KR100592527B1 - Rubber composition comprising carbon nanotubes as reinforcing agent and preparation thereof - Google Patents

Rubber composition comprising carbon nanotubes as reinforcing agent and preparation thereof Download PDF

Info

Publication number
KR100592527B1
KR100592527B1 KR1020020002686A KR20020002686A KR100592527B1 KR 100592527 B1 KR100592527 B1 KR 100592527B1 KR 1020020002686 A KR1020020002686 A KR 1020020002686A KR 20020002686 A KR20020002686 A KR 20020002686A KR 100592527 B1 KR100592527 B1 KR 100592527B1
Authority
KR
South Korea
Prior art keywords
rubber
carbon
carbon nanotubes
gnf
rubber composition
Prior art date
Application number
KR1020020002686A
Other languages
Korean (ko)
Other versions
KR20030062482A (en
Inventor
김영남
Original Assignee
(주)케이에이치 케미컬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)케이에이치 케미컬 filed Critical (주)케이에이치 케미컬
Priority to KR1020020002686A priority Critical patent/KR100592527B1/en
Priority to AU2003202820A priority patent/AU2003202820A1/en
Priority to CNA03802182XA priority patent/CN1615336A/en
Priority to PCT/KR2003/000078 priority patent/WO2003060002A1/en
Priority to EP03701911A priority patent/EP1465945A4/en
Priority to JP2003560096A priority patent/JP2005514509A/en
Publication of KR20030062482A publication Critical patent/KR20030062482A/en
Application granted granted Critical
Publication of KR100592527B1 publication Critical patent/KR100592527B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D17/00Construction details of vehicle bodies
    • B61D17/04Construction details of vehicle bodies with bodies of metal; with composite, e.g. metal and wood body structures
    • B61D17/20Communication passages between coaches; Adaptation of coach ends therefor
    • B61D17/22Communication passages between coaches; Adaptation of coach ends therefor flexible, e.g. bellows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/046Carbon nanorods, nanowires, nanoplatelets or nanofibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Abstract

본 발명은 NR(natural rubber), SBR(styrene-butadien rubber)나 BR(polybutadien rubber)과 같은 합성고무 또는 천연고무 등에 탄소나노튜브 또는 탄소나노파이버 (GNF, Graphitic Nano-Fiber)를 강화제로서 포함하는 고무 조성물 및 이의 제조방법을 제공한다. 본 발명에 따르면 탄소나노튜브 또는 GNF가 가지고 있는 물리적, 기계적 특성을 고무에 적용함으로써 카본블랙이나 실리콘을 강화제로 사용하는 기존의 고무제품보다 훨씬 더 향상된 기계, 물리, 화학적 특성을 갖는 고무제품을 제공할 수 있다. The present invention includes carbon nanotubes or carbon nanofibers (GNF, Graphitic Nano-Fiber) as a reinforcing agent, such as NR (natural rubber), styrene-butadien rubber (SBR) or polybutadien rubber (BR). Provided are rubber compositions and methods for their preparation. According to the present invention, by applying the physical and mechanical properties of carbon nanotubes or GNF to rubber, a rubber product having much improved mechanical, physical and chemical properties is provided than conventional rubber products using carbon black or silicon as a reinforcing agent. can do.

Description

탄소나노튜브를 강화제로 포함하는 고무 조성물 및 이의 제조방법 {RUBBER COMPOSITION COMPRISING CARBON NANOTUBES AS REINFORCING AGENT AND PREPARATION THEREOF}Rubber composition comprising carbon nanotubes as a reinforcing agent and a method for manufacturing the same {RUBBER COMPOSITION COMPRISING CARBON NANOTUBES AS REINFORCING AGENT AND PREPARATION THEREOF}

본 발명은 탄소나노튜브 또는 탄소나노파이버 (GNF, Graphitic Nano-Fiber)를 강화제로서 포함하는 고무 조성물 및 이의 제조방법에 관한 것이다. 더욱 구체적으로, 본 발명은 탄소나노튜브나 GNF 혹은 탄소나노튜브나 GNF와 기존에 고무의 강화제로 사용되는 카본블랙이나 실리콘이 혼합되어 있는 것을 강화제(reinforcement)로 사용하여 기존의 제품보다 기계적, 물리적, 전기적 혹은 화학적 특성이 훨씬 향상된 고무 조성물을 제조하는 방법 및 이에 따라 제조된 고무 조성물에 관한 것이다. The present invention relates to a rubber composition comprising carbon nanotubes or carbon nanofibers (GNF, Graphitic Nano-Fiber) as a reinforcing agent and a method for producing the same. More specifically, the present invention uses a mixture of carbon nanotubes or GNFs or carbon nanotubes or GNFs and carbon black or silicon, which is conventionally used as a rubber reinforcement agent, as a reinforcement agent, which is more mechanical and physical than conventional products. The present invention relates to a method for producing a rubber composition with much improved electrical or chemical properties, and to a rubber composition produced accordingly.

기존의 고무제품은 인장강도나 내구성 등을 향상시키는 강화제로 카본블랙이나 실리콘 (silane compound)을 이용하여 합성하고 있다. 그러나 카본블랙과 기본적인 구조에서 동소체인 탄소나노튜브는 강도는 카본블랙과 비교가 되지 않을 뿐만 아니라 동일한 무게일 때 강철이 지니는 인장강도의 100배에 달하는 것으로 알려져 있고, 고탄성, 고전도성 등 매우 우수한 물성을 지니고 있다. Conventional rubber products are synthesized using carbon black or silicon (silane compound) as reinforcing agents to improve tensile strength and durability. However, carbon nanotubes, the allotrope in carbon black and basic structure, are not only inferior to carbon black but also known to reach 100 times the tensile strength of steel at the same weight, and have excellent properties such as high elasticity and high conductivity. It has

탄소나노튜브는, 하나의 탄소 원자에 이웃하는 세 개의 탄소 원자가 결합되어 있으며, 이러한 탄소 원자간의 결합에 의해서 육각 환형이 이루어지고, 이들이 벌집형태로 반복된 평면이 말려 원통형 튜브를 이룬 물질이다.Carbon nanotubes are three carbon atoms adjacent to one carbon atom bonded to each other, the hexagonal ring is formed by the bond between these carbon atoms, these planes are repeated in a honeycomb form is a material forming a cylindrical tube.

이러한 탄소 나노 튜브는 직경이 수십 A 내지 수십 nm이며, 그 길이는 직경의 수 십 배에서, 수 천 배가 넘는다. 탄소 나노튜브 합성에 관한 많은 연구가 이루어 지고 있는 것은, 이와 같은 형상학 적인 특성과 화학적 결합에서 비롯되는 우수한 열적, 기계적, 전기적 특성 때문이다. 위와 같은 특성을 이용할 경우, 기존 소재로는 기술적 한계에 부딪혔던 많은 제품들을 개발해 낼 수 있을 뿐만 아니라, 이미 개발된 제품에 지금까지는 나타나지 않았던 특성을 부여할 수 있을 것으로 기대되고 있다. 특히 고분자와 복합구조(composite)를 이룰 경우 인장강도는 물론 전기적 특성 화학적 특성 등 원하는 성질을 극대화 할 수 있다. 특히 고분자의 취약한 성질인 인장강도, 탄성, 전기적 특성, 내구성 등을 향상시키는데 크게 기여할 것으로 기대된다 [Erik T. Thostenson, Zhifeng Ren, Tsu-Wei Chou, Composites Science and Technology 61(2001) 1899-1912]. Such carbon nanotubes have a diameter of several tens of A to several tens of nm, and their lengths are from tens of times to thousands of times. Much research is being done on carbon nanotube synthesis because of its morphological properties and excellent thermal, mechanical and electrical properties resulting from chemical bonding. By using the above characteristics, it is expected that not only the existing materials can develop many products that have hit technical limitations, but also give the already developed products characteristics that have not been shown so far. In particular, when forming a composite with a polymer, it is possible to maximize the desired properties such as tensile strength as well as electrical and chemical properties. In particular, it is expected to contribute greatly to improving the weak properties of polymers such as tensile strength, elasticity, electrical properties, and durability [Erik T. Thostenson, Zhifeng Ren, Tsu-Wei Chou, Composites Science and Technology 61 (2001) 1899-1912]. .

탄소나노튜브를 강화제로 사용하는 고분자 합성물로는 폴리스티렌에 무게비로 단지 1중량%의 탄소나노튜브를 첨가할 경우 인장강도(tensile stress)가 25%가량 증가하고 탄성강도 (elastic stiffness)는 36-42%로 크게 증가함을 보고하였다 [Qian D, Dickey EC, Andrews R, Rantell T. Applied Physics Letters 2000;76(20):2868-2870]. Polymer composites using carbon nanotubes as a reinforcing agent, when added to the polystyrene by weight ratio of only 1% by weight of carbon nanotubes, the tensile stress increases by 25% and the elastic stiffness is 36-42 Reported a significant increase in% (Qian D, Dickey EC, Andrews R, Rantell T. Applied Physics Letters 2000; 76 (20): 2868-2870).

R. Andrews와 Y. Chen등은 petroleum pitch fiber에 단일벽 나노튜브 (single wall nanotube)를 강화제로 사용할 수 있음을 보고하였다. 그들에 의하면 무게비로 1중량%의 탄소나노튜브가 강화제로 사용되어도 인장강도, 탄성계수, 전기전도도가 비약적으로 증가함을 입증하였고, 5중량%의 단일벽 나노튜브을 강화제로 사용하였을 경우, 90%의 인장강도의 향상과 150%의 탄성계수의 증가, 340%의 전기전도도의 증가를 보고하였다. 특히 이들은 petroleum pitch의 방향족 특성이 나노튜브의 방향족 성질과 같으므로 결합력이 우수할 것으로 예측하였다 [R. Andrews, et al., Applied Physics Letters 75(1999) 1329-1331].R. Andrews and Y. Chen have reported that single-wall nanotubes can be used as stiffeners on petroleum pitch fibers. According to them, the tensile strength, modulus of elasticity, and electrical conductivity increased dramatically even when 1% by weight of carbon nanotubes were used as reinforcing agents, and 90% when 5% by weight of single-walled nanotubes were used as reinforcing agents. The improvement of tensile strength of, the increase of elastic modulus of 150% and the increase of electrical conductivity of 340% were reported. In particular, they predicted that the aromatic properties of petroleum pitch would be the same as the aromatic properties of nanotubes. Andrews, et al., Applied Physics Letters 75 (1999) 1329-1331.

이처럼 매우 소량의 탄소나노튜브를 첨가하여 복합구조체를 합성하더라도 고분자 자체가 지니는 물성을 극대화 할 수 있지만, 위와 같은 연구결과들은 탄소나노튜브의 순도가 99%이상의 매우 고순도를 이용하여 실험하였다. 이는 고분자의 강화제(reinforcement)로 사용하는 탄소나노튜브의 순도가 낮을 경우 탄소나노튜브의 합성시 발생하는 카본블랙이 오히려 강도를 낮추는 결과를 초래하기 때문이다. 따라서 소량의 탄소나노튜브를 강화제로 첨가하더라도 고순도의 탄소나노튜브로 인해서 복합재료의 값은 비싸지게 된다. 또한 포화탄소로 이루어진 고분자의 경우 탄소나노튜브와 친화력이 떨어져서 원하는 강도를 얻는데도 한계가 있을 것으로 생각된다. Thus, even if a small amount of carbon nanotubes are added to synthesize the composite structure, the physical properties of the polymer itself can be maximized. However, the results of the above studies were conducted using a very high purity of 99% or more. This is because when the purity of the carbon nanotubes used as the reinforcement of the polymer is low, the carbon black generated during the synthesis of the carbon nanotubes results in lowering the strength. Therefore, even if a small amount of carbon nanotubes are added as a reinforcing agent, the composite material becomes expensive due to the high purity carbon nanotubes. In addition, the polymer composed of saturated carbon is considered to have a limit in obtaining the desired strength due to the low affinity with the carbon nanotubes.

그러나 고무의 경우 대개 불포화탄소로 이루어져 있어서 카본블랙이나 탄소나노튜브와 친화력이 우수할 뿐만 아니라 순도가 낮은 탄소나노튜브와 카본블랙이 혼합되어 있는 것과 합성을 하더라도 기존의 카본블랙만을 이용하는 고무보다 훨씬 인장강도와 내마모성, 내구성이 뛰어난 새로운 복합고무를 합성할 수 있다. 따라 서 비싼 값의 고순도 탄소나노튜브를 이용하지 않고 상대적으로 값이 싼 낮은 순도의 탄소나노튜브/카본블랙 혼합체를 이용하여 기존의 제품보다 강한 제품을 제조할 수 있을 것으로 기대된다. 이는 다양한 탄소나노튜브 합성법들 중 고순도의 탄소나노튜브를 합성할 수 있다고 알려진 아크 방전법, 레이저 기화법, CVD (chemical vapor deposition)법, 촉매적 합성법, 플라즈마 합성법등을 사용하지 않고, 촉매를 이용하여 기존의 카본블랙 생산 공정에서 열적으로 합성한 상대적으로 낮은 순도의 값싼 탄소나노튜브나 GNF를 이용할 수 있다는 장점이 있다. 이는 기존의 고무제품과 비교하여 생산원가를 크게 높이지 않고도 탄소나노튜브를 강화제로 사용하는 고무합성재료를 얻을 수 있다는 장점이 있다.However, rubber is usually composed of unsaturated carbon, so it has excellent affinity with carbon black or carbon nanotubes, and it is much more tensile than conventional carbon black rubber even if synthesized with a mixture of low-purity carbon nanotubes and carbon black. New composite rubbers with high strength, wear resistance and durability can be synthesized. Therefore, it is expected to produce a stronger product than conventional products by using a relatively low-cost low-purity carbon nanotube / carbon black mixture without using expensive high-purity carbon nanotubes. It uses a catalyst without using arc discharge, laser vaporization, chemical vapor deposition (CVD), catalytic synthesis, plasma synthesis, etc., which are known to synthesize high purity carbon nanotubes among various carbon nanotube synthesis methods. Therefore, it is possible to use cheap carbon nanotubes or GNF of relatively low purity that are thermally synthesized in the existing carbon black production process. This has the advantage that a rubber composite material using carbon nanotubes as a reinforcing agent can be obtained without significantly increasing the production cost as compared with conventional rubber products.

이와 같이 탄소나노튜브나 GNF를 강화제로 사용하여 합성한 고무의 복합구조재료는 기존의 고무제품이 사용되는 곳은 물론 전자파 차폐재료 등 새로운 분야에서도 다양하게 사용될 수 있을 것이다. 특히 NR (Natural Rubber), SBR (Styrene Butadien Rubber), BR (polyButadien Rubber)등과 같은 합성고무 (synthetic rubber)에 탄소나노튜브나 GNF를 강화제로 사용하면 기존의 타이어보다 인장강도의 향상, 고탄성, 내마모성 등을 유도할 수 있을 것으로 기대된다.As such, the composite material of rubber synthesized using carbon nanotubes or GNF as a reinforcing agent may be used in a variety of new fields such as electromagnetic shielding materials as well as where existing rubber products are used. In particular, when carbon nanotube or GNF is used as a reinforcing agent for synthetic rubbers such as NR (Natural Rubber), SBR (Styrene Butadien Rubber), and BR (polyButadien Rubber), the tensile strength improvement, high elasticity, and abrasion resistance are improved. It is expected to be able to induce.

본 발명자는 고무의 특정한 물성을 향상시키기 위한 보강제로서 전통적으로 사용되고 있는 카본블랙 또는 실리콘의 일정부분 혹은 전체를 탄소나노튜브 또는 GNF (Graphitic Nano-Fiber)로 대체함으로써 기존의 고무제품보다 향상된 인장강도나 전기적 특성, 내마모성, 고탄성 등의 물성이 향상된 고무를 합성할 수 있음을 발견하였으며, 아울러 고무에 탄소나노튜브 혹은 GNF의 분산도를 향상시키는 합성방법을 개발하고자 하였다. The present inventors have improved the tensile strength of rubber or carbon by using carbon nanotubes or GNF (Graphitic Nano-Fiber) to replace some or all of the carbon black or silicon, which is traditionally used as a reinforcing agent to improve specific properties of rubber. We found that rubbers with improved electrical properties, abrasion resistance, and high elasticity can be synthesized. In addition, we have developed a synthetic method to improve the dispersion of carbon nanotubes or GNF in rubbers.

따라서, 본 발명은 탄소나노튜브 또는 탄소나노파이버 (GNF)를 강화제로서 포함하는 고무 조성물을 제공한다. Accordingly, the present invention provides a rubber composition comprising carbon nanotubes or carbon nanofibers (GNF) as reinforcing agents.

본 발명에 따르면, 상기 고무 조성물은 고무복합체이거나 복합구조를 가질 수도 있다. According to the invention, the rubber composition may be a rubber composite or may have a composite structure.

본 발명에 따라 카본블랙 또는 실리콘 보강제의 전체 혹은 일정부분을 탄소나노튜브나 GNF로 대체함으로써 기존의 고무제품보다 향상된 인장강도나 전기적 특성, 내마모성, 고탄성 등의 물성이 향상된 고무 조성물이 제공된다. According to the present invention, by replacing all or a portion of the carbon black or silicon reinforcement with carbon nanotubes or GNF, a rubber composition having improved physical properties such as improved tensile strength, electrical properties, wear resistance, and high elasticity is provided.

본 발명에 있어서, 고무의 종류는 특별히 한정되지 아니하나, 예를 들면, 천연고무, 디엔계 중합체 또는 공중합체 기재의 합성고무 (예. 폴리부타디엔, 스티렌-부타디엔 고무, 폴리이소프렌고 고무 등), 니트릴고무, 실리콘 고무, 네오프렌 고무, 부틸 고무, 티오콜 (Thiokol) (폴리알킬렌술파이드), 우레탄 (폴리에스테르 및 폴리에테르) 고무, 에틸렌-프로필렌 고무, 에피클로로히드린 고무, 에피클로로히드린-에틸렌 옥사이드 고무, 클로로술포네이트화-폴리에틸렌 (Hypalon) 고무, 폴리아크릴레이트 고무, 불소 고무로 구성된 군에서 선택되는 고무 또는 이들의 혼합물을 언급할 수 있다. In the present invention, the type of rubber is not particularly limited, but for example, natural rubber, a synthetic rubber based on a diene polymer or a copolymer (eg, polybutadiene, styrene-butadiene rubber, polyisoprengo rubber, etc.), Nitrile rubber, silicone rubber, neoprene rubber, butyl rubber, Thiokol (polyalkylene sulfide), urethane (polyester and polyether) rubber, ethylene-propylene rubber, epichlorohydrin rubber, epichlorohydrin- Mention may be made of ethylene oxide rubbers, chlorosulfonated-polyethylene (Hypalon) rubbers, polyacrylate rubbers, rubbers selected from the group consisting of fluorine rubbers or mixtures thereof.

본 발명에 있어서, 탄소나노튜브 또는 탄소나노파이버의 종류도 특별히 한정되지 아니하며, 모든 종류의 단일벽 탄소나노튜브 (single wall carbon nanotube), 모든 종류의 다중벽 탄소나노튜브 (multi wall carbon nanotube), 모든 종류의 GNF, 및 이들의 혼합물 또는 화합물 등을 언급할 수 있다. 탄소나노튜브 또는 GNF의 형태에 있어서도 나선형, 일직선형, 가지모양의 형태 등 고무의 특정한 물성을 향상시키는데 요구되는 나노튜브라면 특별히 한정되지 아니한다. In the present invention, the type of carbon nanotubes or carbon nanofibers is not particularly limited, and all kinds of single wall carbon nanotubes, all kinds of multiwall carbon nanotubes, GNF of all kinds, and mixtures or compounds thereof, and the like can be mentioned. Also in the form of carbon nanotubes or GNF, it is not particularly limited as long as it is a nanotube required for improving specific physical properties of rubber such as a spiral, a straight line, and a branched shape.

또한 탄소나노튜브 또는 탄소나노파이버를 고무의 강화제로 사용 시에 특정한 물성을 향상시키거나 고무와의 친화도 등을 향상시키기 위해서 탄소나노튜브에 H, B, N, O, F, Si, P, S, Cl을 포함시키거나, 전이금속 또는 전이금속화합물, 알칼리금속 중에서 적어도 하나 이상을 포함시키거나 이들과 반응시킬 수도 있다. In addition, when carbon nanotubes or carbon nanofibers are used as rubber reinforcing agents, H, B, N, O, F, Si, P, It may contain S, Cl, or include or react with at least one of transition metals, transition metal compounds, alkali metals.

본 발명에서 사용할 수 있는 탄소나노튜브 또는 탄소나노파이버는 기존 공지의 방법으로 제조할 수 있지만, 본 출원인에 의한 한국특허출원 제2001-43659호 (출원일 2001년 7월 20일)에 기재된 탄소나노튜브 또는 탄소나노파이버의 제조방법에 따라 제조할 수 있다. Carbon nanotubes or carbon nanofibers that can be used in the present invention can be produced by a known method, but the carbon nanotubes described in Korean Patent Application No. 2001-43659 (filed July 20, 2001) by the present applicant Alternatively, the carbon nanofibers may be manufactured according to a method of manufacturing the carbon nanofibers.

본 발명의 하나의 바람직한 태양에 따르면, 고무에 탄소나노튜브 또는 탄소나노파이버 (GNF)의 더욱 균일한 분산을 위한 개선책들을 포함하는 방법도 본 발명의 범주에 포함된다. 고무 내에 탄소나노튜브 등의 첨가제의 균일한 분산은 탄소나노튜브가 갖는 특유의 향상된 물성을 고무 조성물과 같은 복합구조에 더욱 잘 발현시킬 수 있게 한다. According to one preferred aspect of the present invention, methods of including improvements for more uniform dispersion of carbon nanotubes or carbon nanofibers (GNF) in rubber are also included within the scope of the present invention. Uniform dispersion of additives, such as carbon nanotubes, in the rubber enables better expression of the unique properties of the carbon nanotubes in composite structures such as rubber compositions.

예를 들면, 계면활성제를 포함시킴으로써 탄소나노튜브나 GNF가 좀더 균일하게 고무에 분포되게 할 수 있다. Gong 등은 에폭시 수지에 탄소나노튜브를 강화제로 사용할 때 비이온계의 계면활성제를 이용하였는데, 그들에 의하면 계면활성제는 나노튜브를 고분자에 고루 분포하게 해 주며 고분자와 나노튜브간의 결합력 향상에도 도움을 준다고 보고하였다 [X. Gong, et al., Chemistry of Materials 12(2000), 1049-1052]. For example, by including a surfactant, carbon nanotubes or GNF can be more uniformly distributed in the rubber. Gong et al. Used nonionic surfactants when using carbon nanotubes as reinforcing agents in epoxy resins. According to them, surfactants distribute nanotubes evenly to polymers and help to improve the bonding force between polymers and nanotubes. Reported to give [X. Gong, et al., Chemistry of Materials 12 (2000), 1049-1052.

계면활성제의 이와 같은 역할은 탄소나노튜브나 GNF를 고무에 고루 분산시킬 때도 나타날 수 있으며, 이때 사용하는 계면활성제는 양이온계, 음이온계, 비이온계 등 탄소나노튜브나 GNF를 고무에 균일하게 분포시키고 결합력을 향상시켜서 물성을 좋게 하는 것이면 어느 것이든 특별히 한정되지는 아니한다. 따라서, 본 발명에 따르면, 계면활성제 뿐만 아니라 스테아르산 또는 지방산 등을 포함시킬 수도 있다.Such a role of the surfactant may also appear when the carbon nanotubes or GNF is evenly dispersed in the rubber, and the surfactant used is a uniform distribution of the carbon nanotubes or GNF in the rubber such as cationic, anionic or nonionic. In order to improve the bonding strength and improve the physical properties, any one is not particularly limited. Therefore, according to the present invention, stearic acid or fatty acids may be included as well as surfactants.

본 발명에 있어서, 탄소나노튜브 또는 탄소나노파이버(GNF)는 고무의 양을 기준으로 0.1-150중량%, 바람직하게는 0.2-120중량%, 더욱 바람직하게는 0.5-100중량%의 양으로 사용된다. In the present invention, carbon nanotubes or carbon nanofibers (GNF) are used in an amount of 0.1-150% by weight, preferably 0.2-120% by weight, more preferably 0.5-100% by weight, based on the amount of rubber. do.

이러한 탄소나노튜브 또는 탄소나노파이버(GNF)는 전통적으로 강화제로서 사용되는 카본블랙 또는 실리콘 합성물과의 혼합물 혹은 화합물의 형태로 사용될 수도 있다. 이때, 탄소나노튜브 또는 탄소나노파이버(GNF)의 양은 카본블랙 혹은 실리콘 합성물, 혹은 이 둘의 혼합물의 양을 기준으로 0.1-99.9중량%, 바람직하게는 0.1-99중량%, 더욱 바람직하게는 0.5-90중량%이나, 필요에 따라 50중량% 이하의 양으로도 사용할 수 있다. Such carbon nanotubes or carbon nanofibers (GNF) may be used in the form of a mixture or compound with carbon black or silicon composites traditionally used as reinforcing agents. At this time, the amount of carbon nanotubes or carbon nanofibers (GNF) is 0.1-99.9% by weight, preferably 0.1-99% by weight, more preferably 0.5, based on the amount of carbon black or silicon composite, or a mixture of the two. It can be used in an amount of -90 wt% or less than 50 wt%, if necessary.

본 발명에 있어서, NR (Natural Rubber), BR (Butadien Rubber), SBR (Styren Butadien Rubber) 등 타이어의 소재로 사용되는 합성 고무에 탄소나노튜브 를 강화제로 사용하여 합성한 고무를 타이어의 소재로 사용할 경우 많은 이점을 얻을 수 있다. 따라서, 본 발명의 하나의 변법에 따르면, 탄소나노튜브 또는 탄소나노파이버를 보강제로서 포함하는 고무 조성물을 이용한 타이어 및 타이어의 제조방법이 청구된다. In the present invention, a rubber synthesized by using carbon nanotubes as a reinforcement in synthetic rubber used as a tire material such as NR (Natural Rubber), BR (Butadien Rubber), SBR (Styren Butadien Rubber), etc. There are many benefits to this. Therefore, according to one variant of the present invention, a tire and a method for producing a tire using a rubber composition comprising carbon nanotubes or carbon nanofibers as reinforcing agents are claimed.

일반적으로, 고무의 수요 중에서 타이어의 합성에 사용되는 양이 가장 많을 뿐더러 고무에 탄소나노튜브를 강화제로 사용할 경우 기대되는 인장강도 (tensile stress)의 증가나 탄성의 증가, 내마모성의 향상 등 기존의 타이어보다 훨씬 강한 타이어를 합성할 수 있음을 실제로 발견하였다. 또한 탄소나노튜브는 탄성강도나 전기전도도가 좋을 뿐만 아니라, 더욱 적은 양으로 바라는 물성을 달성할 수 있기 때문에, 기존의 카본블랙을 강화제로 하는 고무 합성물보다 다양한 용도에 적용가능하며, 새로운 용도로 사용할 수도 있다. In general, the most demanded rubber is used in the synthesis of tires, and existing tires, such as increase in tensile stress, increase in elasticity, and wear resistance, which are expected when carbon nanotubes are used as rubber reinforcing agents. It was actually found that a much stronger tire could be synthesized. In addition, carbon nanotubes not only have good elastic strength and electrical conductivity, but also can achieve desired properties in a smaller amount. Therefore, carbon nanotubes can be applied to various applications than rubber composites using carbon black as a reinforcing agent. It may be.

[실시예]EXAMPLE

본 발명은 하기 실시예에 의해 더욱 설명되지만, 이들로 본 발명이 한정되는 것은 아니다. The present invention is further illustrated by the following examples, but the present invention is not limited thereto.

실시예 1Example 1

고무의 원료는 NR (Natural Rubber)를 사용하였고, 일반적으로 타이어에 사용되는 고무를 합성하는데 첨가되는 물질들을 사용하였다. The raw material of rubber was NR (Natural Rubber), and in general, materials used to synthesize rubber used in tires were used.

탄소나노튜브를 강화제로 사용하였을 때의 합성고무의 물성을 테스트하기 위해서 사용한 첨가제와 양은 다음과 같다. 강화제로 사용된 탄소나노튜브는 평균직경 60nm의 다중벽 탄소나노튜브이고 고무(NR)의 양을 기준으로 5중량%, 카본블랙은 45중량%, 원소 황의 함량은 2중량%, Zinc oxide는 4중량%, 가속제(accelerator)는 0.4중량% 등 일반적으로 타이어에 사용되는 고무를 합성하는데 포함되는 기본적인 조성으로 하였으며, 가황공정 (vulcanization)은 150℃에서 30분간 수행하였다. The additives and amounts used to test the properties of synthetic rubber when carbon nanotubes were used as reinforcing agents are as follows. The carbon nanotubes used as the reinforcing agent are multi-walled carbon nanotubes with an average diameter of 60 nm, based on the amount of rubber (NR), 5% by weight, 45% by weight of carbon black, 2% by weight of elemental sulfur, and 4% of zinc oxide. By weight and accelerator (accelerator) 0.4% by weight, such as a basic composition generally used to synthesize the rubber used in the tire, the vulcanization process (vulcanization) was carried out for 30 minutes at 150 ℃.

이때 얻어진 합성고무의 인장강도는 32.1Mpa이었고, stress at 300% strain은 29.7MPa이었다. 이는 탄소나노튜브를 카본블랙과 혼합하여 사용할 때가 카본블랙만을 사용할 때보다 인장강도는 약 35%, stress at 300% strain은 약 37%의 증가량을 보인다. The tensile strength of the synthetic rubber was 32.1Mpa, and the stress at 300% strain was 29.7MPa. When carbon nanotubes are mixed with carbon black, the tensile strength is increased by about 35% and the stress at 300% strain is increased by 37% than when using carbon black alone.

비교예 1Comparative Example 1

고무의 원료는 NR (Natural Rubber)를 사용하였고, 일반적으로 타이어에 사용되는 고무를 합성하는데 첨가되는 물질들을 사용하였다. The raw material of rubber was NR (Natural Rubber), and in general, materials used to synthesize rubber used in tires were used.

강화제로 사용된 카본블랙은 입자크기 32nm의 N-330을 고무 (NR)의 양을 기준으로 50중량%, 원소 황의 함량은 2중량%, Zinc oxide는 4중량%, 가속제는 0.4중량% 등, 실시예 1 의 실험조건 중에서 탄소나노튜브를 사용하지 않는 것을 제외하고는 동일한 조성으로 하였으며, 가황공정은 150℃에서 30분간 수행하였다. Carbon black used as a reinforcing agent is 50% by weight of N-330 with a particle size of 32 nm based on the amount of rubber (NR), 2% by weight of elemental sulfur, 4% by weight of zinc oxide, 0.4% by weight of accelerator, etc. In the experimental conditions of Example 1, except that the carbon nanotubes were not used, the same composition was used, and the vulcanization process was performed at 150 ° C. for 30 minutes.

이때 얻어진 합성고무의 인장강도는 23.8Mpa이었고, stress at 300% strain은 21.7MPa이었다. The tensile strength of the synthetic rubber was 23.8 Mpa and the stress at 300% strain was 21.7 MPa.

실시예 2Example 2

탄소나노튜브를 강화제로 사용하였을 때의 합성고무의 물성을 테스트하기 위해서 사용한 첨가제와 양은 다음과 같다. The additives and amounts used to test the properties of synthetic rubber when carbon nanotubes were used as reinforcing agents are as follows.

강화제로 사용된 탄소나노튜브는 평균직경 60nm의 다중벽 탄소나노튜브이고 고무(NR)의 양을 기준으로 5중량%, 실리콘은 25중량%, 원소 황의 함량은 2중량%, Zinc oxide는 4중량%, 가속제는 0.4중량% 등 하기 비교예 2의 실험조건 중에서 5중량%의 카본블랙이 탄소나노튜브로 대체된 것 이외에는 동일한 조성으로 하였으며, 가황공정은 150℃에서 30분간 수행하였다. Carbon nanotubes used as reinforcing agents are multi-walled carbon nanotubes with an average diameter of 60 nm, based on the amount of rubber (NR), 5% by weight, 25% by weight of silicon, 2% by weight of elemental sulfur, and 4% by weight of zinc oxide. %, Accelerator, 0.4% by weight, etc. except that 5% by weight of carbon black was replaced with carbon nanotubes in the experimental conditions of Comparative Example 2, and the vulcanization process was carried out for 30 minutes at 150 ℃.

이때 얻어진 합성고무의 인장강도는 29.6Mpa이었고, stress at 300% strain은 27.5MPa이었다. 이는 탄소나노튜브를 실리콘과 혼합하여 사용할 때가 실리콘을 사용할 때보다 인장강도는 약 32%, stress at 300% strain은 약 41%의 증가량을 보인다.The tensile strength of the synthetic rubber was 29.6 Mpa and the stress at 300% strain was 27.5 MPa. This results in an increase of about 32% in tensile strength and about 41% in stress at 300% strain when carbon nanotubes are mixed with silicon.

비교예 2Comparative Example 2

이번에는 강화제로 실리콘을 사용했을 때 강화제로 탄소나노튜브가 강화제로 일부 대체되었을 때의 물성변화를 관찰하였다. This time, when the silicon was used as a reinforcing agent, the physical property change was observed when the carbon nanotube was partially replaced by the reinforcing agent.

고무의 원료는 NR(Natural Rubber)를 사용하였고, 일반적으로 타이어에 사용되는 고무를 합성하는데 첨가된 물질은 다음과 같다. 강화제로 사용된 실리콘은 입자크기 20nm로 고무(NR)의 양을 기준으로 30중량%, 원소 황의 함량은 2중량%, Zinc oxide는 4중량%, 가속제는 0.4중량%등 일반적으로 타이어에 사용되는 고무를 합성하는데 포함되는 기본적인 조성으로 하였으며, 가황공정은 150℃에서 30분간 수행하였다. The raw material of rubber was NR (Natural Rubber). In general, the materials added to synthesize rubber used in tires are as follows. Silicon used as a reinforcing agent has a particle size of 20 nm, which is 30% by weight based on the amount of rubber (NR), 2% by weight of elemental sulfur, 4% by weight of zinc oxide, and 0.4% by weight of accelerator. It was a basic composition included in synthesizing the rubber, the vulcanization process was carried out at 150 ℃ 30 minutes.

이때 얻어진 합성고무의 인장강도는 22.5Mpa이었고, stress at 300% strain은 19.5MPa이었다. The tensile strength of the synthetic rubber was 22.5Mpa and the stress at 300% strain was 19.5MPa.

위의 실시예를 보면 고무의 강화제로 사용되는 카본블랙이나 실리콘을 탄소 나노튜브로 소량만을 대체해도 인장강도를 획기적으로 개선할 수 있음을 알 수 있었다.Looking at the above embodiment it can be seen that even if only a small amount of carbon nanotubes or carbon black used as a rubber reinforcing agent can significantly improve the tensile strength.

본 발명에 따르면, 고무의 강화제로 사용되는 카본블랙이나 실리콘의 일정부분 혹은 모두를 탄소나노튜브나 GNF로 대체하여 복합고무를 합성함으로써, 기존의 제품보다 인장강도는 물론 탄성력과 구조변형이나 파괴에 강한 재료를 합성할 수 있다. According to the present invention, by replacing a portion or all of the carbon black or silicon used as a rubber reinforcing agent with carbon nanotubes or GNF to synthesize a composite rubber, the tensile strength, elasticity and structural deformation or fracture than conventional products Strong materials can be synthesized.

특히 타이어에 적용할 경우 기존의 카본블랙이나 실리콘을 강화제로 사용하였을 때 보다 기계적 특성이 우수한 제품을 제조할 수 있다. Particularly, when applied to tires, products having superior mechanical properties can be manufactured when using carbon black or silicon as a reinforcing agent.

Claims (11)

탄소나노튜브 또는 탄소나노파이버(GNF)를 강화제로서 포함하는 고무 조성물.A rubber composition comprising carbon nanotubes or carbon nanofibers (GNF) as a reinforcing agent. 제 1 항에 있어서, 고무는 천연고무, 디엔계 중합체 또는 공중합체 기재의 합성고무 (예. 폴리부타디엔, 스티렌-부타디엔 고무, 폴리이소프렌고 고무 등), 니트릴고무, 실리콘 고무, 네오프렌 고무, 부틸 고무, 티오콜 (Thiokol) (폴리알킬렌술파이드), 우레탄 (폴리에스테르 및 폴리에테르) 고무, 에틸렌-프로필렌 고무, 에피클로로히드린 고무, 에피클로로히드린-에틸렌 옥사이드 고무, 클로로술포네이트화-폴리에틸렌 (Hypalon) 고무, 폴리아크릴레이트 고무, 불소 고무로 구성된 군에서 선택되는 고무 또는 이들의 혼합물인 것을 특징으로 하는 고무 조성물. The rubber of claim 1 wherein the rubber is a synthetic rubber based on natural rubber, diene-based polymer or copolymer (eg polybutadiene, styrene-butadiene rubber, polyisoprengo rubber, etc.), nitrile rubber, silicone rubber, neoprene rubber, butyl rubber , Thiokol (polyalkylene sulfide), urethane (polyester and polyether) rubber, ethylene-propylene rubber, epichlorohydrin rubber, epichlorohydrin-ethylene oxide rubber, chlorosulfonated-polyethylene ( Hypalon) rubber, polyacrylate rubber, rubber composition, characterized in that the rubber selected from the group consisting of fluorine rubber or mixtures thereof. 제 1 항에 있어서, 탄소나노튜브 또는 탄소나노파이버(GNF)는 단일벽 탄소나노튜브, 다중벽 탄소나노튜브, GNF (Graphitic Nano-Fiber), 또는 이들의 혼합물인 것을 특징으로 하는 고무 조성물.The rubber composition according to claim 1, wherein the carbon nanotubes or carbon nanofibers (GNF) are single-walled carbon nanotubes, multi-walled carbon nanotubes, GNF (Graphitic Nano-Fiber), or a mixture thereof. 제 3 항에 있어서, 탄소나노튜브 또는 탄소나노파이버(GNF)는 일직선형 (straight), 나선형 (helical), 가지모양형 (branched), 또는 이들의 혼합형태를 나타내거나 이들의 혼합물인 것을 특징으로 하는 고무 조성물. The method of claim 3, wherein the carbon nanotubes or carbon nanofibers (GNF) is a straight, helical, branched, or a mixture thereof, or a mixture thereof. Rubber composition. 제 3 및 4항에 있어서, 탄소나노튜브 또는 탄소나노파이버(GNF)는 H, B, N, O, F, Si, P, S, Cl등의 성분과 전이금속 혹은 전이금속 화합물, 알칼리 금속 중에서 적어도 하나 이상을 포함하고 있는 것임을 특징으로 하는 고무 조성물.The method according to claim 3 and 4, wherein the carbon nanotube or carbon nanofiber (GNF) is selected from components such as H, B, N, O, F, Si, P, S, Cl, transition metal or transition metal compound, and alkali metal. A rubber composition comprising at least one or more. 제 1항에 있어서, 계면활성제, 스테아르산 또는 지방산을 더 포함하는 것을 특징으로 하는 고무 조성물. The rubber composition of claim 1, further comprising a surfactant, stearic acid or a fatty acid. 제 6항에 있어서, 계면활성제는 양이온계, 음이온계, 비이온계, 또는 이들의 혼합물인 것을 특징으로 하는 고무 조성물. 7. The rubber composition according to claim 6, wherein the surfactant is cationic, anionic, nonionic, or a mixture thereof. 제 1 항에 있어서, 탄소나노튜브 또는 탄소나노파이버(GNF)는 고무의 양을 기준으로 0.1-150중량%인 것을 특징으로 하는 고무 조성물.The rubber composition according to claim 1, wherein the carbon nanotube or carbon nanofiber (GNF) is 0.1-150% by weight based on the amount of rubber. 제 1항에 있어서, 탄소나노튜브 또는 탄소나노파이버(GNF)가 카본블랙 또는 실리콘 합성물과 함께 혼합물의 형태로 사용되는 것을 특징으로 하는 고무 조성물.The rubber composition according to claim 1, wherein carbon nanotubes or carbon nanofibers (GNF) are used in the form of a mixture with carbon black or silicon composite. 제 9항에 있어서, 탄소나노튜브 또는 탄소나노파이버(GNF)의 양은 카본블랙 혹은 실리콘 합성물, 혹은 이 둘의 혼합물의 양을 기준으로 0.1-99.9중량%인 것을 특징으로 하는 고무 조성물. 10. The rubber composition according to claim 9, wherein the amount of carbon nanotubes or carbon nanofibers (GNF) is 0.1-99.9% by weight based on the amount of carbon black or silicon composite, or a mixture of the two. 제 1 항에 따른 고무 조성물을 이용한 자동차 타이어. An automobile tire using the rubber composition according to claim 1.
KR1020020002686A 2002-01-17 2002-01-17 Rubber composition comprising carbon nanotubes as reinforcing agent and preparation thereof KR100592527B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020020002686A KR100592527B1 (en) 2002-01-17 2002-01-17 Rubber composition comprising carbon nanotubes as reinforcing agent and preparation thereof
AU2003202820A AU2003202820A1 (en) 2002-01-17 2003-01-15 Rubber composition comprising carbon nanotubes as reinforcing agent and preparation thereof
CNA03802182XA CN1615336A (en) 2002-01-17 2003-01-15 Rubber composition comprising carbon nanotubes as reinforcing agent and preparation thereof
PCT/KR2003/000078 WO2003060002A1 (en) 2002-01-17 2003-01-15 Rubber composition comprising carbon nanotubes as reinforcing agent and preparation thereof
EP03701911A EP1465945A4 (en) 2002-01-17 2003-01-15 Rubber composition comprising carbon nanotubes as reinforcing agent and preparation thereof
JP2003560096A JP2005514509A (en) 2002-01-17 2003-01-15 Rubber composition containing carbon nanotube as reinforcing agent and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020002686A KR100592527B1 (en) 2002-01-17 2002-01-17 Rubber composition comprising carbon nanotubes as reinforcing agent and preparation thereof

Publications (2)

Publication Number Publication Date
KR20030062482A KR20030062482A (en) 2003-07-28
KR100592527B1 true KR100592527B1 (en) 2006-06-23

Family

ID=19718540

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020002686A KR100592527B1 (en) 2002-01-17 2002-01-17 Rubber composition comprising carbon nanotubes as reinforcing agent and preparation thereof

Country Status (6)

Country Link
EP (1) EP1465945A4 (en)
JP (1) JP2005514509A (en)
KR (1) KR100592527B1 (en)
CN (1) CN1615336A (en)
AU (1) AU2003202820A1 (en)
WO (1) WO2003060002A1 (en)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4005048B2 (en) 2003-04-09 2007-11-07 日信工業株式会社 Carbon fiber composite material and method for producing the same
JP4005058B2 (en) 2003-07-23 2007-11-07 日信工業株式会社 Carbon fiber composite material and method for producing the same, carbon fiber composite molded article and method for producing the same
JP4224407B2 (en) 2004-01-29 2009-02-12 日信工業株式会社 Method for producing composite metal material
JP4224445B2 (en) 2004-02-06 2009-02-12 日信工業株式会社 Method for producing carbon black composite material
JP4149413B2 (en) * 2004-05-21 2008-09-10 日信工業株式会社 Carbon fiber composite material and method for producing the same
JP4224428B2 (en) * 2004-05-24 2009-02-12 日信工業株式会社 Method for producing metal material, method for producing carbon fiber composite metal material
CN1328309C (en) * 2004-05-26 2007-07-25 中国科学院金属研究所 Conductive composite materials with positive temperature coefficient effect and process for making same
JP4224438B2 (en) 2004-07-16 2009-02-12 日信工業株式会社 Method for producing carbon fiber composite metal material
JP2006167710A (en) 2004-11-22 2006-06-29 Nissin Kogyo Co Ltd Method of manufacturing thin film, substrate having thin-film, electron emission material, method of manufacturing electron emission material, and electron emission device
JP2007039649A (en) * 2005-06-30 2007-02-15 Nissin Kogyo Co Ltd Composite material
KR100705783B1 (en) * 2005-10-31 2007-04-10 금호타이어 주식회사 Tire tread composition filed nanofiber
KR100705784B1 (en) * 2005-10-31 2007-04-10 금호타이어 주식회사 Tire apex composition filed carbon nanotube
KR100789402B1 (en) * 2005-11-25 2007-12-28 민영혜 Negative ion or ultrared foamy rubber
JP2008143963A (en) * 2006-12-07 2008-06-26 Nissin Kogyo Co Ltd Carbon fiber composite material
KR100827320B1 (en) * 2007-03-22 2008-05-07 금호타이어 주식회사 Belt rubber composition for tire
WO2008137262A2 (en) * 2007-05-01 2008-11-13 Dow Corning Corporation Reinforced silicone resin film
KR100833782B1 (en) * 2007-09-18 2008-05-29 금호타이어 주식회사 High thermal conductivity rubber composition
KR100915460B1 (en) * 2007-09-21 2009-09-04 금호타이어 주식회사 Bladder rubber composition comprising carbon nanofiber/carnon black nanocomposites
US20090156740A1 (en) * 2007-12-15 2009-06-18 Annette Lechtenboehmer Tire with component containing polymeric nanofiber
FR2925061B1 (en) * 2007-12-18 2010-01-15 Michelin Soc Tech RUBBER COMPOSITION, IN PARTICULAR FOR THE MANUFACTURE OF TIRES
EP2313256B1 (en) * 2008-08-08 2020-12-16 ExxonMobil Chemical Patents Inc. Graphite nanocomposites
US7923491B2 (en) 2008-08-08 2011-04-12 Exxonmobil Chemical Patents Inc. Graphite nanocomposites
US9050070B2 (en) 2008-10-31 2015-06-09 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US8721583B2 (en) 2008-10-31 2014-05-13 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US9060934B2 (en) 2008-10-31 2015-06-23 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US8725420B2 (en) 2008-10-31 2014-05-13 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US8788211B2 (en) 2008-10-31 2014-07-22 The Invention Science Fund I, Llc Method and system for comparing tissue ablation or abrasion data to data related to administration of a frozen particle composition
US8731840B2 (en) 2008-10-31 2014-05-20 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US9072688B2 (en) 2008-10-31 2015-07-07 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US9050317B2 (en) 2008-10-31 2015-06-09 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US8731841B2 (en) 2008-10-31 2014-05-20 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US8409376B2 (en) 2008-10-31 2013-04-02 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US8793075B2 (en) 2008-10-31 2014-07-29 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US20100111857A1 (en) 2008-10-31 2010-05-06 Boyden Edward S Compositions and methods for surface abrasion with frozen particles
US9072799B2 (en) 2008-10-31 2015-07-07 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US9060926B2 (en) 2008-10-31 2015-06-23 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US8551505B2 (en) 2008-10-31 2013-10-08 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US8762067B2 (en) 2008-10-31 2014-06-24 The Invention Science Fund I, Llc Methods and systems for ablation or abrasion with frozen particles and comparing tissue surface ablation or abrasion data to clinical outcome data
US8852064B2 (en) 2009-04-14 2014-10-07 Xerox Corporation Reduced feed roll wear using carbon nanotube additives in rubbers
US20110146859A1 (en) * 2009-12-21 2011-06-23 Frank Schmitz Tire with component containing carbon nanotubes
US9085678B2 (en) 2010-01-08 2015-07-21 King Abdulaziz City For Science And Technology Clean flame retardant compositions with carbon nano tube for enhancing mechanical properties for insulation of wire and cable
CA2834697A1 (en) * 2010-12-14 2012-06-21 Molecular Rebar Design Llc Improved elastomer formulations
CN103619951B (en) * 2011-07-06 2016-11-23 日本瑞翁株式会社 Compositions
US8871019B2 (en) 2011-11-01 2014-10-28 King Abdulaziz City Science And Technology Composition for construction materials manufacturing and the method of its production
KR101422829B1 (en) * 2011-12-27 2014-07-25 한국타이어 주식회사 Tread rubber composition and tire manufactured by using the same
RU2495887C1 (en) * 2012-02-27 2013-10-20 Федеральное государственное унитарное предприятие "Ивановский научно-исследовательский институт плёночных материалов и искусственной кожи технического назначения" Федеральной службы безопасности Российской Федерации (ФГУП "ИвНИИПИК" ФСБ России) Method of producing polymer/carbon nanotube composite
EA201590308A1 (en) * 2012-08-02 2015-05-29 Амрил Аг NATURAL RUBBER CONTAINING NANOCARBON
CN102775708A (en) * 2012-08-10 2012-11-14 昆山乔锐金属制品有限公司 Formula of compounded rubber
US9879131B2 (en) 2012-08-31 2018-01-30 Soucy Techno Inc. Rubber compositions and uses thereof
KR101364811B1 (en) * 2012-09-06 2014-02-20 (주)에나인더스트리 Cutting method of carbon nanotubes
US9162530B2 (en) 2013-02-14 2015-10-20 The Goodyear Tire & Rubber Company Tire with rubber tread containing precipitated silica and functionalized carbon nanotubes
US9090757B2 (en) 2013-07-15 2015-07-28 The Goodyear Tire & Rubber Company Preparation of rubber reinforced with at least one of graphene and carbon nanotubes with specialized coupling agent and tire with component
JP2016536415A (en) * 2013-08-30 2016-11-24 アムリル・アクチェンゲゼルシャフトAmril Ag Improved natural rubber composition
US9840611B2 (en) 2013-10-18 2017-12-12 Soucy Techno Inc. Rubber compositions and uses thereof
CN104672531A (en) * 2013-11-29 2015-06-03 招远市东晟橡胶制品有限公司 Anti-aging rubber for tire
CA2925929C (en) 2013-12-19 2018-12-04 Soucy Techno Inc. Rubber compositions and uses thereof
GB2530526B (en) * 2014-09-25 2017-02-08 Amril Ag Styrene-butadiene rubber (SBR)-CNT filled masterbatch
US10179479B2 (en) 2015-05-19 2019-01-15 Bridgestone Americas Tire Operations, Llc Plant oil-containing rubber compositions, tread thereof and race tires containing the tread
KR101661155B1 (en) * 2015-08-07 2016-09-29 금호타이어 주식회사 Rubber composite of tyre tread comprising carbon nano tube
CN108137870A (en) * 2015-10-22 2018-06-08 株式会社普利司通 Rubber composition and the tire by its acquisition
US11021581B2 (en) 2016-02-04 2021-06-01 Eastman Chemical Company Durable elastomeric compositions employing cyclododecasulfur as a vulcanizing agent
US10280281B2 (en) 2016-02-04 2019-05-07 Eastman Chemical Company Processes for forming vulcanizable elastomeric formulations and vulcanized elastomeric articles
US10011663B2 (en) 2016-02-04 2018-07-03 Eastman Chemical Company Vulcanizing composition containing cyclododecasulfur and improved cyclododecasulfur compound
US10000380B2 (en) 2016-03-02 2018-06-19 Eastman Chemical Company Method for the manufacture of polymeric sulfur
US11059722B2 (en) 2016-03-02 2021-07-13 Eastman Chemical Company Method for the manufacture of cyclododecasulfur
US9757983B1 (en) 2016-06-07 2017-09-12 The Goodyear Tire & Rubber Company Tire with rubber component containing reinforcement comprised of precipitated silica and functionalized graphene
CN106280736B (en) * 2016-08-24 2018-08-24 无锡宝强工业织造有限公司 A kind of chlorosulfonated polyethylene coating rubber cement and preparation method thereof
CN106626982A (en) * 2016-12-08 2017-05-10 淮安优迪亚橡胶有限公司 Fiber compound rubber
IT201600125806A1 (en) 2016-12-13 2018-06-13 Pirelli Tire for vehicle wheels
CN108299781B (en) * 2018-03-26 2020-07-17 浙江富铭工业机械有限公司 Rubber material for wear-resistant tire and preparation method thereof
CN115594887B (en) * 2022-12-13 2023-04-07 广东粤港澳大湾区黄埔材料研究院 Preparation method of modified carbon nanotube and application of modified carbon nanotube in tire tread rubber
CN115850819A (en) * 2023-02-06 2023-03-28 广东粤港澳大湾区黄埔材料研究院 Lower-layer tread rubber composition and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302970A (en) * 1999-04-19 2000-10-31 Suzuki Sogyo Co Ltd Thermally conductive silicone rubber composition, its molding product and it applied product
JP2001048508A (en) * 1999-05-27 2001-02-20 Eiji Osawa Production of nanosize truely spherical graphite
JP2001270923A (en) * 2000-01-21 2001-10-02 Mitsui Chemicals Inc Filler dispersibility improver, filler-containing resin composition, and production method therefor
JP2003089930A (en) * 2001-09-20 2003-03-28 Showa Denko Kk Fine carbon fiber mixture and composition containing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5618875A (en) * 1990-10-23 1997-04-08 Catalytic Materials Limited High performance carbon filament structures
JP2953996B2 (en) * 1995-05-31 1999-09-27 日本電気株式会社 Metal-coated carbon nanotube and method for producing the same
US6426134B1 (en) * 1998-06-30 2002-07-30 E. I. Du Pont De Nemours And Company Single-wall carbon nanotube-polymer composites
EP1054036A1 (en) * 1999-05-18 2000-11-22 Fina Research S.A. Reinforced polymers
JP4586251B2 (en) * 2000-09-22 2010-11-24 東レ株式会社 Fuel cell separator
JP3569806B2 (en) * 2001-03-15 2004-09-29 大阪瓦斯株式会社 Iron compound-encapsulated carbon composite and method for producing the same
IL142254A0 (en) * 2001-03-26 2002-03-10 Univ Ben Gurion Method for the preparation of stable suspensions of single carbon nanotubes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302970A (en) * 1999-04-19 2000-10-31 Suzuki Sogyo Co Ltd Thermally conductive silicone rubber composition, its molding product and it applied product
JP2001048508A (en) * 1999-05-27 2001-02-20 Eiji Osawa Production of nanosize truely spherical graphite
JP2001270923A (en) * 2000-01-21 2001-10-02 Mitsui Chemicals Inc Filler dispersibility improver, filler-containing resin composition, and production method therefor
JP2003089930A (en) * 2001-09-20 2003-03-28 Showa Denko Kk Fine carbon fiber mixture and composition containing the same

Also Published As

Publication number Publication date
EP1465945A4 (en) 2006-05-10
CN1615336A (en) 2005-05-11
JP2005514509A (en) 2005-05-19
AU2003202820A1 (en) 2003-07-30
WO2003060002A1 (en) 2003-07-24
EP1465945A1 (en) 2004-10-13
KR20030062482A (en) 2003-07-28

Similar Documents

Publication Publication Date Title
KR100592527B1 (en) Rubber composition comprising carbon nanotubes as reinforcing agent and preparation thereof
JP2005514509A6 (en) Rubber composition containing carbon nanotube as reinforcing agent and method for producing the same
Manchado et al. Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing
Hu et al. The fabrication and characterization of high density polyethylene composites reinforced by carbon nanotube coated carbon fibers
Fakhru’l-Razi et al. Effect of multi-wall carbon nanotubes on the mechanical properties of natural rubber
Advani Processing and properties of nanocomposites
JP5645090B2 (en) A method for producing a carbon fiber aggregate containing single-walled carbon nanotubes, and a carbon fiber aggregate containing single-walled carbon nanotubes produced by the method.
Hayashi et al. Carbon nanotubes as structural material and their application in composites
US8927641B2 (en) Thermosetting resin composition and method of producing the same
JP2012520351A (en) Improved mechanical properties of epoxies filled with functionalized carbon nanotubes
JP2007524727A (en) Elastomers reinforced with carbon nanotubes
Srivastava et al. Fatigue and fracture toughness of epoxy nanocomposites
JP2023512804A (en) Composite material system
JP2005068386A (en) Carbon fiber composite material, method for producing the same, carbon fiber composite molded article and method for producing the same molded article
Hedia et al. The influence of nanoadhesives on the tensile properties and Mode-I fracture toughness of bonded joints
Randjbaran et al. Reasons of Adding Carbon Nanotubes into Composite Systems-Review Paper.
CN112204081B (en) Method for coating fibres containing polar moieties
JP2007277475A (en) Thermoplastic resin composition and thermoplastic resin molded product
KR20130068774A (en) Cnt/pva composite fiber code for tire reinforcing belt material and air injection tire using the same
Sharma et al. Carbon nanotube composites: critical issues
Song et al. Properties of styrene-butadiene rubber nanocomposites reinforced with carbon black, carbon nanotube, graphene, graphite
Razak et al. Effect of multi-walled carbon nanotube on mechanical properties of kenaf/polypropylene composites
Mohamed et al. Studying the mechanical properties of epoxy carbon nanotubes composite
JPH0361768B2 (en)
Ganguly et al. Rubber nanocomposites based on miscellaneous nanofillers

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120612

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee