KR100601463B1 - Method of Selective Hydrogenation of acetylenic alcohol - Google Patents

Method of Selective Hydrogenation of acetylenic alcohol Download PDF

Info

Publication number
KR100601463B1
KR100601463B1 KR1020000008583A KR20000008583A KR100601463B1 KR 100601463 B1 KR100601463 B1 KR 100601463B1 KR 1020000008583 A KR1020000008583 A KR 1020000008583A KR 20000008583 A KR20000008583 A KR 20000008583A KR 100601463 B1 KR100601463 B1 KR 100601463B1
Authority
KR
South Korea
Prior art keywords
reaction
hydrogenation
catalyst
formula
selectivity
Prior art date
Application number
KR1020000008583A
Other languages
Korean (ko)
Other versions
KR20010082987A (en
Inventor
유익상
구본철
이시준
심재구
강영선
황유석
Original Assignee
에스케이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이 주식회사 filed Critical 에스케이 주식회사
Priority to KR1020000008583A priority Critical patent/KR100601463B1/en
Publication of KR20010082987A publication Critical patent/KR20010082987A/en
Application granted granted Critical
Publication of KR100601463B1 publication Critical patent/KR100601463B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/628Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/94Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C33/00Unsaturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C33/02Acyclic alcohols with carbon-to-carbon double bonds
    • C07C33/025Acyclic alcohols with carbon-to-carbon double bonds with only one double bond

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 탄소, 탄소간 삼중결합을 수소화 반응을 통해 이중 결합으로 환원시키는 방법에 대한 것으로, 좀더 상세하게는 아세틸렌알코올을 린들라 촉매와 하기 화학식 2 또는 3으로 표시되는 디아민계 반응제어제의 존재하에서 선택적으로 비닐알코올로 환원시키는 것을 특징으로 하는 아세틸렌알코올의 선택적 수소화 방법에 관한 것이다.The present invention relates to a method for reducing carbon and carbon triple bonds to double bonds through a hydrogenation reaction, and more particularly, the presence of an acetylene alcohol to a Lindla catalyst and a diamine-based reaction control agent represented by Formula 2 or 3 below. The selective hydrogenation method of acetylene alcohol, characterized in that it is selectively reduced to vinyl alcohol under.

화학식 2Formula 2

Figure 112000003257999-pat00003
Figure 112000003257999-pat00003

여기서, n은 1 내지 5의 정수이며,Where n is an integer from 1 to 5,

화학식 3Formula 3

Figure 112000003257999-pat00004
Figure 112000003257999-pat00004

여기서, R4 및 R5는 서로 같거나 다르게, H 또는 탄소수 1 내지 5의 알킬기이고, R4와 R5가 서로 연결되어 고리를 형성한 경우도 포함한다.Here, R 4 and R 5 are the same as or different from each other, H or an alkyl group having 1 to 5 carbon atoms, and includes a case where R 4 and R 5 are connected to each other to form a ring.

린들라, 아세틸렌알코올, 반응제어제, 디아민, 수소화Lindla, Acetylene Alcohol, Reaction Control Agent, Diamine, Hydrogenation

Description

아세틸렌알코올의 선택적 수소화 방법{Method of Selective Hydrogenation of acetylenic alcohol}Method of Selective Hydrogenation of acetylenic alcohol

본 발명은 아세틸렌알코올의 선택적 수소화 방법에 관한 것으로, 좀더 상세하게는 린들라 촉매와 반응제어제로 디아민을 사용하여 하기 반응식 1에서 아세틸렌알코올의 삼중결합을 이중결합으로 선택적으로 환원시키는 방법에 관한 것이다.The present invention relates to a selective hydrogenation method of acetylene alcohol, and more particularly to a method of selectively reducing the triple bond of acetylene alcohol to a double bond in the following scheme 1 using a diamine as a Lindla catalyst and reaction control agent.

Figure 112000003257999-pat00001
Figure 112000003257999-pat00001

아세틸렌알코올(I)을 비닐알코올(II)로 환원시키는 선택적 수소화 반응은 유기 합성 중간체, 의약, 합성향료 제조 등 여러 분야에 걸쳐 사용되는 중요한 반응이며, 반응의 촉매로는 납으로 피독된 팔라듐-탄산칼슘, 즉 린들라 촉매가 주로 사용되고 있다. (Lindlar, H., Helvetica Chimica Acta, 35권, pp446~450, 1952).Selective hydrogenation reaction to reduce acetylene alcohol (I) to vinyl alcohol (II) is an important reaction used in various fields such as organic synthesis intermediates, medicine, synthetic fragrance preparation, etc. As a catalyst of the reaction, lead poisoned palladium-carbonate acid Calcium, or Lindla, catalysts are mainly used. (Lindlar, H., Helvetica Chimica Acta , 35, pp 446-450, 1952).

그러나, 상업적으로 사용되는 린들라 촉매만을 사용할 경우 아세틸렌알코올 의 삼중결합이 이중결합을 거쳐 단일결합까지 환원되는, 즉 상기 반응식의 (II)에서 (III)로의 부가반응이 진행되기 때문에 만족스러운 순도로 비닐알코올을 얻어내지는 못했다. However, when only the commercially used Lindla catalyst is used, the triple bond of acetylene alcohol is reduced to a single bond through a double bond, that is, satisfactory purity because the addition reaction from (II) to (III) of the scheme proceeds. Vinyl alcohol could not be obtained.

따라서, 린들라 촉매를 이용한 수소화 반응의 선택성을 증대시키기 위한 연구가 오래전부터 수행되어져 왔는데, 대표적인 경우가 반응제어제로서 퀴놀린이나 암모니아등의 아민 화합물을 린들라 촉매와 함께 사용하는 것이다 (Tse-Lok, Ho and Shing-Hou, Liu, Synth. Commun. 17, 969, 1987). 그러나, 이 경우는 반응제어제의 사용량이 많을 뿐 아니라, 선택도가 린들라 촉매만을 사용했을 때에 비해 크게 개선되지 않았다.Therefore, researches to increase the selectivity of the hydrogenation reaction using the Lindla catalyst have been performed for a long time. A typical case is to use an amine compound such as quinoline or ammonia together with the Lindla catalyst as a reaction control agent (Tse-Lok). , Ho and Shing-Hou, Liu, Synth.Commun. 17, 969, 1987). However, in this case, not only the amount of the reaction control agent used is large, but the selectivity was not significantly improved as compared with the use of the Lindla catalyst alone.

한편, 아민계 반응제어제 대신 인화합물이 제안되기도 하였는데 (Kuraray, 일본 특개소 52-27704호), 이 때 주로 사용되는 트리페닐포스핀은 아세틸렌의 선택적 수소화 반응의 선택성을 약간 개선시키나, 그 효과는 크지 않다. 그리고, 제어제 자체의 끓는점이 높고, 유기용매에 대한 용해도가 높은 반면 물에 대한 용해도가 크지 않기 때문에, 증류나 물 세척 등을 통하여 반응 생성물로부터 제거하기가 용이하지 않을 뿐만 아니라 가격도 매우 비싸다.Phosphorous compounds have been proposed instead of amine reaction control agents (Kuraray, Japanese Patent Application Laid-Open No. 52-27704). At this time, triphenylphosphine, which is mainly used, slightly improves the selectivity of the selective hydrogenation of acetylene. Is not large. In addition, since the boiling point of the control agent itself is high, the solubility in the organic solvent is high, but the solubility in water is not large, it is not easy to remove from the reaction product through distillation or water washing, and the price is very expensive.

대일본잉크화학에서 제안된 황화합물들은 (일본 특개소 59-78126호) 린들라촉매의 활성을 급격하게 감소시켜 반응시간이 매우 길어지거나, 황화합물에 의해 촉매가 영구적으로 피독되므로 촉매의 반복적인 사용시 반응성이 균일하지 못한 단점이 있다.Sulfur compounds proposed by Nippon Ink Chemical Co., Ltd. (Japanese Patent Laid-Open No. 59-78126) can dramatically reduce the activity of the Lindla catalyst and lead to a very long reaction time, or the catalyst is permanently poisoned by sulfur compounds. This is a nonuniform disadvantage.

한편, 납 대신 또는 납과 함께 팔라듐을 카드늄, 아연, 망간 수은 등의 금속 으로 피독하여 선택적 수소화 반응을 수행하려는 연구가 많이 있었지만 (영국 특허공고 제671804호 Zh. Prikl. Khim 1981, 54(5), 1192-4 등), 촉매의 제조가 번거로울 뿐만 아니라, 반응 결과에 있어서도 납으로 피독한 경우보다 우수하지 못하였다.On the other hand, many studies have been conducted to perform selective hydrogenation by poisoning palladium with metals such as cadmium, zinc, and manganese mercury instead of or with lead (British Patent Publication No. 671804 Zh. Prikl. Khim 1981, 54 (5)). , 1192-4, etc.), the production of the catalyst was not only cumbersome, but also in the reaction result, it was not superior to the case of poisoning with lead.

이에, 본 발명자들은 상기한 문제점을 해결하기 위하여 광범위한 연구를 수행한 결과, 디아민 화합물을 린들라 촉매의 반응제어제로 사용하면, 일단 아세틸렌알코올이 비닐알코올로 환원되면 더 이상 수소화가 진행되지 않아, 쉽게 고순도의 비닐알코올을 얻을 수가 있으며, 그 사용량이 적어 경제적이고, 유기층으로부터 쉽게 제거될 수 있음을 발견하였으며, 본 발명은 이에 기초하여 완성되었다.Therefore, the present inventors have conducted extensive research to solve the above problems, and as a result, when the diamine compound is used as the reaction control agent of the Lindla catalyst, once the acetylene alcohol is reduced to vinyl alcohol, hydrogenation does not proceed anymore, and thus It was found that high-purity vinyl alcohol can be obtained, its amount is low and economical, and can be easily removed from the organic layer, and the present invention has been completed based on this.

따라서, 본 발명의 목적은 아세틸렌알코올의 선택적인 수소화 반응을 통해 비닐알코올을 고수율, 고순도 및 경제적으로 얻을 수 있는 방법을 제공하는데 있다.Accordingly, it is an object of the present invention to provide a method for obtaining vinyl alcohol in high yield, high purity and economically through selective hydrogenation of acetylene alcohol.

상기 목적을 달성하기 위한 본 발명의 아세틸렌알코올의 선택적 수소화 방법은 용매의 존재 또는 부재하에서, 하기 화학식 1로 표시되는 아세틸렌알코올 100중량부에 대하여 린들라 촉매 0.01∼20중량부 및 하기 화학식 2 또는 3으로 표시되는 하나의 디아민계 반응제어제 0.001∼1중량부를 수소압 20기압이하, 15∼85℃에서 반응시키는 것으로 이루어진다. Selective hydrogenation method of the acetylene alcohol of the present invention for achieving the above object is 0.01 to 20 parts by weight of Lindla catalyst and 100 to parts by weight of acetylene alcohol represented by the following formula (1) in the presence or absence of a solvent and the formula (2) or (3) It consists of making 0.001-1 weight part of diamine type reaction control agents shown by the reaction at 15-85 degreeC of 20 atm or less of hydrogen pressure.                         

화학식 1Formula 1

Figure 112000003257999-pat00005
Figure 112000003257999-pat00005

여기서, R1, R2 및 R3는 서로 같거나 다르게, H 또는 탄소수 1 내지 20의 알킬기이고,Here, R 1 , R 2 and R 3 are the same as or different from each other, H or an alkyl group having 1 to 20 carbon atoms,

화학식 2Formula 2

Figure 112000003257999-pat00006
Figure 112000003257999-pat00006

여기서, n은 1 내지 5의 정수이며,Where n is an integer from 1 to 5,

화학식 3Formula 3

Figure 112000003257999-pat00007
Figure 112000003257999-pat00007

여기서, R4 및 R5는 서로 같거나 다르게, H 또는 탄소수 1 내지 5의 알킬기이고, R4과 R5가 서로 연결되어 고리를 형성한 경우도 포함한다.Here, R 4 and R 5 are the same as or different from each other, H or an alkyl group having 1 to 5 carbon atoms, and includes a case where R 4 and R 5 are connected to each other to form a ring.

이하, 본 발명을 좀더 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

일반적으로, 아세틸렌알코올의 선택적 수소화 반응에 사용되는 반응제어제는 유기층으로부터 쉽게 제거되며, 상업적으로 쉽게 구할 수 있어야 비닐알코올의 대 량 생산에 유용하다. 또한, 이 방법으로 촉매를 수회 반복 사용하여도 촉매가 그 활성을 잃지 않아야 유리하다.In general, the reaction control agent used for the selective hydrogenation of acetylene alcohol is easily removed from the organic layer, and commercially readily available is useful for mass production of vinyl alcohol. In addition, even if the catalyst is used several times in this manner, it is advantageous that the catalyst does not lose its activity.

본 발명에서 사용된 디아민계 반응제어제는 하기 화학식 2 또는 3으로 표시되며, 상기한 조건을 모두 만족시킨다.The diamine reaction control agent used in the present invention is represented by the following formula (2) or (3), and satisfies all of the above conditions.

화학식 2Formula 2

Figure 112000003257999-pat00008
Figure 112000003257999-pat00008

여기서, n은 1 내지 5의 정수이며,Where n is an integer from 1 to 5,

화학식 3Formula 3

Figure 112000003257999-pat00009
Figure 112000003257999-pat00009

여기서, R4 및 R5는 서로 같거나 다르게, H 또는 탄소수 1 내지 5의 알킬기이고, R1과 R2가 서로 연결되어 고리를 형성한 경우도 포함한다.Here, R 4 and R 5 are the same as or different from each other, H or an alkyl group having 1 to 5 carbon atoms, and includes a case where R 1 and R 2 are connected to each other to form a ring.

상기 디아민계 반응제어제의 사용량은 아세틸렌알코올 100중량부에 대하여 0.001∼1중량부가 바람직하며, 만일 0.001중량부 미만이면, 선택도가 원하는 수준만큼 향상되지 않는 문제가 발생할 수 있고, 1중량부를 초과하면, 오히려 선택도가 떨어지는 문제가 발생할 수 있다.The amount of the diamine-based reaction control agent is preferably 0.001 to 1 parts by weight based on 100 parts by weight of acetylene alcohol, if less than 0.001 parts by weight, may cause a problem that the selectivity does not improve by the desired level, more than 1 part by weight. If so, a problem may arise that the selectivity is poor.

상기 디아민계 반응제어제는 선택도가 매우 우수하여 아세틸렌알코올이 일단 비닐알코올로 환원되면 더 이상 수소화가 진행되지 않아, 쉽게 고순도의 비닐알코 올을 얻을 수가 있으며, 그 사용량이 적어 경제적이고, 물에 쉽게 용해되고 끓는점도 낮아 물을 통해 유기층으로부터 제거하거나, 증류를 통해서 쉽게 분리해낼 수 있다. 또한 상기 디아민 화합물들은 상업적으로 쉽게 구할 수 있기 때문에 대량생산에 있어서도 유리하다.The diamine-based reaction control agent is very excellent in selectivity, so once the acetylene alcohol is reduced to vinyl alcohol, hydrogenation does not proceed anymore, so that high-purity vinyl alcohol can be easily obtained. Easily soluble and low boiling point can be removed from the organic layer through water or easily separated by distillation. The diamine compounds are also advantageous in mass production because they are readily available commercially.

한편, 본 발명에서 사용된 린들라 촉매의 사용량은 아세틸렌알코올 100중량부에 대하여 0.01∼20중량부가 바람직하며, 만일 상기 촉매의 사용량이 0.01중량부 미만이면, 아세틸렌알코올이 비닐알코올로 완전히 전환되지 않거나 그 반응속도가 현저하게 느려서 비경제적이며, 20중량부를 초과하면, 반응 후반에 선택도가 떨어지게 되는 문제가 발생할 수 있다.On the other hand, the amount of the Lindla catalyst used in the present invention is preferably 0.01 to 20 parts by weight based on 100 parts by weight of acetylene alcohol, and if the amount of the catalyst is less than 0.01 parts by weight, acetylene alcohol is not completely converted into vinyl alcohol or The reaction rate is remarkably slow and uneconomical, and if it exceeds 20 parts by weight, a problem may occur that the selectivity is lowered later in the reaction.

본 발명의 아세틸렌알코올의 선택적 수소화 반응은 수소압 20기압, 15∼85℃에서 수행되며, 상온, 상압이 가장 바람직하다. 만일, 상기 반응 압력이 20기압을 초과하면, 아세틸알코올의 비닐알코올로의 선택도가 낮아지는 문제가 발생할 수 있으며, 반응 온도가 15℃ 미만이나 85℃ 이상의 범위에서는 비닐알코올의 선택도가 떨어지는 문제가 있다.Selective hydrogenation of acetylene alcohol of the present invention is carried out at 20 atm, 15 to 85 ℃ hydrogen pressure, room temperature, atmospheric pressure is most preferred. If the reaction pressure exceeds 20 atm, a problem may occur that the selectivity of acetyl alcohol to vinyl alcohol may be lowered, and the selectivity of vinyl alcohol may be lowered when the reaction temperature is less than 15 ° C. or more than 85 ° C. There is.

또한, 상기 반응은 용매의 존재 또는 부재하에서 이루어지며, 이때 사용될 수 있는 용매의 예로는 메탄올, 에탄올, 이소프로필알코올 등의 극성 용매 또는 펜탄, 헥산, 헵탄, 옥탄 등의 무극성 용매가 있다.In addition, the reaction is carried out in the presence or absence of a solvent, examples of the solvent that can be used include a polar solvent such as methanol, ethanol, isopropyl alcohol, or a non-polar solvent such as pentane, hexane, heptane, octane.

이하, 실시예를 통하여 본 발명을 좀 더 구체적으로 살펴보지만, 하기 실시예에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited to the following Examples.

아세틸렌알코올의 선택적 수소화 반응의 선택성과 정량적인 수소 흡수의 문 제에 있어서 최적의 반응제어제를 개발하기 위해 디메틸에티닐카비놀 (Dimethylethynlcarbinol, 이하 'DMEC'라 함)의 디메틸비닐카비놀 (Dimethylvinylcarbinol, 이하 'DMVC'라 함)로의 환원 반응을 살펴보았다.Dimethylvinylcarbinol (Dimethylvinylcarbinol) of dimethylethynylcarbinol (hereinafter referred to as 'DMEC') in order to develop an optimal reaction control agent for the selective hydrogenation of acetylene alcohol and the problem of quantitative hydrogen absorption. Hereinafter, the reduction to 'DMVC' was examined.

비교예 1Comparative Example 1

먼저, 100mL 수소화 반응기 안에 DMEC 10g, n-헥산 44mL 및 납으로 피독된 5% 팔라듐-탄산칼슘 (Johnson-Matthey사 제조) 0.05g을 넣고, 반응 온도 35℃, 수소압 4기압에서 수소화반응을 수행하였다. 수소가 0.8 몰당량 첨가되었을 때와 반응 후 반응물의 일부를 취해 기체상 크로마토그래피로 분석하였다. 그 결과, 0.8 몰당량의 수소가 첨가되었을 경우의 선택도는 97.5%이며, 30분 후 DMEC는 100% 전환되었고, 이 때의 선택도는 90.8%였다. 이 때 수소 흡수 속도는 약간 감소하였지만, 수소화 반응이 완전히 멈추지는 않았다.First, 10 g of DMEC, 44 mL of n-hexane, and 0.05 g of 5% palladium-calcium carbonate (manufactured by Johnson-Matthey) in a 100 mL hydrogenation reactor were added, and a hydrogenation reaction was carried out at a reaction temperature of 35 DEG C and 4 atm of hydrogen pressure. It was. When 0.8 molar equivalents of hydrogen were added and after reaction a portion of the reaction was taken and analyzed by gas phase chromatography. As a result, when 0.8 mol equivalent of hydrogen was added, the selectivity was 97.5%, and DMEC was 100% converted after 30 minutes, and the selectivity at this time was 90.8%. At this time, the hydrogen absorption rate slightly decreased, but the hydrogenation reaction did not stop completely.

즉, 린들라 촉매만 사용하여 수소화 반응을 수행할 경우, 반응이 완료된 후에도 수소의 흡수는 멈추지 않고 반응 생성물인 DMVC의 환원이 계속되어 고순도의 DMVC를 얻을 수가 없었다.In other words, when the hydrogenation reaction was carried out using only the Lindla catalyst, absorption of hydrogen did not stop even after the reaction was completed, and reduction of the reaction product DMVC continued to obtain a high purity DMVC.

비교예 2∼5Comparative Examples 2 to 5

선택적 수소화 반응의 반응제어제로 널리 알려진 퀴놀린이나 피리딘을 린들라 촉매와 함께 넣고 반응을 수행하였다.Quinoline or pyridine, well known as a reaction control agent for the selective hydrogenation reaction, was added together with the Lindla catalyst to carry out the reaction.

상기 비교예 1과 동일한 양으로 반응물, 용매, 촉매를 넣은 후 여기에 하기 표 1과 같이 반응제어제를 0.005g 넣고, 비교예 1과 동일 온도와 동일한 수소압에서 반응시켰다. 1 몰당량의 수소가 흡수된 시점에서 반응 생성물을 취해 비교예 1 과 기체상 크로마토그래피로 조성을 분석, 선택도를 계산하였다. DMEC의 반응 완료 시간은 반응제어제에 따라 30분에서 100분 사이였다.After adding the reactant, the solvent, and the catalyst in the same amount as in Comparative Example 1, 0.005g of a reaction control agent was added thereto as shown in Table 1 below, and reacted at the same hydrogen pressure as the temperature of Comparative Example 1. When 1 molar equivalent of hydrogen was absorbed, the reaction product was taken, and the composition was analyzed by Comparative Example 1 and gas phase chromatography to calculate selectivity. The reaction completion time of DMEC was between 30 and 100 minutes depending on the reaction control agent.

비교예Comparative example 반응제어제Reaction control agent 반응 완료 후 선택도 (%)% Selectivity after completion of reaction 반응시간 (분)Response time (minutes) 1One -- 90.890.8 3030 22 퀴놀린 (Quinoline)Quinoline 94.394.3 4545 33 피리딘 (Pyridine)Pyridine 95.295.2 5555 44 트리에틸아민 (Triethyl amine)Triethyl amine 89.889.8 9595 55 디메틸포름아미드 (DMF)Dimethylformamide (DMF) 88.788.7 3030

상기 표 1에서 알 수 있는 바와 같이, 기존의 반응제어제를 사용한 경우(비교예 2∼5)는 린들라 촉매만 사용한 경우(비교예 1)에 비해 5%정도 증가하였만, DMEC가 모두 반응한 이후에도 수소화 반응이 완전히 멈추지는 않았다. 한편, 3차 아민인 트리에틸아민(triethylamine)이나, 디메틸포름아미드(DMF) 등의 경우는 오히려 선택도를 떨어뜨리는 것으로 나타났다.As can be seen in Table 1, when using the conventional reaction control agent (Comparative Examples 2 to 5) was increased by about 5% compared to the case of using only Lindla catalyst (Comparative Example 1), all DMEC reaction Even after the hydrogenation reaction did not stop completely. On the other hand, in the case of triethylamine (triethylamine), dimethylformamide (DMF), etc., which is a tertiary amine, the selectivity was rather decreased.

실시예 1∼5Examples 1-5

반응제어제로서 하기 표 2의 디아민계 화합물을 0.005g 넣은 것 외에는 상기비교예 1과 동일하게 수소화 반응을 수행하였다. 넣어 준 DMEC에 대해 1 몰당량의 수소가 첨가된 후, 수소화 반응은 거의 진행되지 않았다.A hydrogenation reaction was carried out in the same manner as in Comparative Example 1 except that 0.005 g of the diamine compound of Table 2 was added as a reaction control agent. After 1 molar equivalent of hydrogen was added to the added DMEC, the hydrogenation reaction hardly proceeded.

실시예Example 디아민화합물Diamine Compound 반응 완료 후 선택도 (%)% Selectivity after completion of reaction 반응시간 (분)Response time (minutes) 1One 에틸렌디아민 (Ethylenediamine)Ethylenediamine 98.198.1 9595 22 디아미노프로판 (1,3-Diaminopropane)Diaminopropane (1,3-Diaminopropane) 97.097.0 3030 33 디아미노부탄 (1,4-Diaminobutane)Diaminobutane (1,4-Diaminobutane) 97.597.5 3535 44 cis-1,2-디아미노씨클로헥산 (cis-1,2-Diaminocyclohexane)cis-1,2-diaminocyclohexane 97.897.8 5555 55 디에틸렌트리아민 (Diethylenetriamine)Diethylenetriamine 97.797.7 8080

상기 표 2에서 알 수 있는 바와 같이, 지방족 사슬 양쪽 끝에 아민이 존재하 는 디아민을 반응제어제로 사용할 경우에는 선택도가 8%이상 향상되며, 또한, DMEC가 모두 반응을 한 후에는 수소화 반응은 거의 일어나지 않았다. 디아민 화합물로는 에틸렌디아민, 디아미노프로판, 디아미노 부탄, 시스-1,2-디아미노씨클로헥산 등을 사용하였는데, 선택성에 있어서 에틸렌디아민이 가장 우수한 결과를 보임을 알 수 있다.As can be seen from Table 2, when using a diamine having an amine at both ends of the aliphatic chain as a reaction control agent, the selectivity is improved by 8% or more, and after all the DMEC reaction, the hydrogenation reaction is almost Didn't happen. Ethylenediamine, diaminopropane, diamino butane, cis-1,2-diaminocyclohexane, etc. were used as the diamine compound, and it can be seen that ethylenediamine showed the best result in selectivity.

하기 실시예 6∼8에서는 상기 디아민들 중 에틸렌디아민을 사용하여 여러 종류의 아세틸렌알코올의 수소화 반응을 수행하였다.In Examples 6 to 8, hydrogenation of various kinds of acetylene alcohols was performed using ethylenediamine among the diamines.

실시예 6Example 6

상기 비교예 1과 같이 오토클레이브 반응기 안에 아세틸렌알코올로 데하이드로린나룰 (dehydrolinalool) 20g, n-헥산 20mL, 린들라 촉매 0.06g, 및 에틸렌디아민 0.012g을 넣고, 35℃, 수소압 1기압에서 수소화 반응을 수행하였다. 65분 후 수소 흡수는 더 이상 관측되지 않았다. 반응 완료 후 생성물의 조성을 기체상 크로마토그래피로 분석하고, 에틸렌디아민을 넣지 않은 경우와 비교하였다.20 g of dehydrolinalool, 20 mL of n-hexane, 0.06 g of Lindla catalyst, and 0.012 g of ethylenediamine were placed in an autoclave reactor as in Comparative Example 1, and hydrogenated at 35 ° C. and 1 atm of hydrogen. The reaction was carried out. After 65 minutes hydrogen uptake was no longer observed. After completion of the reaction the composition of the product was analyzed by gas phase chromatography and compared with the case without ethylenediamine.

실시예 7Example 7

아세틸렌알코올로 데하이드로네롤리돌 (dehydronerolidol) 6g, n-헥산 60mL, 린들라촉매 0.015g, 및 에틸렌디아민 0.003g을 넣고, 30℃, 수소압 1.5기압에서 수소화반응을 수행하였다. 135분 후 수소 흡수는 더 이상 없었으며, 반응 생성물을 기체상 크로마토그래피로 분석하고, 에틸렌디아민을 넣지 않은 경우와 비교하였다.6 g of dehydronerolidol, 60 mL of n-hexane, 0.015 g of Lindla catalyst, and 0.003 g of ethylenediamine were added to acetylene alcohol, and hydrogenation was performed at 30 ° C. and 1.5 atm of hydrogen pressure. There was no longer hydrogen uptake after 135 minutes and the reaction product was analyzed by gas phase chromatography and compared with no ethylenediamine.

실시예 8 Example 8

아세틸렌알코올로 데하이드로아이소파이톨 (dehydroisophytol) 6g, n-헥산 60mL, 린들라촉매 0.018g, 및 에틸렌디아민 0.0018g을 넣고, 35℃, 수소압 1기압에서 수소화반응을 수행하였다.6 g of dehydroisophytol, 60 mL of n-hexane, 0.018 g of Lindla catalyst, and 0.0018 g of ethylenediamine were added thereto, followed by hydrogenation at 35 ° C. and 1 atm of hydrogen.

상기 실시예 6∼8의 결과를 하기 표 3에 나타내었다.The results of Examples 6 to 8 are shown in Table 3 below.

실시예Example 아세틸렌 알코올Acetylene alcohol 에틸렌디아민 첨가 여부Whether ethylenediamine is added 반응 완료 후 선택도 (%)% Selectivity after completion of reaction 반응 시간 (분)Reaction time (min) 66 데하이드로린나룰Dehydrolinalul -- 92.592.5 5555 첨가adding 97.897.8 6565 77 데하이드로네롤리돌 Dehydronerolidol                                              -- 92.192.1 110110 첨가adding 97.597.5 135135 88 데하이드로아이소파이톨 Dehydroisopyitol                                              -- 90.390.3 8585 첨가adding 97.697.6 100100

아세틸렌알코올로 데하이드로린나룰을 사용한 경우 (실시예 6), 린들라 촉매만을 이용하여 수소화 반응을 수행했을 때의 선택도가 92.5%였으나, 반응하는 아세틸렌알코올에 대해 0.06% 정도의 에틸렌디아민을 넣어 줌으로써, 선택도는 97.8%로 증가하였다. 데하이드로린나룰의 반응이 완료된 후에는, 더 이상 수소의 흡수는 관측되지 않았으며, 시간이 경과해도 선택도가 떨어지는 것은 거의 보이지 않았다.When dehydrolinalulul was used as acetylene alcohol (Example 6), when the hydrogenation reaction was carried out using only Lindla catalyst, the selectivity was 92.5%, but about 0.06% ethylenediamine was added to the acetylene alcohol. By giving, the selectivity increased to 97.8%. After the reaction of the dehydrolinerulol was completed, no further hydrogen uptake was observed, and almost no selectivity was deteriorated over time.

아세틸렌알코올로 데하이드로네롤리놀을 사용한 경우 (실시예 7), 에틸렌디아민을 0.05% 넣어줌으로써 데하이드로네롤리돌의 네롤리돌로의 수소화반응도 그 선택도가 92.1%에서 97.5%로 증가하였다. 한편, 데하이드로아이소파이톨의 수소화 반응의 경우 (실시예 8)에서도 에틸렌디아민을 0.03% 넣어줌으로써 선택도가 90.3%에서 97.6%의 향상을 보였다. 데하이드로네롤리돌이나 데하이드로아이소파이톨의 반응이 완료되면서 수소는 더 이상 흡수되지 않았다.When dehydronerolinol was used as the acetylene alcohol (Example 7), 0.05% of ethylenediamine was added to increase the hydrogenation of dehydronerolidol to nerolidol. The selectivity was increased from 92.1% to 97.5%. On the other hand, in the case of hydrogenation of dehydroisopytol (Example 8), 0.03% of ethylenediamine was added to improve selectivity from 90.3% to 97.6%. As the reaction of dehydronerolidol or dehydroisopytol was completed, hydrogen was no longer absorbed.

상기 결과로부터, 에틸렌디아민은 에틸렌알코올의 환원 반응 선택도를 증가 시키며,From the above results, ethylenediamine increases the selectivity of the reduction reaction of ethylene alcohol,

실시예 9Example 9

상기 실시예 6과 같이 데하이드로린나룰 10g, n-헥산 40mL 및 하기 표 4와 같이 린들라 촉매를 넣고, 이 촉매 100중량부에 대해 에틸렌디아민을 10중량부가 되도록 첨가하여 35℃, 수소압 3기압에서 수소화 반응을 수행하였다.10 g of dehydrolinalulul, 40 mL of n-hexane and a Lindla catalyst as shown in Table 4 were added as in Example 6, and ethylenediamine was added to 10 parts by weight based on 100 parts by weight of the catalyst. The hydrogenation reaction was carried out at atmospheric pressure.

반응물에 대한 촉매의 량 (중량부)Amount of catalyst relative to reactants (parts by weight) 반응 완료 후 선택도 (%)% Selectivity after completion of reaction 0.0050.005 9090 0.030.03 97.697.6 0.20.2 97.197.1 0.30.3 97.997.9 0.50.5 97.797.7 1.01.0 97.097.0 1010 96.596.5

모든 아세틸렌알코올의 수소화반응에 있어서, 아세틸렌알코올 100중량부에 대한 촉매의 양은 0.01∼20중량부의 범위에서 바람직한 결과를 보이나, 반응시간과 선택도를 고려할 때, 탄소수에 따라 0.2∼2중량부에서 특히 바람직한 결과를 보였다.In the hydrogenation of all acetylene alcohols, the amount of catalyst with respect to 100 parts by weight of acetylene alcohol shows a desirable result in the range of 0.01 to 20 parts by weight, but considering the reaction time and selectivity, especially at 0.2 to 2 parts by weight depending on the number of carbon atoms Desirable results were shown.

실시예 10Example 10

상기 실시예 6과 같이 반응물로 데하이드로네롤리돌 6g, n-헥산 60mL 및 린들라 촉매 0.015g을 넣고, 촉매에 대한 에틸렌디아민의 양을 하기 표 5와 같이 첨가하여 35℃, 수소압 1.5기압에서 수소화 반응을 수행하였다.6 g of dehydronerolidol, 60 mL of n-hexane, and 0.015 g of Lindla catalyst were added to the reactants as in Example 6, and the amount of ethylenediamine for the catalyst was added as shown in Table 5 below at 35 ° C. and hydrogen pressure of 1.5 atm. Hydrogenation reaction was carried out.

반응물에 대한 에틸렌 디아민의 량 (중량부)Amount of ethylene diamine relative to the reactants (parts by weight) 반응 완료 후 선택도 (%)% Selectivity after completion of reaction 0.00250.0025 92.092.0 0.00750.0075 96.896.8 0.01250.0125 97.097.0 0.0250.025 97.497.4 0.03750.0375 97.497.4 0.050.05 97.597.5

에틸렌디아민의 양은 넣어준 촉매의 양에 따라 다르나, 보통 사용되는 아민 화합물에 비해 1/100정도의 수준인 반응물 100중량부에 대하여 0.001~0.05중량부에서 바람직한 결과를 보였다.The amount of ethylenediamine depends on the amount of catalyst added, but the preferred result was 0.001 to 0.05 parts by weight based on 100 parts by weight of the reactant, which is about 1/100 the level of amine compounds.

실시예 11Example 11

상기 실시예 1의 반응 생성물을 필터로 여과하여 촉매를 걸러내고, 여과액에 물 55mL를 넣어 반응 생성물을 세정하였다. 얻어진 유기층과 물층, 및 반응물을 취해 유기원소 분석기인 안텍(Antech)을 사용하여 질소함량을 분석하였다. 분석결과는 하기 표 6과 같다.The reaction product of Example 1 was filtered with a filter to filter the catalyst, and 55 mL of water was added to the filtrate to wash the reaction product. The obtained organic layer, water layer, and reactant were taken and analyzed for nitrogen content using Antech, an organic element analyzer. The analysis results are shown in Table 6 below.

반응물Reactant 유기층Organic layer 물층Water layer 질소함량 (ppm)Nitrogen content (ppm) 490490 검출되지 않음Not detected 495495

상기 표에서 알 수 있는 바와 같이, 반응생성물이 있는 유기층에서는 에틸렌디아민이 전혀 검출되지 않았으며, 이로부터 상기 반응제어제인 에틸렌디아민은 반응 생성물로부터 완전히 분리됨을 알 수 있다.As can be seen from the table, no ethylenediamine was detected in the organic layer having the reaction product, from which it can be seen that the reaction control agent ethylenediamine is completely separated from the reaction product.

실시예 12Example 12

상기 실시예 9에서 걸러진 촉매를 이용하여 실시예 1과 동일하게 DMEC, 에틸 렌디아민, 및 n-헥산을 넣고 수소화 반응을 수행하였다. 실시예 9와 동일하게 95분 후 수소 흡수는 정지시켰으며, 반응 완료 후 생성물의 조성 분석 결과 DMVC 97.7 %, 디메틸에틸카비놀 2.3 %였다. 수 회 반응을 수행한 후의 결과를 하기 표 7에 나타내었다. 이때, 반응 시간은 모두 차이가 없었다.Using the catalyst filtered in Example 9, DMEC, ethylenediamine, and n-hexane were added in the same manner as in Example 1, and a hydrogenation reaction was performed. After 95 minutes, the hydrogen uptake was stopped in the same manner as in Example 9, and after the reaction was completed, the product was analyzed for composition of DMVC 97.7% and dimethylethylcarbinol 2.3%. The results after several reactions are shown in Table 7 below. At this time, the reaction time was not all different.

촉매 사용 횟수Number of catalysts used 선택도 (%)Selectivity (%) 00 98.198.1 1One 97.797.7 22 97.697.6 55 97.597.5 1010 97.597.5

상기 표에서 알 수 있는 바와 같이, 본 발명에서 한번 사용되어 여과된 촉매는 곧바로 다시 사용하여도 반응성이 떨어지거나, 선택도가 크게 감소하는 것은 보이지 않았다.As can be seen from the table, the catalyst once used and filtered in the present invention did not show a decrease in reactivity or a large decrease in selectivity even when used again immediately.

이상에서 살펴본 바와 같이, 아세틸렌알코올을 린들라 촉매를 사용하여 비닐알코올로 환원시키는데 있어서, 반응제어제로 디아민화합물을 사용함으로써,삼중결합이 단일결합까지 완전히 환원되는 경우를 최소화하여 선택적인 수소화반응을 수행할 수 있었다. 아울러,본 발명의 반응제어제인 디아민화합물로 인해 촉매가 영구적으로 활성도를 잃게 되는 경우가 없어, 촉매의 반복적인 사용을 가능하게 하다. 또한, 디아민들은 물에 의해 쉽게 제거할 수 있기 때문에, 제조된 비닐알코올을 이용하여 다른 유기화합물을 만들고자 할 경우, 반응제어제에 의한 영향을 피할 수 있다. 따라서, 향후 상업적으로 중요한 비닐알코올을 제조할 때 선택도를 높이며, 정량적인 수소화 반응이 가능함으로써, 고순도 및 고수율 및 경제적으로 생산할 수 있는 등 개선효과를 기대할 수 있다.As described above, in the reduction of acetylene alcohol to vinyl alcohol using a Lindla catalyst, by using a diamine compound as a reaction control agent, a selective hydrogenation reaction is performed by minimizing the case where the triple bond is completely reduced to a single bond. Could. In addition, the diamine compound, which is the reaction control agent of the present invention, does not cause the catalyst to lose activity permanently, thereby enabling the repeated use of the catalyst. In addition, since the diamines can be easily removed by water, the influence of the reaction control agent can be avoided when making other organic compounds using the prepared vinyl alcohol. Therefore, in the future, commercially important vinyl alcohol may be produced to increase selectivity and quantitative hydrogenation, thereby improving the purity and yield and economical production.

Claims (3)

용매의 존재 또는 부재하에서, 하기 화학식 1로 표시되는 아세틸렌알코올 100중량부에 대하여, 린들라 촉매 0.01∼20중량부 및 하기 화학식 2 또는 3으로 표시되는하나의 디아민계 반응제어제 0.001∼1중량부를 수소압 20기압이하, 15∼85℃에서 반응시키는 것을 특징으로 하는 아세틸렌알코올의 선택적 수소화 방법.In the presence or absence of a solvent, 0.01 to 20 parts by weight of Lindla catalyst and 0.001 to 1 part by weight of one diamine reaction control agent represented by the following Formula 2 or 3 with respect to 100 parts by weight of acetylene alcohol represented by Formula 1 below A hydrogenation method of acetylene alcohol, characterized in that the reaction at 15 to 85 ℃ at 20 atm or less. 화학식 1Formula 1
Figure 112000003257999-pat00010
Figure 112000003257999-pat00010
여기서, R1, R2 및 R3는 서로 같거나 다르게, H 또는 탄소수 1 내지 20의 알킬기이고,Here, R 1 , R 2 and R 3 are the same as or different from each other, H or an alkyl group having 1 to 20 carbon atoms, 화학식 2Formula 2
Figure 112000003257999-pat00002
Figure 112000003257999-pat00002
여기서, n은 1 내지 5의 정수이며,Where n is an integer from 1 to 5, 화학식 3Formula 3
Figure 112000003257999-pat00011
Figure 112000003257999-pat00011
여기서, R4 및 R5는 서로 같거나 다르게, H 또는 탄소수 1 내지 5의 알킬기이고, R4과 R5가 서로 연결되어 고리를 형성한 경우도 포함한다.Here, R 4 and R 5 are the same as or different from each other, H or an alkyl group having 1 to 5 carbon atoms, and includes a case where R 4 and R 5 are connected to each other to form a ring.
제1항에 있어서, 상기 용매는 극성 용매 또는 무극성 용매인 것을 특징으로 하는 방법.The method of claim 1 wherein the solvent is a polar solvent or a nonpolar solvent. 제2항에 있어서, 상기 극성 용매는 메탄올, 에탄올 및 이소프로필알코올로부터 선택되며, 상기 무극성 용매는 펜탄, 헥산, 헵탄 및 옥탄으로부터 선택됨을 특징으로 하는 방법.The method of claim 2, wherein the polar solvent is selected from methanol, ethanol and isopropyl alcohol, and the nonpolar solvent is selected from pentane, hexane, heptane and octane.
KR1020000008583A 2000-02-22 2000-02-22 Method of Selective Hydrogenation of acetylenic alcohol KR100601463B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000008583A KR100601463B1 (en) 2000-02-22 2000-02-22 Method of Selective Hydrogenation of acetylenic alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000008583A KR100601463B1 (en) 2000-02-22 2000-02-22 Method of Selective Hydrogenation of acetylenic alcohol

Publications (2)

Publication Number Publication Date
KR20010082987A KR20010082987A (en) 2001-08-31
KR100601463B1 true KR100601463B1 (en) 2006-07-14

Family

ID=19648893

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000008583A KR100601463B1 (en) 2000-02-22 2000-02-22 Method of Selective Hydrogenation of acetylenic alcohol

Country Status (1)

Country Link
KR (1) KR100601463B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949006A (en) * 1972-04-24 1976-04-06 Scm Corporation Synthesis of vitamin A, intermediates and conversion thereof to vitamin A
JPS5679627A (en) * 1979-11-30 1981-06-30 Dainippon Ink & Chem Inc Selective hydrogenation of compound having acetylenic unsaturated bond
US4587369A (en) * 1983-10-25 1986-05-06 Institut Francais Du Petrole Selectively hydrogenating acetylenic compounds in a high butadiene content C4 cut
US4798825A (en) * 1984-08-09 1989-01-17 Amoco Corporation Pyrethrum stabilization by inactivation of natural acetylenic impurities

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3949006A (en) * 1972-04-24 1976-04-06 Scm Corporation Synthesis of vitamin A, intermediates and conversion thereof to vitamin A
JPS5679627A (en) * 1979-11-30 1981-06-30 Dainippon Ink & Chem Inc Selective hydrogenation of compound having acetylenic unsaturated bond
US4587369A (en) * 1983-10-25 1986-05-06 Institut Francais Du Petrole Selectively hydrogenating acetylenic compounds in a high butadiene content C4 cut
US4798825A (en) * 1984-08-09 1989-01-17 Amoco Corporation Pyrethrum stabilization by inactivation of natural acetylenic impurities

Also Published As

Publication number Publication date
KR20010082987A (en) 2001-08-31

Similar Documents

Publication Publication Date Title
JP5230561B2 (en) Method for regenerating hydrogenation catalyst of carboxylic acid and its derivatives
US4072720A (en) Production of alcohol
US4356333A (en) Process for preparing n-octadienol
US4144191A (en) Amine-resin supported rhodium-cobalt carbonyl bimetallic clusters as novel hydroformylation catalysts
Bertrand et al. Formation of Ketones in the Oxo Synthesis
KR100601463B1 (en) Method of Selective Hydrogenation of acetylenic alcohol
Haukka et al. Catalytic activity of ruthenium 2, 2′-bipyridine derived catalysts in 1-hexene hydroformylation and 1-heptanal hydrogenation
CA1089877A (en) Ethylene glycol process
WO2005085180A1 (en) Method of amidocarbonylation reaction
CA1157047A (en) Hydroformylation of olefinically unsaturated compounds
US6258745B1 (en) Aminonitrile production
CA2029361C (en) Preparation process of indoles
CN108409775B (en) Preparation method of 1-vinyl-1, 1,3,3, 3-pentamethyldisiloxane
Giannoccaro et al. Phenylacetylene carbonylation catalysed by Pd (II) and Rh (III) intercalated in zirconium phosphates
US4197414A (en) Amine-resin supported rhodium-cobalt bimetallic clusters as novel hydroformylation catalysts
CN109651165B (en) Method for producing cyclohexylamine by aniline hydrogenation
CA2736305A1 (en) Method for the preparation of 3-methylpyridine
US6566297B2 (en) Aminonitrile production
US6710201B2 (en) Aminonitrile production
KR810001390B1 (en) Hydro formylation process
EP0342084B1 (en) Process for the preparation of methyl acetate from methyl formiate
SU932692A1 (en) Method for preparing catalyst for selective hydrogenation of acetylene compounds
US6841507B2 (en) Aminonitrile production
US6680403B1 (en) Process for hydrogenating dinitriles in aminonitriles
EP1185501B1 (en) Preparation of substituted aromatic amines

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee