KR100619181B1 - Anti-oxidant process of copper powder by using tannic acid in conjunctions with hydrazine - Google Patents

Anti-oxidant process of copper powder by using tannic acid in conjunctions with hydrazine Download PDF

Info

Publication number
KR100619181B1
KR100619181B1 KR1020040091256A KR20040091256A KR100619181B1 KR 100619181 B1 KR100619181 B1 KR 100619181B1 KR 1020040091256 A KR1020040091256 A KR 1020040091256A KR 20040091256 A KR20040091256 A KR 20040091256A KR 100619181 B1 KR100619181 B1 KR 100619181B1
Authority
KR
South Korea
Prior art keywords
copper powder
hydrazine
tannic acid
solution
oxidation
Prior art date
Application number
KR1020040091256A
Other languages
Korean (ko)
Other versions
KR20060042559A (en
Inventor
김동진
안종관
이재령
정헌생
호앙트리하이
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to KR1020040091256A priority Critical patent/KR100619181B1/en
Publication of KR20060042559A publication Critical patent/KR20060042559A/en
Application granted granted Critical
Publication of KR100619181B1 publication Critical patent/KR100619181B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper

Abstract

본 발명은 하이드라진과 타닌산을 이용하여 구리분말의 표면산화를 방지하기위한 방법에 관한 것으로서, 그 목적은 구리분말 표면의 산화층 제거와 산화층의 재산화를 억제시킴으로써 구리분말의 전도성과 표면의 청정성 및 균일성을 확보하여 전자소재 및 합금소재로서의 성능이 우수한 구리분말의 제조기술을 확립하기 위한 산화방지방법을 제공하는데 있다. The present invention relates to a method for preventing the surface oxidation of copper powder by using hydrazine and tannic acid, the object of which is to suppress the removal of the oxide layer on the surface of the copper powder and the reoxidation of the oxide layer, the conductivity of the copper powder and the cleanliness and uniformity of the surface It is to provide an oxidation preventing method for establishing a manufacturing technology of copper powder having excellent performance as an electronic material and alloy material by securing the properties.

본 발명의 구성은 하이드라진 및 타닌산을 이용하여 구리분말의 산화를 방지하기 위한 방법에 있어서, 구리분말을 50℃로 가열된 NH4OH가 용해된 용액이 들어있는 항온반응조에 첨가한 후 교반시키면서 가열하고 하이드라진(N2H2)을 첨가하여 표면의 산화막을 제거하는 단계와, 산화막을 제거한 후 다음 공정에서 타닌산을 일정량 주입하면서 구리분말과 타닌산을 반응시켜 표면에 내산화막을 형성시키는 단계로 이루어진 것을 특징으로 한다.The composition of the present invention is a method for preventing oxidation of copper powder using hydrazine and tannic acid, wherein the copper powder is added to an incubator containing a solution in which NH 4 OH is heated at 50 ° C., and then heated with stirring. And adding an hydrazine (N 2 H 2 ) to remove the oxide film on the surface, and removing the oxide film and injecting a predetermined amount of tannic acid in the next step to react the copper powder and tannic acid to form an oxide film on the surface. It features.

구리분말, 하이드라진, 타닌산, 산화방지법, 표면산화, 전자소재 Copper powder, hydrazine, tannic acid, antioxidant method, surface oxidation, electronic materials

Description

하이드라진 및 타닌산을 이용한 구리분말의 표면산화 방지방법{Anti-oxidant process of copper powder by using tannic acid in conjunctions with hydrazine} Anti-oxidant process of copper powder by using tannic acid in conjunctions with hydrazine}             

도 1은 본 발명의 공정도이고, 1 is a process diagram of the present invention,

도 2는 본 발명에 사용된 실시예 1의 X선 회절분석 결과이고, 2 is an X-ray diffraction analysis of Example 1 used in the present invention,

도 3은 본 발명의 실시예 1을 주사전자현미경으로 본 확대사진이고, Figure 3 is an enlarged photograph of Example 1 of the present invention with a scanning electron microscope,

도 4는 본 발명에 사용된 실시예 3의 X선 회절분석 결과이다. 4 is an X-ray diffraction analysis of Example 3 used in the present invention.

본 발명은 하이드라진과 타닌산을 이용하여 구리분말의 표면산화를 방지하기위한 방법에 관한 것으로서, 더욱 상세하게는 하이드라진을 이용하여 구리표면의 산화막을 제거한 다음, 타닌산을 일정량 공급하여 구리분말의 표면에 타닌산과 구리의 하이드록실 착물을 형성시켜 산화층의 재형성을 방지하여 장시간 안정적인 구리표면을 가진 고순도 구리분말을 제조하는 방법에 관한 것이다. The present invention relates to a method for preventing surface oxidation of copper powder by using hydrazine and tannic acid, and more particularly, by removing an oxide film on a copper surface by using hydrazine, and supplying a predetermined amount of tannic acid to the surface of copper powder. The present invention relates to a method for preparing a high purity copper powder having a stable copper surface for a long time by forming a hydroxyl complex of copper and preventing copper oxide from reforming.

구리분말은 전자부품의 전도성 코팅에 사용되거나 촉매제 및 합금제조시 소결재료로 사용된다. 수 미크론 크기의 구리분말은 주로 전자부품의 조립시 전도성 페이스트의 원료로 사용되며 나노크기의 구리분말은 촉매제로 사용된다.Copper powder is used for the conductive coating of electronic components or as a sintering material in the manufacture of catalysts and alloys. Several micron-sized copper powder is mainly used as a raw material for conductive paste when assembling electronic parts, and nano-sized copper powder is used as a catalyst.

구리분말은 넓은 표면적을 갖기 때문에 벌크상태의 구리보다 반응성이 우수하여 다양한 특성을 보유하고 있다. 그러나 활성이 커서 공기중의 산소와 쉽게 결합하여 산화막을 형성하기 때문에 미세 구리 분말을 제조시 산화막이 없는 안정된 표면을 유지하여야 한다. Since copper powder has a large surface area, it is more reactive than bulk copper and has various characteristics. However, since the activity is large and easily bonds with oxygen in the air to form an oxide film, when producing fine copper powder, a stable surface free of oxide film should be maintained.

기존의 구리분말의 산화방지 방법은 구리분말 제조 후에 환원제에 침지시켜 보관하거나, 칼륨 타트레이트(Pottasium tartrate) 처리 및 인산염 처리를 행하였다. Conventional methods for preventing oxidation of copper powders have been immersed in a reducing agent after copper powder production, or treated with potassium tartrate and phosphate treatment.

상기 환원제에 침지시키는 방법은 환원제의 낭비가 심하여 가격이 비싸고, 보관시 저장장치를 필요로 하여 관리에 어려움이 많다는 단점이 있다. The method of immersing in the reducing agent has a disadvantage in that the waste of the reducing agent is high and the price is high, and the storage device is difficult to manage due to the storage.

또한 상기 칼륨 타트레이트(Pottasium tartrate) 처리는 구리분말을 제조 후 산화의 원인이 되는 산이나 염기 종류를 제거하기 위하여 0.05% Na2CO3 용액에 침지한 후 6g/l 칼륨 타트레이트(Pottasium tartrate) 용액에 침지시키는 방법이다. 이 경우에는 공정이 복잡하고 기 산화된 분말의 경우에는 적용할 수 없다는 단점이 있다. In addition, the potassium tartrate treatment is 6g / l potassium tartrate (Pottasium tartrate) after immersing in 0.05% Na 2 CO 3 solution in order to remove the acid or base type causing the oxidation after the production of copper powder It is a method of immersion in a solution. In this case, there is a disadvantage that the process is complicated and not applicable to the case of the vaporized powder.

또한 상기 인산염 처리는 철산화 방지를 위하여 사용되었는데 구리에도 적용 하여 효과적이라고 알려져 있다. 구리를 인산염용액으로 처리하면 아래 반응식(1)과 같은 반응에 의해 구리 표면에 인산염 피막이 형성되어 산화방지 효과를 나타낸다.In addition, the phosphate treatment is used to prevent iron oxidation, it is known to be effective in applying to copper. When copper is treated with a phosphate solution, a phosphate film is formed on the surface of copper by a reaction as shown in the following Reaction (1), which shows an antioxidant effect.

3Cu2+ + 2PO4 3- → Cu(PO4)2 ------------------ 반응식 (1)3Cu 2+ + 2PO 4 3- → Cu (PO 4 ) 2 ------------------ Scheme (1)

그러나 인산염처리 방법은 칼륨 타트레이트(Pottasium tartrate) 처리와 마찬가지로 이미 산화된 분말에는 적용할 수 없으며 장시간 보관시 산화막이 형성되는 단점이 있다. However, the phosphate treatment method is not applicable to powder that has already been oxidized like potassium tartrate treatment and has a disadvantage in that an oxide film is formed when stored for a long time.

상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 구리분말 표면의 산화층 제거와 내산화막을 형성시켜 장기간 안정적이며 산화층이 없는 구리분말을 제조하는 기술을 확립하기 위하여 구리분말 표면의 산화층 제거 및 산화방지 방법을 제공하는데 있다. An object of the present invention for solving the above problems is to remove the oxide layer on the surface of the copper powder and to form an oxidation resistant film to remove the oxide layer on the surface of the copper powder and to prevent oxidation in order to establish a technology for producing a stable and long-term copper powder without the oxide layer To provide a method.

또한 본 발명의 목적은 기 산화된 구리분말의 산화막을 제거할 수 있기 때문에 종래 산화되어 폐기되던 구리분말의 재이용도 가능하고, 보관시 사용되는 환원제의 소모량을 줄여 생산비용을 절감할 수 있는 구리분말 산화방지방법을 제공하는데 있다.

In addition, an object of the present invention is to remove the oxide film of the copper oxide, which can be used to reuse the copper powder that was previously oxidized and discarded, copper powder which can reduce the production cost by reducing the consumption of the reducing agent used during storage An antioxidation method is provided.

상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명의 실시예인 구성과 그 작용을 첨부도면에 연계시켜 상세히 설명하면 다음과 같다.When described in detail with reference to the accompanying drawings, the configuration and the operation of the embodiment of the present invention to achieve the object as described above and to perform the task for eliminating the conventional drawbacks.

본 발명은 구리분말 입자를 산화방지물질로, 산화막 제거제로는 하이드라진(N2H2) 용액을, 내산화막 형성제로는 타닌산(Tannic acid)을, 실험장치로는 산화막제거제 주입속도를 조절할 수 있는 반회분식 항온반응조(Semi-batch reaction bath)를 사용한 산화방지방법이다.The present invention can control the copper powder particles as an antioxidant material, the hydrazine (N 2 H 2 ) solution as the oxide film remover, the tannic acid as the oxidation-resistant film forming agent, the injection rate of the oxide film remover can be controlled by the experimental apparatus. Anti-oxidation method using semi-batch reaction bath.

구체적인 본 발명의 산화방지방법은 도 1에 도시된 바와 같이 구리분말의 표면의 산화층을 제거하기 위하여 구리분말을 NH4OH 용액이 장입된 반회분식 항온반응조에 첨가한 후 교반시키며 가열하고 하이드라진(N2H2)을 첨가하여 구리 표면의 산화층이 하이드라진과 반응하여 환원되어 제거되는 단계와(환원단계);Specifically, the antioxidant method of the present invention is added to a semi-batch incubator with NH 4 OH solution in order to remove the oxide layer on the surface of the copper powder as shown in Figure 1, stirred, heated and hydrazine (N 2 H 2 ) is added to reduce the oxide layer on the copper surface by reacting with hydrazine (reducing step);

상기 환원처리된 구리분말을 포함한 혼합용액에 타닌산을 첨가하여 구리분말과 타닌산이 반응하여 내산화막(하이드록실 막)을 형성시키는 단계를 거쳐 산화막이 없으며 내산화막이 형성된 구리분말을 제조하는 방법이다.Tannin acid is added to the mixed solution containing the reduced-treated copper powder to react the copper powder with the tannic acid to form an oxidation resistant film (hydroxyl film), thereby producing a copper powder having no oxide film and having an oxide film thereon.

이하에서 기술되는 용액(ℓ또는 1000 ㎖)은 증류수에 투입되어 혼합된 성분원소를 포함한 전체 혼합용액을 말한다.The solution (l or 1000 ml) described below refers to the total mixed solution including the component elements mixed in distilled water.

상기 구리분말의 환원단계에서 하이드라진(N2H2)과 10%(무게분율 100 ㎖/ℓ)NH4OH가 혼합된 환원용액으로 산화막 제거 처리한다.In the reduction step of the copper powder, an oxide film is treated with a reducing solution in which hydrazine (N 2 H 2 ) and 10% (weight fraction 100 ml / l) NH 4 OH are mixed.

삭제delete

상기 첨가되는 구리분말의 양은 상기 혼합용액 1000 ㎖ 당 40g이다.The amount of the copper powder added is 40 g per 1000 ml of the mixed solution.

상기 환원용액을 이루는 N2H2 및 NH4OH의 혼합비율은 1000㎖ 기준으로 N 2H2 20-100 ㎖(바람직하게는 80 ㎖) 그리고 NH4OH는 50-200 ㎖이다. 즉, N2H2 20-100 ㎖와 NH4OH 50-200㎖를 합하고 나머지는 증류수를 부어 1000ml를 만들었다.The mixing ratio of N 2 H 2 and NH 4 OH constituting the reducing solution is 20-100 mL of N 2 H 2 (preferably 80 mL) and 50 mL of NH 4 OH based on 1000 mL. That is, 20-100 ml of N 2 H 2 and 50-200 ml of NH 4 OH were combined and the remainder was poured with distilled water to make 1000 ml.

상기와 같이 수치를 한정한 이유는 N2H2의 경우, 20㎖ 보다 적으면 구리분말의 표면에 있는 산화막의 제거가 일어나지 않아(환원반응이 발생하지 않음) 구리분말의 순도가 떨어진다. 또한 100㎖ 이상 첨가하면 하이드라진 소모가 커서 경제성이 떨어진다. The reason for limiting the numerical value as described above is that in the case of N 2 H 2 , when the amount is less than 20 ml, the removal of the oxide film on the surface of the copper powder does not occur (reduction reaction does not occur) and the purity of the copper powder is inferior. In addition, when more than 100ml is added, the consumption of hydrazine is large and economic efficiency is low.

또한 NH4OH의 경우, 50㎖ 보다 적으면 하이드라진의 환원반응이 발생하지 않으며, 200㎖ 보다 많으면 구리분말 표면에서 구리와 암모니아의 착물을 형성함으로 구리 산화막 제거보다는 구리의 용해가 증가하기 때문이다. In the case of NH 4 OH, the reduction reaction of hydrazine does not occur when less than 50ml, because if more than 200ml to form a complex of copper and ammonia on the surface of the copper powder, dissolution of copper rather than removal of the copper oxide film increases.

상기 구리분말을 파이렉스(pyrex) 반회분식 항온반응조에 첨가한 후 200- 800rpm의 속도로 바람직하게는 200rpm으로 교반하는데 200rpm 미만의 경우에는 구리분말이 응집되어 환원반응이 되지 않으며 800rpm 초과의 경우에는 구리분말이 부유하여 반응성이 떨어진다. 이때 반응온도는 50℃까지 가열한다. The copper powder is added to a pyrex semi-batch incubator and then stirred at a speed of 200-800 rpm, preferably at 200 rpm. If the copper powder is less than 200 rpm, the copper powder is agglomerated and the reduction reaction is not performed. The powder is suspended and its reactivity is poor. At this time, the reaction temperature is heated to 50 ℃.

상기 환원반응시 환원제 용액을 이루는 조성은 N2H2 및 NH4OH의 혼합비율은 1000㎖ 기준으로 N2H2 20-100 ㎖(바람직하게는 80 ㎖) 그리고 NH4OH는 50-200㎖(단, 기준용액의 양이 많거나 적을시 동일하게 변동된다)이며 하이드라진(N2H2)을 분당 1 ㎖의 속도로 반회분식 항온반응조 내에 주입하여 환원실험을 진행한다.The composition of the reducing agent solution during the reduction reaction is N 2 H 2 and NH 4 OH mixing ratio of 20-100 ㎖ N 2 H 2 (preferably 80 ㎖) based on 1000 ㎖ and NH 4 OH 50-200 ㎖ (However, when the amount of the reference solution is large or small, the same fluctuations) and hydrazine (N 2 H 2 ) is injected into the semi-batch incubator at a rate of 1 ml per minute to proceed with the reduction experiment.

상기 내산화막 형성반응은 상기 환원반응 후 타닌산을 0.0016 %(0.016 g/ℓ)~ 0.004%(0.04 g/ℓ)을 첨가한 후 5-20분간(바람직하게는 10분) 내산화막 형성 반응을 진행한다.The oxidation-resistant film formation reaction is followed by addition of tannic acid 0.0016% (0.016 g / L) to 0.004% (0.04 g / L) after the reduction reaction for 5-20 minutes (preferably 10 minutes) do.

상기 환원반응 후 타닌산 첨가시, 상기와 같이 수치를 한정한 이유는 0.0016 %(0.016 g/ℓ) 보다 적으면 첨가량이 적어 내산화막 형성 반응이 일어나지 않으며 0.004 %(0.04 g/ℓ) 이상 첨가할 경우 구리분말의 순도가 낮아지므로 첨가효과가 떨어지기 때문이다. When the tannin acid is added after the reduction reaction, the reason for limiting the numerical value as described above is less than 0.0016% (0.016 g / L), so that the addition amount is small so that an oxidation-resistant film formation reaction does not occur, and when 0.004% (0.04 g / L) or more is added This is because the purity of the copper powder is lowered, so the addition effect is reduced.

상기 반회분식 항온반응조 내에서 질소가스의 발생이 정지하면 반회분식 항온반응조를 해체하고 반응물을 여과한다. 고체입자를 증류수로 깨끗이 세척하여 진공오븐에서 40℃의 온도로 24시간 건조시킨 후 무게측정, 화학분석, XRD 및 SEM 관찰을 하였다.When the generation of nitrogen gas in the semi-batch incubator is stopped, the semi-batch incubator is dismantled and the reactant is filtered. The solid particles were washed with distilled water and dried in a vacuum oven at a temperature of 40 ° C. for 24 hours, and then weighed, chemically analyzed, XRD and SEM were observed.

이하 본 발명에 따른 바람직한 실시예를 설명하겠다.Hereinafter will be described a preferred embodiment according to the present invention.

실시예 1Example 1

증류수에 NH4OH 100 ㎖(단, 기준용액의 양이 많거나 적을시 동일하게 변동된다)가 혼합된 기준용액 1리터를 반회분식 항온반응조에 장입하고 구리분말 40g을 첨가한다. One liter of the reference solution, in which 100 ml of NH 4 OH is mixed in distilled water (when the amount of the reference solution is large or small, is changed in the same manner), is charged into a semi-batch incubator and 40 g of copper powder is added.

상기 반응용액을 200rpm으로 교반하면서 반응온도 50℃까지 가열한다.The reaction solution is heated to a reaction temperature of 50 ℃ while stirring at 200 rpm.

반응온도에 도달하면 실험조건에 필요한 하이드라진(N2H2) 용액을 분당 1㎖의 속도로 용액주입장치를 이용하여 20분간 주입하고 환원실험을 진행한다.When the reaction temperature is reached, the hydrazine (N 2 H 2 ) solution required for the experimental conditions is injected at a rate of 1 ml per minute using a solution injector for 20 minutes, and a reduction experiment is performed.

상기 환원반응이 종료하면, 상기 반회분식 항온반응조에 추가로 타닌산을 0.016g/ℓ(환원단계의 용액전체에 추가로 0.016g 넣음)를 첨가한 후 10분간 내산화막 형성반응을 진행한다.When the reduction reaction is completed, the addition of 0.016g / L (additional 0.016g to the whole solution of the reduction step) is added to the semi-batch constant temperature reaction tank and then the oxidation-resistant film forming reaction proceeds for 10 minutes.

상기 환원반응과 내산화막 형성 반응이 종료하면 반응산물을 여과하여 고/액 분리하고 회수된 분말은 에탄올과 증류수로 5회 세척한다.When the reduction reaction and the oxidation-resistant film forming reaction is completed, the reaction product is filtered to separate the solid and liquid, and the recovered powder is washed five times with ethanol and distilled water.

진공오븐에서 40℃로 24시간 이상 건조하고, 건조된 구리분말은 원자흡광분석기를 이용하여 구리분말의 순도를 확인하였다.After drying for 24 hours at 40 ℃ in a vacuum oven, the dried copper powder was confirmed by using an atomic absorption spectrometer purity of the copper powder.

표 1에 실시예 1의 결과와 본 발명의 방법을 사용하지 않은 구리분말의 순도를 나타내었다.Table 1 shows the results of Example 1 and the purity of the copper powder without using the method of the present invention.

도 2는 실시예 1의 X선 회절분석 결과이다.2 is an X-ray diffraction analysis of Example 1.

도 3은 본 발명의 실시예 1을 주사전자현미경으로 본 확대사진이다. Figure 3 is an enlarged photograph of Example 1 of the present invention with a scanning electron microscope.

본 발명의 처리를 하였을 경우 구리분말의 순도는 99.9% 이상을 나타내었으며 본 발명의 처리를 하지 않았을 경우, 구리분말의 순도는 95%를 나타내었다. 본 발명의 산화방지 처리가 매우 효과적임을 알 수 있다. When the present invention was treated, the copper powder had a purity of 99.9% or more. When the present invention was not treated, the copper powder had a purity of 95%. It can be seen that the antioxidant treatment of the present invention is very effective.

실시예 2Example 2

증류수에 NH4OH 100 ㎖(단, 기준용액의 양이 많거나 적을시 동일하게 변동된다)가 혼합된 기준용액 1리터를 반회분식 항온반응조에 장입하고 구리분말 40g을 첨가한다. One liter of the reference solution, in which 100 ml of NH 4 OH is mixed in distilled water (when the amount of the reference solution is large or small, is changed in the same manner), is charged into a semi-batch incubator and 40 g of copper powder is added.

상기 반응용액을 200rpm으로 교반하면서 반응온도 50℃까지 가열한다.The reaction solution is heated to a reaction temperature of 50 ℃ while stirring at 200 rpm.

반응온도에 도달하면 실험조건에 필요한 하이드라진(N2H2) 용액을 분당 1㎖의 속도로 용액주입장치를 이용하여 20분간 주입하고 환원실험을 진행한다.When the reaction temperature is reached, the hydrazine (N 2 H 2 ) solution required for the experimental conditions is injected at a rate of 1 ml per minute using a solution injector for 20 minutes, and a reduction experiment is performed.

상기 환원반응이 종료하면, 상기 반회분식 항온반응조에 타닌산을 0.004 g/ℓ를 첨가한 후 10분간 내산화막 형성반응을 진행한다.After the reduction reaction is completed, the oxidation resistant film forming reaction is performed for 10 minutes after the addition of 0.004 g / L of tannic acid to the semi-batch constant temperature reaction tank.

상기 환원반응과 내산화막 형성 반응이 종료하면 반응산물을 여과하여 고/액 분리하고 회수된 분말은 에탄올과 증류수로 5회 세척한다.When the reduction reaction and the oxidation-resistant film forming reaction is completed, the reaction product is filtered to separate the solid and liquid, and the recovered powder is washed five times with ethanol and distilled water.

진공오븐에서 40℃로 24시간 이상 건조하고, 건조된 구리분말은 원자흡광분석기를 이용하여 구리분말의 순도를 확인하였다.After drying for 24 hours at 40 ℃ in a vacuum oven, the dried copper powder was confirmed by using an atomic absorption spectrometer purity of the copper powder.

표 1에 실시예 2의 결과를 나타내었다.Table 1 shows the results of Example 2.

실시예 2의 경우, 구리분말의 순도는 99.85 % 이다. In the case of Example 2, the purity of the copper powder is 99.85%.

실시예 3Example 3

본 발명에 의해 산화방지 처리된 구리분말의 내 산화성을 알아보기 위하여 실시예 1에 의해 처리된 구리분말을 상온의 대기중에서 2개월간 보관 후 시료의 순도를 분석하였다. In order to determine the oxidation resistance of the anti-oxidized copper powder according to the present invention, the purity of the sample was analyzed after storing the copper powder treated according to Example 1 in an air at room temperature for 2 months.

표 1에 실시예 3의 결과를 나타내었다.Table 1 shows the results of Example 3.

도 3은 실시예 3의 X선 회절분석 결과이다.3 is an X-ray diffraction analysis of Example 3.

본 발명의 처리를 하여 상온의 대기중에서 장기간(2개월) 노출시켰을 경우에도 구리분말의 순도는 99.9% 이상을 나타내었다. In the case of prolonged exposure (2 months) in the air at room temperature by treatment of the present invention, the purity of the copper powder was 99.9% or more.

[표 1] 실시예 1 내지 3과 본 발명의 처리를 하지 않은 시료의 구리 함량분석결과Table 1 Results of analysis of copper content of samples 1 to 3 and untreated samples of the present invention

Figure 112004052014314-pat00001
Figure 112004052014314-pat00001

본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통 상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다. The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

상기와 같은 본 발명의 산화방지법은 반회분식 공정에 의해 조작이 간단하며 구리 표면의 산화막 제거공정과 내산화막 형성 공정을 동시에 적용하여 산화막이 형성되어 폐기되는 구리분말의 재이용이 가능하므로 공업적인 이용이 용이하다는 장점과, 종래 구리분말의 산화를 방지하기 위하여 고가의 환원제에 침지 보관하는 등의 저장이 어려운 단점을 극복하였다는 장점이 있는 경제적이고 에너지를 절약할 수 있는 새롭고 매우 유용한 발명으로 산업상 그 이용이 크게 기대되는 발명인 것이다.








The anti-oxidation method of the present invention as described above is easy to operate by a semi-batch process and can be used industrially because it is possible to reuse the copper powder in which the oxide film is formed and discarded by simultaneously applying the oxide film removal process and the oxide film formation process on the copper surface. It is an economical and energy-saving new and very useful invention that has the advantage of being easy to store and overcoming the disadvantages of storage such as dipping and storing in expensive reducing agents to prevent oxidation of copper powder. It is an invention which is expected to use greatly.








Claims (5)

구리분말의 산화방지방법에 있어서, In the oxidation prevention method of copper powder, 구리분말의 표면의 산화층을 제거하기 위하여 구리분말을 NH4OH 용액이 장입된 반회분식 항온반응조에 첨가한 후 교반시키며 가열하고 하이드라진을 첨가하여 구리 표면의 산화층이 하이드라진이 반응하여 환원되어 제거되는 단계와(환원단계); In order to remove the oxide layer on the surface of the copper powder, the copper powder is added to a semi-batch incubator with NH 4 OH solution, followed by stirring and heating. (Reduction step); 상기 환원처리된 구리분말을 포함한 혼합용액에 타닌산을 첨가하여 구리분말과 타닌산이 반응하여 내산화막(하이드록실 막)을 형성시키는 단계를 거쳐 산화막이 없으며 내산화막이 형성된 구리분말을 제조하는 방법을 특징으로 하는 하이드라진 및 타닌산을 이용한 구리분말의 표면산화 방지방법.Tannin acid is added to the mixed solution including the reduced copper powder to react the copper powder with the tannic acid to form an oxidation resistant film (hydroxyl film), thereby producing a copper powder having no oxide film and having an oxidation resistant film. Surface oxidation prevention method of copper powder using hydrazine and tannic acid. 제 1항에 있어서,The method of claim 1, 상기 환원단계에서 N2H2 및 NH4OH의 혼합비율은 1000㎖ 기준으로 N2 H2 20-100 ㎖와 NH4OH 50-200㎖를 혼합 후 나머지는 증류수를 부어 1000ml가 되도록 혼합한 것을 특징으로 하는 하이드라진 및 타닌산을 이용한 구리분말의 표면산화 방지방법.In the reduction step, the mixing ratio of N 2 H 2 and NH 4 OH is mixed with 20 to 100 ml of N 2 H 2 and 50 to 200 ml of NH 4 OH based on 1000 ml. Method for preventing surface oxidation of copper powder using hydrazine and tannic acid. 제 1항 또는 2항 중 어느 한항에 있어서,The method according to claim 1 or 2, 상기 환원단계 이후 환원처리된 구리분말을 포함한 혼합용액이 담겨진 반회분식 항온반응조에 타닌산을 추가로 0.0016 %(0.016 g/ℓ)~ 0.004%(0.04 g/ℓ)을 첨가하는 것을 특징으로 하는 하이드라진 및 타닌산을 이용한 구리분말의 표면산화 방지방법.Hydrazine and characterized in that the addition of tannin acid 0.0016% (0.016 g / L) ~ 0.004% (0.04 g / L) to the semi-batch incubator containing the mixed solution containing the reduced powdered copper powder after the reduction step Surface oxidation prevention method of copper powder using tannic acid. 제 1항에 있어서,The method of claim 1, 상기 환원단계는 혼합용액을 이루는 증류수에 NH4OH 50-200㎖가 혼합된 용액 1리터를 반회분식 항온반응조에 장입한 것을 기준으로, 여기에 구리분말 40g(NH4OH 가 혼합된 용액 1000ml당 40g)을 첨가하고, 상기 반응용액을 200-800rpm으로 교반하면서 반응온도 50℃까지 가열한 다음, 하이드라진(N2H2) 용액 20-100 ㎖를 분당 1 ㎖의 속도로 용액주입장치를 이용하여 20-100분간 주입하고 환원하는 방법을 특징으로 하는 하이드라진 및 타닌산을 이용한 구리분말의 표면산화 방지방법.The reducing step is based on the charge of 1 liter of a solution mixed with NH 4 OH 50-200ml in a distilled water constituting a mixed solution in a semi-batch constant temperature reactor, 40g of copper powder (per 1000ml of solution containing NH 4 OH) 40 g) was added, the reaction solution was heated to a reaction temperature of 50 ° C. while stirring at 200-800 rpm, and then 20-100 ml of a hydrazine (N 2 H 2 ) solution was used at a rate of 1 ml per minute using a solution injection device. Method for preventing surface oxidation of copper powder using hydrazine and tannic acid, characterized in that the method for 20-20 minutes injection and reduction. 제 1항 또는 4항 중 어느 한항에 있어서,The method according to any one of claims 1 to 4, 상기 환원단계 후 타닌산을 0.0016 %(0.016 g/ℓ)에서 0.004 %(0.04 g/ℓ)을 첨가한 후 5 - 20분간 내산화막을 형성하는 반응방법을 특징으로 하는 하이드라진 및 타닌산을 이용한 구리분말의 표면산화 방지방법.After the reduction step of the copper powder using hydrazine and tannic acid characterized in that the reaction method for forming a oxidation-resistant film for 5-20 minutes after the addition of 0.004% (0.04 g / L) to 0.0016% (0.016 g / L) Surface oxidation prevention method.
KR1020040091256A 2004-11-10 2004-11-10 Anti-oxidant process of copper powder by using tannic acid in conjunctions with hydrazine KR100619181B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040091256A KR100619181B1 (en) 2004-11-10 2004-11-10 Anti-oxidant process of copper powder by using tannic acid in conjunctions with hydrazine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040091256A KR100619181B1 (en) 2004-11-10 2004-11-10 Anti-oxidant process of copper powder by using tannic acid in conjunctions with hydrazine

Publications (2)

Publication Number Publication Date
KR20060042559A KR20060042559A (en) 2006-05-15
KR100619181B1 true KR100619181B1 (en) 2006-09-07

Family

ID=37148413

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040091256A KR100619181B1 (en) 2004-11-10 2004-11-10 Anti-oxidant process of copper powder by using tannic acid in conjunctions with hydrazine

Country Status (1)

Country Link
KR (1) KR100619181B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111889692B (en) * 2020-07-09 2022-10-14 荆楚理工学院 Monodisperse superfine copper powder and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR880700102A (en) * 1985-05-28 1988-02-15 다가오까 키요시 Cyanide remover, preparation method of cyanide, and cyanide removal method
JPH02254182A (en) * 1989-03-28 1990-10-12 Chiyoda Kagaku Kenkyusho:Kk Heat resistant tarnish inhibitor for copper and copper alloy
JPH04185688A (en) * 1990-11-21 1992-07-02 Nippon Parkerizing Co Ltd Method for controlling black dirt of surface-treated building material
JPH08232005A (en) * 1995-02-24 1996-09-10 Murata Mfg Co Ltd Production of copper powder
JPH11310802A (en) * 1998-04-27 1999-11-09 Tohoku Munekata Co Ltd Tannic acid surface-treated metallic powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR880700102A (en) * 1985-05-28 1988-02-15 다가오까 키요시 Cyanide remover, preparation method of cyanide, and cyanide removal method
JPH02254182A (en) * 1989-03-28 1990-10-12 Chiyoda Kagaku Kenkyusho:Kk Heat resistant tarnish inhibitor for copper and copper alloy
JPH04185688A (en) * 1990-11-21 1992-07-02 Nippon Parkerizing Co Ltd Method for controlling black dirt of surface-treated building material
JPH08232005A (en) * 1995-02-24 1996-09-10 Murata Mfg Co Ltd Production of copper powder
JPH11310802A (en) * 1998-04-27 1999-11-09 Tohoku Munekata Co Ltd Tannic acid surface-treated metallic powder

Also Published As

Publication number Publication date
KR20060042559A (en) 2006-05-15

Similar Documents

Publication Publication Date Title
JP3220674B2 (en) Manufacturing method of neodymium / iron / boron permanent magnet alloy
JP2021021146A (en) Method for manufacturing silver-coated copper nanowire having core-shell structure by using chemical reduction method
CN103769598A (en) Method for stably preparing nano-copper powder
JP4182234B2 (en) Copper powder for conductive paste and method for producing the same
CN111872376B (en) Preparation method of silver-coated micro-alloyed copper powder with high oxidation resistance
CN101096053B (en) Preparation method of ferro-cobalt ultra-fine powder
CN113134604B (en) Pd x Pt (50-x) Bi 50 Ternary alloy nano-particles and preparation method and application thereof
KR101734300B1 (en) Method for producing metal/ceramic nanostructure, metal/ceramic nanostructure produced by the same, and catalyst containing the same
KR100619181B1 (en) Anti-oxidant process of copper powder by using tannic acid in conjunctions with hydrazine
CN108441668A (en) A kind of silver tungsten contact material and preparation method thereof
CN108097949B (en) A kind of production method of tin plating nickel powder
RU2459685C1 (en) Method of applying copper coating on titanium hydride particles
CN107868948A (en) A kind of method of the chemical plating cobalt coated tungsten carbide based on cobalt salt activation
JP2621915B2 (en) Method for producing ultrafine copper powder
CN204912775U (en) Silver - tungsten electrical contact materials's preparation facilities, electrical contact materials and electrical contact
US4822409A (en) Method for the manufacture of a thermostable amorphous ferromagnetic powder
JP3796321B2 (en) Method for producing sintered material using tin-coated copper powder
JP2022133650A (en) Porous base material structure containing copper particle and method of making the same
CN113231642A (en) Preparation method of superfine copper-iron alloy powder
CN116571241A (en) Ultra-dispersed Ag-CeO 2 Catalyst and preparation method thereof
JPH03180481A (en) Production of copper oxide powder by electrolysis
Klein Wet chemical synthesis of nano and submicron Al particles for the preparation of Ni and Ru aluminides
KR20010055793A (en) Sintering method of metal powder by pickling
JP2001003124A (en) Manufacture of iron-copper composite powder
JP2023143398A (en) Samarium-iron-nitrogen based magnet powder and samarium-iron-nitrogen based magnet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130710

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140703

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150619

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160629

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170626

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180625

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190626

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20191231

Year of fee payment: 19