류Kinds PVA+PPPVA + PP PVA+PPPVA + PP -- 중량비(PVA:PP=0.8:0.2)Weight ratio (PVA: PP = 0.8: 0.2) 혼입량 (wt.%)Incorporation amount (wt.%) 0.30.3 1.51.5 00 -- 고성능AE감수제 (wt.%)High Performance AE Reducing Agent (wt.%) 1.01.0 1.41.4 0.50.5 폴리카르본산계 (HSP500)Polycarboxylic Acid System (HSP500) 배합수 (wt.%)Formulation Water (wt.%) 2727 2727 2727 수도수Tap water 내화충전 모르타르Fire Resistant Mortar 테이블플로우 (mm)Table Flow (mm) 289289 271271 235235 무타격시험A hit test 재료분리유무Material Separation radish radish radish 육안관찰에 의해 평가Evaluated by visual observation 휨강도 (MPa)Flexural strength (MPa) 5.465.46 8.958.95 4.844.84 KS F 4042KS F 4042 내화실험 결과Fireproof test results 폭열발생의 유무Presence of thermal explosion radish radish U 육안관찰에 의해 평가Evaluated by visual observation 가열시간 90분에서의 철근온도 (℃)Rebar temperature at 90 min of heating time (℃) 194.6194.6 158.2158.2 674.6674.6 썸머커플에 의해 측정Measured by summer couple

또한, 본 발명의 실시예 및 비교예에 있어서 모르타르의 비빔은 벤취형 믹서를 사용하였으며, 비빔은 1분간은 저속으로, 2분간은 고속으로, 다시 1분간은 저속으로 실시하여 총 4분이 소요되도록 하였다. 비빔이 완료된 모르타르는 곧바로 배출하여 테이블플로우를 측정하였으며, 테이블플로우는 KS L 5111(시멘트시험용 플로우테이블)에 준하여 실시하였고, 다만 테이블플로우값은 타격을 실시하지 않은 상태에서의 값을 나타낸다. 테이블플로우 실험 직후, 모르타르의 휨강도 시험용 시험체를 제작하기 위해 몰드(40×40×16mm)에 타설한 후 24시간동안 실내에서 존치하였으며, 그 후 탈형하여 온도 20±3℃, 습도 60±5%의 항온실에서 재령 28일까지 양생하여 시험체를 제작하였고, 재령 28일에 있어서 휨강도를 측정하였다.In addition, in the examples and comparative examples of the present invention, the mortar was used as a bent type mixer, and the bibeam was carried out at a low speed for 1 minute, at a high speed for 2 minutes, and at a low speed for 1 minute for a total of 4 minutes. It was. The mortar after the bibeam was discharged immediately and the table flow was measured. The table flow was performed according to KS L 5111 (Cement Test Flow Table). However, the table flow value represents the value without the impact. Immediately after the table flow test, the specimens were placed in a mold (40 × 40 × 16 mm) for 24 hours after being cast in a mold (40 × 40 × 16 mm) to fabricate a test specimen for mortar flexural strength. The specimens were cured in a constant temperature room until 28 days of age, and the flexural strength was measured at 28 days of age.

한편, 본 실험에 있어서는 본 발명의 실시예 및 비교예의 내화성능을 평가하기 위하여, 도 5에 나타낸 바와 같이 내화성능평가용 시험체를 각각 제작하였다. 즉, 도 5에 나타낸 바와 같이, 우선 철근(02, 03)을 조립하고 고강도콘크리트(01)를 타설하여 고강도콘크리트 부재(500×500×800mm)를 제작한 후, 부재의 표면에 앵커(05)를 고정하여 마감패널(04)를 부착하였으며, 그 후 부재와 마감패널(04) 사이에 내화충전모르타르(06)를 충전하여 시험체를 제작하였다. 또한, 제작된 시험체는 KS F 2257 “건축부재의 내화시험방법”에 준하여 밀폐형 가열로에서 120분간 가열한 후, 시험체 표면(302)의 폭열발생유무 및 철근위치(301)에서의 온도를 각각 측정하였다.In addition, in this experiment, in order to evaluate the fire resistance performance of the Example and comparative example of this invention, as shown in FIG. 5, the test bodies for fire resistance performance evaluation were produced, respectively. That is, as shown in Fig. 5, first, assembling the reinforcing bars (02, 03) and pouring high-strength concrete (01) to produce a high-strength concrete member (500 × 500 × 800 mm), and then anchor (05) on the surface of the member After fixing the attached to the finishing panel (04), and then filling the refractory filling mortar (06) between the member and the finishing panel (04) to produce a test body. In addition, the fabricated specimens were heated for 120 minutes in a closed furnace in accordance with KS F 2257 "Fire resistance test method for building members", and then the presence or absence of thermal explosion on the surface of the specimen 302 and the temperature at the reinforcement position 301 were measured. It was.

상기의 실험결과를 정리하면 표 1에 나타낸 바와 같다. 즉, 실시예 1 및 2의 비빔직후 테이블플로우값은 각각 289mm 및 271mm로 우수한 유동성을 보였으며, 비교예 1 (235mm)에 비해 유동성이 크게 향상되었다. 또한, 재령 28일에 있어서 휨강도를 측정한 결과, 실시예 1의 경우 5.46MPa, 실시예 2의 경우 8.95MPa, 비교예 1의 경우 4.84MPa로 비교예 1에 비해 실시예 1 및 2의 휨강도가 크게 향상되었으며, 특히 실시예 2는 비교예 1에 비해 약 85%의 휨강도가 향상되었다. 한편, 테이블플로우 시험시 재료분리여부를 육안으로 관찰한 결과, 실시예 1 및 2와 비교예 1에서의 재료분리는 확인되지 않았다.The above experimental results are summarized in Table 1. That is, the flow rates of the table flows immediately after the beams of Examples 1 and 2 were 289 mm and 271 mm, respectively, and the fluidity was greatly improved compared to Comparative Example 1 (235 mm). In addition, as a result of measuring the bending strength at 28 days, the bending strength of Examples 1 and 2 was 5.46 MPa in Example 1, 8.95 MPa in Example 2, and 4.84 MPa in Comparative Example 1, compared to Comparative Example 1. Significantly improved, in particular, Example 2 was improved about 85% of the bending strength compared to Comparative Example 1. On the other hand, as a result of visual observation of the material separation during the table flow test, material separation in Examples 1 and 2 and Comparative Example 1 was not confirmed.

또한, 본 발명의 실시예 1 및 2와 비교예 1의 내화성능을 평가한 결과, 비교예 1의 경우 가열후 약 10분경부터 마감패널(04)에 심한 균열이 발생하였고, 약 15분경부터는 마감패널(04)이 박락하기 시작하였으며, 약 20분경부터는 비교예 1의 모르타르에 폭열현상이 발생하기 시작하여 가열종료(120분)후에는 고강도콘크리트 부재의 피복콘크리트(302)에 심한 박락 및 폭열현상이 관찰되었다. 또한, 가열 90분후에 있어서 철근위치(301)에서의 온도를 측정한 결과, 비교예 1의 경우 674.6℃로 나타나 화열에 의해 철근의 손상이 예상되었다. 반면, 본 발명의 실시예 1 및 2의 경우, 마감패널(04)에서의 균열은 비교예 1과 동일하게 나타났으나, 가열시간이 경과되어도 실시예 1 및 2의 내화충전모르타르(06)에서의 박락 및 폭열현상은 전혀 발생되지 않았으며, 가열종료(120)후에도 내화충전모르타르가 그대로 부착되어 있었다. 한편, 실시예 1 및 2에 있어서 가열 90분에서의 철근위치(301) 온도를 측정한 결과, 각각 194.6℃ 및 158.2℃로 비교예 1에 비해 매우 낮은 온도를 유지하고 있으며, 특히 실시예 1에 비해 실시예 2의 경우가 보다 우수한 차열성능을 보였다.In addition, as a result of evaluating the fire resistance performance of Examples 1 and 2 and Comparative Example 1 of the present invention, in the case of Comparative Example 1, a severe crack occurred in the finish panel 04 from about 10 minutes after heating, and finishes from about 15 minutes The panel (04) began to fall, and after about 20 minutes, thermal explosion began to occur in the mortar of Comparative Example 1, and after completion of heating (120 minutes), severe collapse and thermal collapse of the coated concrete 302 of the high-strength concrete member occurred. This was observed. In addition, as a result of measuring the temperature at the rebar position 301 after 90 minutes of heating, in the case of Comparative Example 1, the temperature was 674.6 ° C., and damage to the rebar was expected due to heat. On the other hand, in the case of Examples 1 and 2 of the present invention, the cracks in the finishing panel 04 was the same as in Comparative Example 1, but even after the heating time elapsed in the refractory mortars of Examples 1 and 2 (06) The fall and thermal expansion of the fire did not occur at all, and the refractory filling mortar was still attached even after the end of heating (120). On the other hand, in Example 1 and 2, when the reinforcement position 301 temperature in 90 minutes of heating was measured, it is 194.6 degreeC and 158.2 degreeC, respectively, and is maintaining very low temperature compared with the comparative example 1, Especially in Example 1 In comparison, Example 2 showed better thermal insulation performance.

본 발명에 의하면, 신설 및 기설된 고강도콘크리트구조물에 있어서 마감패널(04)을 제거하거나 별도의 가설기구(거푸집 등)를 설치하지 않아도 본 발명의 자기충전성을 갖는 내화충전모르타르(06)를 마감패널(04)과 부재 사이의 공간부(08)에 압송장치를 이용하여 충전 경화시킴으로서 우수한 내화차열성능 및 폭열저항성을 갖는 고강도콘크리트 부재를 용이하게 얻을 수 있다. 또한, 기존의 내화패널부착공법과는 달리 별도의 패널부착공간이 필요하지 않아 부재단면을 증대시키지도 않으며, 충전시공만으로도 시공이 가능하여 공정의 단순화 및 인력의 절감이 가능하게 된다.According to the present invention, in the newly and established high-strength concrete structures, the fire-resistant filling mortar (06) having self-charging properties of the present invention is finished without removing the finishing panel (04) or installing a separate temporary mechanism (forms, etc.). By filling and curing the space portion 08 between the panel 04 and the member using a pressure feeding device, a high-strength concrete member having excellent fire resistance and heat resistance can be easily obtained. In addition, unlike the existing fireproof panel attaching method, a separate panel attaching space is not required, and thus the member cross section is not increased, and the construction can be performed only by filling, thereby simplifying the process and reducing manpower.

Claims (4)

마감패널이 부착된 고강도콘크리트부재에 있어서, 고강도콘크리트부재의 표면과 마감패널 사이에 형성된 공간부에 내화충전모르타르를 압송장치에 의해 주입 경화시켜 내화차열층을 형성시킴으로서, 이 내화차열층에 의해 화재시 피복콘크리트의 폭열현상을 방지함과 동시에 내부의 콘크리트 및 철근의 내부온도상승을 억제하는 고강도콘크리트부재의 폭열방지공법In the high-strength concrete member with the finishing panel, the fireproof filling mortar is injected into the space formed between the surface of the high-strength concrete member and the finishing panel by means of a feeding device to form a fireproof heat shield layer. Method to prevent thermal expansion of high-strength concrete member to prevent thermal expansion of coated concrete at the same time and to suppress internal temperature rise of concrete and reinforcing steel 청구항 1에 있어서, 내화충전모르타르는 건조모르타르 100중량부, 흡열물질 5~50중량부, 마이크로 유기섬유 0.05~2.5중량부, 고성능AE감수제 0.5~3.0중량부, 배합수 20~60중량부로 이루어지고, 비빔직후에 있어서 무타격 테이블플로우값이 200mm 이상인 것을 특징으로 하는 자기충전성을 갖는 내화충전모르타르의 조성물The refractory filling mortar is made of 100 parts by weight of dry mortar, 5 to 50 parts by weight of endothermic material, 0.05 to 2.5 parts by weight of microorganic fibers, 0.5 to 3.0 parts by weight of a high performance AE reducing agent, and 20 to 60 parts by weight of a blended water. , The composition of the refractory filling mortar having self-filling characteristics, characterized in that the hit-free table flow value is 200mm or more immediately after the beam 청구항 2에 있어서, 건조모르타르는 당해 건조모르타르 100중량부에 대하여, a) 시멘트 30~70중량부; b) 고로슬래그미분말, 석회석미분말, 실리카흄, 플라이애시 중 2종 이상이 혼합된 혼화재 5~40중량부; c) 잔골재 1~30중량부; d) CSA계 팽창재 또는 수축저감재 1~10중량부로 구성되는 것을 특징으로 하는 자기충전성을 갖는 내화충전모르타르의 조성물The method of claim 2, wherein the dry mortar is a) 30 to 70 parts by weight of cement based on 100 parts by weight of the dry mortar; b) 5 to 40 parts by weight of admixture mixed with at least two of blast furnace slag powder, limestone fine powder, silica fume and fly ash; c) 1 to 30 parts by weight of fine aggregate; d) A composition of refractory filling mortar having self-filling property, comprising 1 to 10 parts by weight of a CSA-based expander or a shrinkage reducing agent. 청구항 2에 있어서, 흡열물질은 직경 1~500㎛의 폴리프로필렌 분말, 직경 5mm 이하의 폴리프로필렌비드 또는 폴리에틸렌비드 또는 폴리에스테르비드, 직경 5mm 이하의 경량골재 중 1종 이상이 사용되는 것을 특징으로 하는 자기충전성을 갖는 내화충전모르타르의 조성물The method of claim 2, wherein the endothermic material is characterized in that at least one of polypropylene powder having a diameter of 1 to 500㎛, polypropylene beads or polyethylene beads or polyester beads having a diameter of 5 mm or less, and lightweight aggregate having a diameter of 5 mm or less is used. Composition of refractory filling mortar having self filling
KR1020060026737A 2006-03-24 2006-03-24 Spalling prevention method of high strength concrete using fire-proof mortar of self-leveling KR100659458B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060026737A KR100659458B1 (en) 2006-03-24 2006-03-24 Spalling prevention method of high strength concrete using fire-proof mortar of self-leveling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060026737A KR100659458B1 (en) 2006-03-24 2006-03-24 Spalling prevention method of high strength concrete using fire-proof mortar of self-leveling

Publications (1)

Publication Number Publication Date
KR100659458B1 true KR100659458B1 (en) 2006-12-19

Family

ID=37814924

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060026737A KR100659458B1 (en) 2006-03-24 2006-03-24 Spalling prevention method of high strength concrete using fire-proof mortar of self-leveling

Country Status (1)

Country Link
KR (1) KR100659458B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101064558B1 (en) 2009-03-05 2011-09-15 한일시멘트 (주) Cement composition for high fire resistance and ultra high strength ultra self-compacting concrete
KR102001000B1 (en) 2019-04-02 2019-07-17 (주)지에프시알엔디 Fire resistance method for concrete structure and the fire resistance material
CN112266221A (en) * 2020-10-14 2021-01-26 周艳梅 Circulating type high-heat-insulation concrete block and preparation method thereof
KR102265319B1 (en) 2020-07-23 2021-06-16 장춘기 Reinforcement method of concrete pillar for previnting spalling
KR102272220B1 (en) 2020-12-04 2021-07-05 주식회사 세환건업 Method of reinforcement of cross section of structure using polymer mortar with high heat and fast rigidity containing calcium sulfonate, calcium pomate and PBO fiber, and method seismic refractory reinforcement of structure using high-strength composite sheet made of glass fiber and aramid fiber
KR102507700B1 (en) 2022-03-18 2023-03-07 김윤기 Mortar composition for repair and reinforcement of concrete structure and method of repair and reinforcement of concrete structure using the same
KR20230046348A (en) * 2021-09-29 2023-04-06 디엘이앤씨 주식회사 Composite slab for reducing interlayer noise

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101064558B1 (en) 2009-03-05 2011-09-15 한일시멘트 (주) Cement composition for high fire resistance and ultra high strength ultra self-compacting concrete
KR102001000B1 (en) 2019-04-02 2019-07-17 (주)지에프시알엔디 Fire resistance method for concrete structure and the fire resistance material
KR102265319B1 (en) 2020-07-23 2021-06-16 장춘기 Reinforcement method of concrete pillar for previnting spalling
CN112266221A (en) * 2020-10-14 2021-01-26 周艳梅 Circulating type high-heat-insulation concrete block and preparation method thereof
KR102272220B1 (en) 2020-12-04 2021-07-05 주식회사 세환건업 Method of reinforcement of cross section of structure using polymer mortar with high heat and fast rigidity containing calcium sulfonate, calcium pomate and PBO fiber, and method seismic refractory reinforcement of structure using high-strength composite sheet made of glass fiber and aramid fiber
KR20230046348A (en) * 2021-09-29 2023-04-06 디엘이앤씨 주식회사 Composite slab for reducing interlayer noise
KR102678712B1 (en) * 2021-09-29 2024-06-28 디엘이앤씨 주식회사 Composite slab for reducing interlayer noise
KR102507700B1 (en) 2022-03-18 2023-03-07 김윤기 Mortar composition for repair and reinforcement of concrete structure and method of repair and reinforcement of concrete structure using the same

Similar Documents

Publication Publication Date Title
KR100582840B1 (en) Repair material and method of high-ductility and high-fire-resistance, and its spray equipment
KR100770389B1 (en) Composite of fire-resisting mortar with ultra high ductility, and a combined methods of fire-proof coating and repair using its material
KR100659458B1 (en) Spalling prevention method of high strength concrete using fire-proof mortar of self-leveling
KR100873391B1 (en) Quick-hardening concrete composite, manufacturing method thereof and repairing method for concrete pavement using the concrete composite
KR101674923B1 (en) Repairing method of concrete structure using high-strength polymer mortar and fireproof mortar
KR101492233B1 (en) Preparation method of mortar composition with chemically resistant and fireproof properties, mortar composition with chemically resistant and fireproof properties prepared by the same, and construction method of concrete structure with fireproof properties using the same
JP4969152B2 (en) Reinforcement structure and reinforcement method for concrete building
KR101034228B1 (en) Concrete composition and concrete composition containing an artificial waterfall or artificial rock, and construction method of artificial waterfall or artificial rock
KR100784493B1 (en) Light weight hybrid repair mortar composition
KR100549724B1 (en) Repair and retrofit methods of reinforced concrete structures using the strain-hardening cementitious composites
Won et al. Eco-friendly fireproof high-strength polymer cementitious composites
JP4709677B2 (en) Premix high toughness polymer cement mortar material and high toughness polymer cement mortar
KR101000526B1 (en) Manufacturing method of high-strength refractory and quake-proof panel using refractory and quake-proof mortar composition
KR100659457B1 (en) Fireproof methods of high strength concrete members using the high strength and high ductility panel of a combination fireproof panel and permanence form
KR20080103135A (en) The dry mortar with soundproof and keeping warm and the noninflammable board therewith and light brick therewith
KR102125818B1 (en) High performance fiber reinforced cementitous composite (hpfrcc) for improving spalling resistance, and manufacturing method for the same
KR101304548B1 (en) High-ductile fiber cementless alkali-activated mortar composites and mortar product fabricated thereby
Choi et al. Mix proportion of eco-friendly fireproof high-strength concrete
KR20130075334A (en) Amorphous steel fiber cement composites and mortar products using the same
Shen et al. Fire resistance behavior of full-scale self-thermal insulation sandwich walls made of textile-reinforced concrete
KR20180138079A (en) Mortar composition for preventing explosion of high strength concrete and method for manufacturing mortar for preventing explosion of high strength concrete comprising there of
KR20090047044A (en) A concrete member comprising fireproofing material be covered on exterior of a steel pipe and constructing method the same
KR102445186B1 (en) Polymer mortar composition and Repairing method of structure using thereof
KR102432617B1 (en) Self-healing Admixture Composition, Manufacturing Method of the Admixture, Mortar Composition Using the Admixture and Concrete Repair Method Using the Mortar
KR102189422B1 (en) Eco-friendly mortar composition for repair and reinforcement with excellent chemical resistance and resistance to freezing and thawing and continuous durability and repair effects, and the method of repairing and reinforcing structures using the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121203

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131126

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141208

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151207

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee