KR100586962B1 - Conductive Ag-Epoxy Resin Compositions and Multilayer Ceramic Capacitor Using the Compositions - Google Patents

Conductive Ag-Epoxy Resin Compositions and Multilayer Ceramic Capacitor Using the Compositions Download PDF

Info

Publication number
KR100586962B1
KR100586962B1 KR1020040027845A KR20040027845A KR100586962B1 KR 100586962 B1 KR100586962 B1 KR 100586962B1 KR 1020040027845 A KR1020040027845 A KR 1020040027845A KR 20040027845 A KR20040027845 A KR 20040027845A KR 100586962 B1 KR100586962 B1 KR 100586962B1
Authority
KR
South Korea
Prior art keywords
multilayer ceramic
ceramic capacitor
epoxy resin
external electrode
conductive
Prior art date
Application number
KR1020040027845A
Other languages
Korean (ko)
Other versions
KR20050102767A (en
Inventor
윤혁준
위성권
채정훈
안영규
Original Assignee
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전기주식회사 filed Critical 삼성전기주식회사
Priority to KR1020040027845A priority Critical patent/KR100586962B1/en
Publication of KR20050102767A publication Critical patent/KR20050102767A/en
Application granted granted Critical
Publication of KR100586962B1 publication Critical patent/KR100586962B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • H01G4/2325Terminals electrically connecting two or more layers of a stacked or rolled capacitor characterised by the material of the terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Abstract

본 발명은 적층 세라믹 콘덴서의 외부전극용 전도성 Ag-에폭시 수지 조성물 및 이 수지 조성물을 이용한 적층 세라믹 콘덴서에 관한 것으로서, 적층 세라믹 콘덴서의 외부전극과 도금층 사이에 적용되어 적층 세라믹 콘덴서에 높은 신뢰성을 부여하면서 적층 세라믹 콘덴서의 등가직렬저항(ESR)특성을 향상시킬 수 있는 Ag-에폭시 수지 조성물 및 이 수지 조성물을 이용한 적층 세라믹 콘덴서를 제공하고자 하는데, 그 목적이 있는 것이다.The present invention relates to a conductive Ag-epoxy resin composition for an external electrode of a multilayer ceramic capacitor and a multilayer ceramic capacitor using the resin composition, which is applied between the external electrode and the plating layer of the multilayer ceramic capacitor to impart high reliability to the multilayer ceramic capacitor. An object of the present invention is to provide an Ag-epoxy resin composition capable of improving the equivalent series resistance (ESR) characteristics of a multilayer ceramic capacitor and a multilayer ceramic capacitor using the resin composition.

본 발명은 적층 세라믹 콘덴서의 외부전극과 도금층 사이에 적용되는 적층 세라믹 콘덴서의 외부전극용 Ag-에폭시 수지(Ag-Epoxy)조성물에 있어서, 0.5㎛ (500nm) 이하의 입자크기를 갖는 전도성 나노입자그룹으로부터 선택된 1종 또는 2종 이상의 전도성 나노입자가 첨가되어 조성되는 것을 특징으로 하는 적층 세라믹 콘덴서의 외부전극용 Ag-에폭시 수지(Ag-Epoxy)조성물 및 이를 이용한 적층 세라믹 콘덴서를 그 요지로 한다.The present invention relates to an Ag-epoxy resin (Ag-Epoxy) composition for an external electrode of a multilayer ceramic capacitor applied between an external electrode and a plating layer of a multilayer ceramic capacitor, wherein the conductive nanoparticle group has a particle size of 0.5 μm (500 nm) or less. Summary of the Invention An Ag-epoxy resin composition for an external electrode of a multilayer ceramic capacitor, and a multilayer ceramic capacitor using the same, characterized in that one or two or more kinds of conductive nanoparticles selected from the composition are added.

본 발명에 의하면, 등가직렬저항(ESR)특성이 우수하고 높은 신뢰성을 갖는 적층 세라믹 콘덴서를 제공할 수 있는 효과가 있는 것이다.According to the present invention, it is possible to provide a multilayer ceramic capacitor having excellent equivalent series resistance (ESR) characteristics and high reliability.

적층, 세라믹, 콘덴서, 전도성, Ag-에폭시 수지, 등가직렬저항, 신뢰성Laminated, Ceramic, Capacitor, Conductive, Ag-Epoxy Resin, Equivalent Series Resistance, Reliability

Description

전도성 Ag-에폭시 수지 조성물 및 이를 이용한 적층 세라믹 콘덴서{Conductive Ag-Epoxy Resin Compositions and Multilayer Ceramic Capacitor Using the Compositions}Conductive Ag-Epoxy Resin Compositions and Multilayer Ceramic Capacitors Using the Same

도 1은 통상적인 적층 세라믹 콘덴서의 일례를 나타내는 개략도1 is a schematic view showing an example of a conventional multilayer ceramic capacitor

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1 . . . 유전체층 시트 2 . . . 내부전극 3 . . . 외부전극 One . . . Dielectric layer sheet 2. . . Internal electrode 3. . . External electrode

4, 5 . . . 도금층 31 . . . Ag-에폭시 수지층4, 5. . . Plating layer 31. . . Ag-epoxy resin layer

본 발명은 적층 세라믹 콘덴서의 외부전극용 Ag-에폭시 수지 조성물 및 이를 이용한 적층 세라믹 콘덴서에 관한 것으로서, 보다 상세하게는 전도성 나노입자가 함유된 적층 세라믹 콘덴서의 외부전극용 전도성 Ag-에폭시 수지 조성물 및 이 수지 조성물을 이용한 적층 세라믹 콘덴서에 관한 것이다.The present invention relates to an Ag-epoxy resin composition for an external electrode of a multilayer ceramic capacitor and a multilayer ceramic capacitor using the same, and more particularly, to a conductive Ag-epoxy resin composition for an external electrode of a multilayer ceramic capacitor containing conductive nanoparticles. It relates to a multilayer ceramic capacitor using a resin composition.

최근 전자기기가 소형경량화됨에 따라서 면실장기판이 증가하고, 거기에 실장되는 칩부품의 소형, 박층화가 요구되어 오고 있다. In recent years, as electronic devices become smaller and lighter, surface-mount substrates have increased, and miniaturization and thinning of chip components mounted thereon have been required.

칩부품의 하나인 콘덴서는 아날로그, 디지털 전자회로에 수많은 용도로 사용되어 오고 있다. Capacitors, one of the chip components, have been used for many purposes in analog and digital electronic circuits.

적층 세라믹 콘덴서(이하, "MLCC"라고도 칭함)는 면실장이 가능한 칩부품의 콘덴서로써 세라믹 재료개발이 진행되어, 우수한 고주파 특성과 높은 신뢰성 등의 장점을 보여 휴대기기를 중심으로 사용하게 되었다. The multilayer ceramic capacitor (hereinafter referred to as "MLCC") is a chip component capacitor capable of surface mounting, and ceramic material development has progressed, and has been used mainly in mobile devices because of its advantages such as excellent high frequency characteristics and high reliability.

그리고 전극재료의 Ni화, 전극적층기술의 진보에 의해 저비용(low cost), 다층화가 진행되어 콘덴서의 대용량화가 가능하게 되었다. Further, with the advance of Ni electrode material and the electrode stacking technology, low cost and multi-layering have progressed, which makes it possible to increase the capacity of the capacitor.

따라서, 적층 세라믹 콘덴서의 허용용량범위는 탄탈, 알루미나 전해콘덴서의 용량영역에 까지 미치게 되어 이러한 콘덴서와의 치환이 가능하게 되고, 향후 MLCC는 점점 사용용도가 늘어나서 그 요구가 더욱 신장될 것이 예상되는 제품이다.Therefore, the allowable capacitance range of the multilayer ceramic capacitor extends to the capacitive region of tantalum and alumina electrolytic capacitors so that it can be replaced with such capacitors. In the future, the MLCC is expected to increase its usage and increase its demand. to be.

적층 세라믹 콘덴서는 통상 도 1에 나타난 바와 같이, 유전체층 시트(1)에 내부 전극 페이스트를 사용하여 인쇄법 등에 의하여 내부전극(2)을 형성하고, 내부전극이 인쇄된 유전체층을 다수 적층한 후, 일정압력으로 압착을 실시하고 사이즈에 맞게 절단한 다음, 높은 온도에서 소성을 실시한 후, 내부전극과 연결하여 정전용량을 발휘하기 위한 외부전극(3)을 형성하고, 납땜시의 문제점을 방지하기 위하여 Ni도금층(4) 및 Sn 도금층(5)을 형성함으로써 제조된다.In the multilayer ceramic capacitor, as shown in FIG. 1, the internal electrode 2 is formed on the dielectric layer sheet 1 using an internal electrode paste by a printing method or the like, and a plurality of dielectric layers on which the internal electrodes are printed are laminated. After pressing under pressure and cutting to size, and then firing at a high temperature, the external electrode 3 is formed to connect with the internal electrode to exert capacitance, and to prevent the problem during soldering. It is manufactured by forming the plating layer 4 and the Sn plating layer 5.

상기 적층 세라믹 콘덴서의 외부전극(3)위에, 즉 외부전극(3)과 Ni도금층(4)사이에 Ag-에폭시 수지층(31)를 입혀 외부의 충격을 흡수하여 신뢰성을 향상시키고 있다.The Ag-epoxy resin layer 31 is coated on the external electrode 3 of the multilayer ceramic capacitor, that is, between the external electrode 3 and the Ni plating layer 4, thereby absorbing external shocks and improving reliability.

최근, 자동차, 의료기기 등과 같이 고신뢰성을 요구하는 분야들의 많은 기능들이 전자화되고 수요가 증가함에 따라 적층 세라믹 콘덴서, 칩인덕터 등과 같은 칩부품들에 있어서도 고 신뢰성에 대한 요구가 증대되고 있다. Recently, as many functions of fields requiring high reliability, such as automobiles and medical devices, are electronicized and demand increases, the demand for high reliability also increases in chip components such as multilayer ceramic capacitors and chip inductors.

이러한 고 신뢰성을 갖는 적층 전자부품의 일례가 미국특허 제5805409호에 제시되어 있다.An example of such a highly reliable laminated electronic component is shown in US Pat.

상기 미국특허 제5805409호에는 납을 PbO환산으로 50wt%이상 함유하는 유전체 재료를 사용한 적층 전자부품에서 도금액 침투 및 신뢰성 문제를 해결하기 위해 외부전극과 도금층사이에 두께 5~200㎛의 열경화성 수지(에폭시, 우레탄, 폴리이미드 수지 중 적어도 1종)에 전도성 입자(Ag, Ni, Cu, Pd 중 적어도 1종)를 70~95wt% 함유한 전도성 입자 함유 수지층이 형성된 적층 전자부품이 제시되어 있다.The U.S. Patent No. 5,54,095 is a thermosetting resin (epoxy) having a thickness of 5 to 200 μm between an external electrode and a plating layer to solve plating solution penetration and reliability problems in a multilayer electronic component using a dielectric material containing 50 wt% or more of lead in PbO conversion. A laminated electronic component having a conductive particle-containing resin layer containing 70 to 95 wt% of conductive particles (at least one of Ag, Ni, Cu, and Pd) in at least one of urethane and polyimide resin is provided.

즉, 상기 미국특허에서는 적층 전자부품의 외부전극층과 도금층 사이에 전도성 입자 함유 수지층을 두께 5~200㎛로 형성함으로써 크랙 발생이 방지되고, 또한 높은 신뢰성을 갖는 적층 전자부품을 제공한다.That is, the US patent provides a laminated electronic component having high reliability by preventing cracks by forming a conductive particle-containing resin layer having a thickness of 5 to 200 μm between the external electrode layer and the plating layer of the laminated electronic component.

상기한 미국특허에서와 같이, 티탄산 바륨을 유전체 재료로 사용하고 Ni을 내부전극으로 하고 Cu를 외부전극으로 사용한 적층 세라믹 콘덴서의 외부전극과 도 금층 사이에 전도성 입자 함유 수지층을 적용한 결과, 등가직렬저항(ESR)이 높아지는 문제점이 있다. As in the above-mentioned US patent, an equivalent series of conductive particle-containing resin layers were applied between the plating layer and the external electrode of the multilayer ceramic capacitor using barium titanate as the dielectric material, Ni as the internal electrode, and Cu as the external electrode. There is a problem in that the resistance ESR is increased.

본 발명은 적층 세라믹 콘덴서의 외부전극과 도금층 사이에 적용되어 적층 세라믹 콘덴서에 높은 신뢰성을 부여하면서 적층 세라믹 콘덴서의 등가직렬저항(ESR)특성을 향상시킬 수 있는 Ag-에폭시 수지(Ag-Epoxy)조성물을 제공하고자 하는데, 그 목적이 있는 것이다.
The present invention is applied between the external electrode and the plating layer of the multilayer ceramic capacitor, Ag-epoxy resin (Ag-Epoxy) composition that can improve the equivalent series resistance (ESR) characteristics of the multilayer ceramic capacitor while giving high reliability to the multilayer ceramic capacitor It is intended to provide, which is its purpose.

본 발명의 다른 목적은 나노 크기의 전도성 입자를 함유하는 전도성 Ag-에폭시 수지(Ag-Epoxy)조성물이 적층 세라믹 콘덴서의 외부전극과 도금층 사이에 적용됨으로써 등가직렬저항(ESR)특성이 우수하고 높은 신뢰성을 갖는 적층 세라믹 콘덴서를 제공하고자 하는데, 그 목적이 있는 것이다.
It is another object of the present invention that a conductive Ag-epoxy resin composition containing nano-sized conductive particles is applied between an external electrode and a plating layer of a multilayer ceramic capacitor, thereby achieving excellent equivalent series resistance (ESR) characteristics and high reliability. It is to provide a multilayer ceramic capacitor having the above object.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 적층 세라믹 콘덴서의 외부전극과 도금층 사이에 적용되고, 그리고 2∼10㎛의 입자크기를 갖는 Ag 금속분말을 함유하는 적층 세라믹 콘덴서의 외부전극용 Ag-에폭시 수지(Ag-Epoxy)조성물에 있어서, 0.5㎛ (500nm) 이하의 입자크기를 갖는 전도성 나노입자그룹으로부터 선택된 1종 또는 2종 이상의 전도성 나 노입자가 추가로 첨가되어 조성되는 것을 특징으로 하는 적층 세라믹 콘덴서의 외부전극용 Ag-에폭시 수지(Ag-Epoxy)조성물에 관한 것이다.The present invention is applied to an Ag-epoxy resin composition for an external electrode of a multilayer ceramic capacitor, which is applied between an external electrode of a multilayer ceramic capacitor and a plating layer, and contains an Ag metal powder having a particle size of 2 to 10 µm. Ag-epoxy for an external electrode of a multilayer ceramic capacitor, characterized in that one or more conductive nanoparticles selected from the group of conductive nanoparticles having a particle size of 0.5 μm (500 nm) or less are additionally added. It relates to a resin (Ag-Epoxy) composition.

또한, 본 발명은 유전체층, 내부전극, 외부전극과 도금층을 포함하고, 그리고 외부전극과 도금층사이에 2∼10㎛의 입자크기의 Ag 금속분말을 함유하는 Ag-에폭시 수지 (Ag-Epoxy)조성물로 형성된 Ag-에폭시 수지층이 위치되어 있는 적층 세라믹 콘덴서에 있어서, 상기 외부전극과 도금층사이의 수지층이 상기 Ag-에폭시 수지 (Ag-Epoxy)조성물에 0.5㎛ (500nm) 이하의 입자크기를 갖는 Ag, C, Cu 및 Ni 입자들로 이루어진 전도성 나노입자그룹으로부터 선택된 1종 또는 2종 이상의 나노입자가 상기 Ag 금속분말 중량비로 Ag: 1.0 ~ 5.0wt%, C: 0.15 ~ 0.7wt%, Cu: 0.8 ~ 3.0wt%, 및 Ni: 0.8 ~ 3.0wt%의 함량범위내에서 추가로 첨가되어 조성되는 Ag-에폭시 수지(Ag-Epoxy)조성물로 형성되는 것을 특징으로 하는 적층 세라믹 콘덴서에 관한 것이다.The present invention also provides an Ag-epoxy resin (Ag-Epoxy) composition comprising a dielectric layer, an internal electrode, an external electrode and a plating layer, and containing an Ag metal powder having a particle size of 2 to 10 µm between the external electrode and the plating layer. In the multilayer ceramic capacitor in which the formed Ag-epoxy resin layer is located, the resin layer between the external electrode and the plating layer has Ag having a particle size of 0.5 μm (500 nm) or less in the Ag-epoxy resin composition. One or two or more nanoparticles selected from the group of conductive nanoparticles consisting of C, Cu and Ni particles may contain Ag: 1.0 to 5.0 wt%, C: 0.15 to 0.7 wt%, Cu: 0.8 It relates to a multilayer ceramic capacitor, characterized in that formed by Ag-epoxy resin (Ag-Epoxy) composition further added in the content range of ~ 3.0wt%, and Ni: 0.8 ~ 3.0wt%.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명의 Ag-에폭시 수지(Ag-Epoxy)조성물은 유전체층 시트에 내부 전극 페이스트를 사용하여 인쇄법 등에 의하여 내부전극을 형성하고, 내부전극이 인쇄된 유전체층을 다수 적층한 후, 일정압력으로 압착을 실시하고 사이즈에 맞게 절단한 다음, 높은 온도에서 소성을 실시한 후, 내부전극과 연결하여 정전용량을 발휘하기 위한 외부전극을 형성하고, 납땜시의 문제점을 방지하기 위하여 도금층을 형성함으 로써 제조되는 적층 세라믹 콘덴서에 적용되는 것이다.The Ag-epoxy resin composition of the present invention forms internal electrodes by a printing method using an internal electrode paste on a dielectric layer sheet, and after stacking a large number of dielectric layers on which internal electrodes are printed, is pressed under a constant pressure. After cutting to fit the size, and then firing at a high temperature, the laminate produced by forming a plating layer in order to prevent the problem during soldering by forming an external electrode to connect with the internal electrode to exhibit the capacitance. It is applied to ceramic capacitors.

특히, 본 발명은 티탄산 바륨(BaTiO3)을 유전체의 주성분으로 하고 Ni 내부전극을 교대로 쌓은 적층 세라믹 콘덴서에 바람직하게 적용되는 것이다.In particular, the present invention is preferably applied to a multilayer ceramic capacitor in which barium titanate (BaTiO 3 ) is used as a main component of a dielectric and alternately stacked Ni internal electrodes.

본 발명의 Ag-에폭시 수지(Ag-Epoxy)조성물은 적층 세라믹 콘덴서의 외부전극과 도금층 사이에 적용되는 것으로서, 2∼10㎛의 입자크기의 Ag 금속분말을 함유하는 Ag-에폭시 수지(Ag-Epoxy)조성물에 추가로 0.5㎛ (500nm) 이하의 입자크기를 갖는 전도성 나노입자그룹으로부터 선택된 1종 또는 2종 이상의 전도성 나노입자가 첨가되어 조성되는 것이다.Ag-epoxy resin composition of the present invention is applied between the external electrode and the plating layer of the multilayer ceramic capacitor, Ag-epoxy resin containing Ag metal powder of particle size of 2 ~ 10㎛ (Ag-Epoxy) ) One or more conductive nanoparticles selected from the group of conductive nanoparticles having a particle size of 0.5 μm (500 nm) or less is added to the composition.

동일한 무게비로 첨가할 경우, 상기 나노입자의 크기가 너무 큰 경우에는 ESR(등가직렬저항)이 저하되는 문제점이 있기 때문에, 입자크기의 상한은 0.5㎛ (500nm)으로 설정하며, 바람직한 나노입자의 크기는 0.05 ∼0.5㎛이다.When added at the same weight ratio, since the ESR (equivalent series resistance) is lowered when the size of the nanoparticles is too large, the upper limit of the particle size is set to 0.5 μm (500 nm), and the preferred size of the nanoparticles Is 0.05-0.5 micrometer.

상기 Ag-에폭시 수지(Ag-Epoxy)조성물에 있어서 2∼10㎛의 입자크기 Ag금속분말의 함량은 50 ∼90중량%를 함유하는 것이 바람직하다.The Ag-epoxy resin (Ag-Epoxy) composition preferably contains 50 to 90 wt% of the particle size Ag metal powder having a particle size of 2 to 10 µm.

상기 2∼10㎛의 입자크기 Ag금속분말을 함유하는 Ag-에폭시 수지(Ag-Epoxy)조성물에 추가로 첨가되는 전도성 나노 입자의 바람직한 예로는 Ag, C, Cu 및 Ni 입자등들을 들 수 있고, 상기 나노 입자들의 바람직한 첨가량은 상기 2∼10㎛의 입자크기 Ag금속분말 중량비로 Ag: 1.0 ~ 5.0wt%, C: 0.15 ~ 0.7wt%, Cu: 0.8 ~ 3.0wt%, 및 Ni: 0.8 ~ 3.0wt%이다.Ag, C, Cu and Ni particles and the like are preferable examples of the conductive nanoparticles further added to the Ag-epoxy resin composition containing the grain size Ag metal powder of 2 to 10㎛, Preferred amounts of the nanoparticles are Ag: 1.0 to 5.0 wt%, C: 0.15 to 0.7 wt%, Cu: 0.8 to 3.0 wt%, and Ni: 0.8 to 3.0 in terms of the weight ratio of the particle size Ag metal powder of 2 to 10㎛. wt%.

상기 나노 입자들의 첨가량은 전도성 및 수지역할등의 측면에서 설정되는 것으로서, 그 첨가량이 너무 적은 경우에는 등가직렬저항 특성의 충분한 향상이 얻어질 수 없고, 너무 많은 경우에는 등가직렬저항 특성의 향상은 충분히 확보될 수 있지만, 수지량이 너무 적게 되어 충분한 완충력을 확보할 수 없어 기계적 충격 또는 열충격에 의해 크랙이 발생될 우려가 있다.The addition amount of the nanoparticles is set in terms of conductivity and water localization, and when the addition amount is too small, a sufficient improvement in the equivalent series resistance property cannot be obtained, and in the case of too much, the improvement in the equivalent series resistance property is sufficient. Although it can be secured, the amount of resin is too small to secure sufficient buffering force, and there is a fear that cracks are generated by mechanical shock or thermal shock.

상기 나노 입자들의 형상은 구형 또는 침상 또는 이들을 혼합한 형태로 이루어질 수 있다.The shape of the nanoparticles may be in the form of spheres or needles or a mixture thereof.

이하, 본 발명에 부합되는 적층 세라믹 콘덴서를 제조하는 방법의 일례에 대하여 설명한다.Hereinafter, an example of the method of manufacturing the multilayer ceramic capacitor which concerns on this invention is demonstrated.

일반적으로 적층세라믹 콘덴서를 제조하기 위하여 BaTiO3, MnO, 글리스 프릿(Glass Frit)등의 원료분말을 유기 바인더를 첨가하여 슬러리를 제조하고, 상기 슬러리를 유전체 시트로 세러믹 시트를 성형하며, 상기 세라믹 시트 표면에 Ni, Cu, Pd, Pd/Ag 소재의 금속성 내부전극을 패턴인쇄하고, 상기 내부전극이 인쇄된 세라믹 시트를 다층으로 적층하여 적층시트를 제조하며, 상기 적층시트를 500 내지 1300kgf/㎠의 압력으로 압착하고, 상기 압착된 적층시트를 소정의 길이로 절단하여 직육면체상의 세라믹 기체를 제조한 다음, 상기 세라믹 기체를 소성로에서 230 내지 350℃의 온도로 20 내지 40시간 동안 가소(burn-out)하여 바인더성분을 제거하고, 900∼950℃ 내지 1100∼1300℃의 온도로 10∼24시간 동안 소성한다.In general, in order to manufacture a multilayer ceramic capacitor, raw materials such as BaTiO 3 , MnO, and glass frit are added to an organic binder to prepare a slurry, and the slurry is formed into a dielectric sheet to form a ceramic sheet. Pattern printing of metallic internal electrodes made of Ni, Cu, Pd, and Pd / Ag on the surface of the ceramic sheet, and manufacturing a laminated sheet by laminating the ceramic sheet printed with the internal electrodes in multiple layers. The laminated sheet was 500 to 1300 kgf / After pressing at a pressure of cm 2 and cutting the compressed laminated sheet to a predetermined length to produce a cuboid ceramic base, the ceramic base was calcined in a firing furnace at a temperature of 230 to 350 ° C. for 20 to 40 hours. out) to remove the binder component and calcined at a temperature of 900 to 950 ° C to 1100 to 1300 ° C for 10 to 24 hours.

그리고 상기 소성로에서 소성된 세라믹 기체의 외부면에 외부전극을 도포하고, 이를 750내지 950℃의 온도로 30분 내지 2시간동안 소성하여 단자전극을 형성한다.In addition, an external electrode is coated on the outer surface of the ceramic substrate fired in the kiln, and then fired at a temperature of 750 to 950 ° C. for 30 minutes to 2 hours to form a terminal electrode.

본 발명의 적층 세라믹 콘덴서를 제조하기 위해서는 상기와 같이 형성되는 외부전극위에 본 발명의 전도성 Ag-에폭시 수지 조성물을 도포하고 바람직하게는 110∼250℃의 온도로 건조 및 경화하여 전도성 Ag-에폭시 수지층을 형성한다.In order to manufacture the multilayer ceramic capacitor of the present invention, the conductive Ag-epoxy resin composition of the present invention is coated on the external electrode formed as described above, and preferably, the conductive Ag-epoxy resin layer is dried and cured at a temperature of 110 to 250 ° C. To form.

상기 전도성 Ag-에폭시 수지층의 두께는 50∼300㎛의 범위로 설정하는 것이 바람직하다.It is preferable to set the thickness of the said conductive Ag-epoxy resin layer to 50-300 micrometers.

상기 전도성 Ag-에폭시 수지층의 도포방법은 특별히 한정되는 것은 아니며, 통상적으로 사용되는 방법이면 어느것이나 가능하다.The coating method of the conductive Ag-epoxy resin layer is not particularly limited, and any method can be used as long as it is a commonly used method.

다음에, 납땜시의 문제점을 방지하기 위하여 Ni, Sn 도금층을 순차적으로 실시함으로써 본 발명의 적층 세라믹 콘덴서가 제조된다. Next, in order to prevent the problem at the time of soldering, the multilayer ceramic capacitor of the present invention is manufactured by sequentially performing Ni and Sn plating layers.

즉, 본 발명의 적층 세라믹 콘덴서는 상기 외부전극과 도금층사이에, 2∼10㎛의 입자크기의 Ag 금속분말을 함유하는 Ag-에폭시 수지조성물에 추가로 0.5㎛ (500nm) 이하의 입자크기를 갖는 전도성 나노입자그룹으로부터 선택된 1종 또는 2종 이상의 나노입자가 첨가되어 조성되는 Ag-에폭시 수지(Ag-Epoxy)조성물이 수지층을 이루고 있는 것이다.That is, the multilayer ceramic capacitor of the present invention has a particle size of 0.5 μm (500 nm) or less in addition to the Ag-epoxy resin composition containing Ag metal powder having a particle size of 2 to 10 μm between the external electrode and the plating layer. Ag-epoxy resin (Ag-Epoxy) composition formed by adding one or two or more nanoparticles selected from the group of conductive nanoparticles forms a resin layer.

본 발명의 바람직한 적층 세라믹 콘덴서는 상기 외부전극과 도금층사이에, 2∼10㎛입자크기의 Ag 금속분말을 함유하는 Ag-에폭시 수지조성물에 추가로 0.5㎛ (500nm) 이하의 입자크기를 갖는 Ag, C, Cu 및 Ni 입자들로 이루어진 전도성 나노입자그룹으로부터 선택된 1종 또는 2종 이상의 나노입자가 상기 2∼10㎛의 입자크기 Ag 금속분말 중량비로 Ag: 1.0 ~ 5.0wt%, C: 0.15 ~ 0.7wt%, Cu: 0.8 ~ 3.0wt%, 및 Ni: 0.8 ~ 3.0wt%의 함량범위내에서 첨가되어 조성되는 Ag-에폭시 수지 조성물이 수지층을 이루고 있는 것이다.Preferred multilayer ceramic capacitors of the present invention include Ag having an particle size of 0.5 μm (500 nm) or less in addition to an Ag-epoxy resin composition containing Ag metal powder having a particle size of 2 to 10 μm between the external electrode and the plating layer. One or two or more nanoparticles selected from the group of conductive nanoparticles consisting of C, Cu, and Ni particles may contain Ag: 1.0 to 5.0 wt%, C: 0.15 to 0.7 in a weight ratio of 2-10 μm particle size Ag metal powder. The Ag-epoxy resin composition added and formed within the content range of wt%, Cu: 0.8 to 3.0 wt%, and Ni: 0.8 to 3.0 wt% forms a resin layer.

상기와 같이 구성되는 본 발명의 적층 세라믹 콘덴서는 높은 신뢰성 및 향상된 등가직렬저항(ESR)특성을 갖게 된다.The multilayer ceramic capacitor of the present invention configured as described above has high reliability and improved equivalent series resistance (ESR) characteristics.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예 1) (Example 1)

티탄산 바륨을 주성분으로 하는 유전체 조성물을 사용하여 유전체 시트를 성형한 다음, Ni 페이스트를 사용하여 내부 전극을 인쇄한 후 30층을 적층하고 압착 한 다음, 그린칩의 길이와 폭을 3.2mm×1.6mm로 절단한 후, 1300℃, H2-H2O-N2 분위기에서 소결하였다.After forming a dielectric sheet using a dielectric composition mainly composed of barium titanate, printing internal electrodes using Ni paste, laminating and compressing 30 layers, and then cutting the length and width of the green chip into 3.2 mm x 1.6 mm. After sintering, sintered at 1300 ° C and H 2 -H 2 ON 2 atmosphere.

다음에, 외부전극으로서 Cu를 사용하여 도포한 후 열처리를 실시하여 외부전극을 형성한 다음, 외부전극 위에 통상의 구형의 Ag금속분말 75wt%에 하기 표 1과 같은 함량 및 형상의 조건으로 나노 Ag 입자가 첨가된 전도성 Ag-에폭시 조성물을 도포하고, 150℃로 건조한 후, 200℃에서 경화시켰다.Next, after the coating using Cu as an external electrode, heat treatment was performed to form an external electrode, and then nano Ag under 75 wt% of a typical spherical Ag metal powder on the external electrode under the conditions of the content and shape shown in Table 1 below. The conductive Ag-epoxy composition to which the particles were added was applied, dried at 150 ° C. and then cured at 200 ° C.

하기 표 1의 입자형상에서 A는 구형을, B는 침상(flake)을, C는 구형:침상=5:5인 것을 나타낸다.In Table 1 below, A represents a sphere, B represents a flake, and C represents a sphere: needle = 5: 5.

다음에, Ni 및 Sn 도금을 순차적으로 실시하여 적층 세라믹 콘덴서 시편들을 제조하였다.Next, multilayer ceramic capacitor specimens were prepared by sequentially performing Ni and Sn plating.

상기와 같이 제조된 적층 세라믹 콘덴서 시편들에 대하여 비저항, 정전용량, 유전손실, 등가직렬저항(ESR) 및 열충격 사이클후 크랙발생율을 측정하고, 그 결과를 하기 표 1에 나타내었다.Specific resistance, capacitance, dielectric loss, equivalent series resistance (ESR) and crack incidence rate after thermal shock cycles of the multilayer ceramic capacitor specimens prepared as described above were measured, and the results are shown in Table 1 below.

하기 표 1의 정전용량 및 유전손실은 1kHz, 1Vrms 조건에서 측정한 것이고, 비저항 (Ω·cm)은 전도성 Ag-에폭시 수지 조성물 페이스트를 일정 모양으로 건조하고, 경화한 후, 25℃에서 DC 50V를 60초간 인가하여 측정한 것이고, ESR은 임피던스 애널라이저(impedance analyzer)를 이용하여 공진주파수에서 측정한 것이다.The capacitance and dielectric loss of Table 1 are measured at 1 kHz and 1 Vrms conditions, and the specific resistance (Ωcm) is obtained by drying the conductive Ag-epoxy resin composition paste to a certain shape, curing, and then applying DC 50V at 25 ° C. The measurement was performed for 60 seconds, and the ESR was measured at the resonance frequency using an impedance analyzer.

시편 NoPsalm No 나노Ag 입자함량(wt%)Nano Ag particle content (wt%) 입자형상Particle shape 비저항 (Ω.㎝)Resistivity (Ω.㎝) 정전용량 (㎊)Capacitance tanδ (%)tanδ (%) ESR (mΩ)ESR (mΩ) 열충격사이클후 크랙발생율Cracking Rate After Thermal Shock Cycle 1One 00 -- 3.1×10-3 3.1 × 10 -3 4710047100 0.70.7 6868 0/400/40 22 0.50.5 AA 2.1×10-3 2.1 × 10 -3 4713047130 0.70.7 6666 0/400/40 33 1One AA 6.3×10-4 6.3 × 10 -4 4706047060 0.70.7 3939 0/400/40 44 22 AA 4.8×10-4 4.8 × 10 -4 4720047200 0.70.7 3737 0/400/40 55 22 BB 6.5×10-4 6.5 × 10 -4 4726047260 0.70.7 3636 0/400/40 66 22 CC 2.5×10-4 2.5 × 10 -4 4710047100 0.70.7 3232 0/400/40 77 33 AA 3.9×10-4 3.9 × 10 -4 4701047010 0.70.7 3636 0/400/40 88 33 BB 6.4×10-4 6.4 × 10 -4 4734047340 0.70.7 3838 0/400/40 99 33 CC 2.4×10-4 2.4 × 10 -4 4722047220 0.70.7 3333 0/400/40 1010 55 AA 3.1×10-4 3.1 × 10 -4 4730047300 0.70.7 3434 0/400/40 1111 77 AA 2.7×10-4 2.7 × 10 -4 4735047350 0.70.7 3232 1/401/40 1212 1010 AA 2.6×10-4 2.6 × 10 -4 4706047060 0.70.7 3030 3/403/40

상기 표 1에 나타난 바와 같이, 나노 Ag 함량이 1∼5wt%인 경우에는 ESR값이 개선됨과 동시에 우수한 열충격 완화효과도 함께 가질 수 있음을 알 수 있다.As shown in Table 1, when the nano Ag content is 1 to 5wt%, it can be seen that the ESR value can be improved and at the same time it can have an excellent thermal shock alleviation effect.

또한, 나노입자의 형상이 구형 또는 침상인 경우보다 구형과 침상을 5대5로 혼합할 경우 ESR개선에 더 효과적임을 알 수 있다.In addition, it can be seen that when the shape of the nanoparticles are spherical or needle-like, when the spheres and needles are mixed 5 to 5, it is more effective for improving ESR.

(실시예 2)(Example 2)

Ag-에폭시 수지에 나노입자의 종류 및 함량을 하기 표 2와 같이 변화시킨 것을 제외하고는 실시예 1과 동일하게 하여 적층 세라믹 콘덴서 시편들을 제조하였다.The multilayer ceramic capacitor specimens were manufactured in the same manner as in Example 1 except that the type and content of the nanoparticles in the Ag-epoxy resin were changed as shown in Table 2 below.

그리고 나노입자의 형상은 구형 : 침상 = 5:5이었다.The nanoparticles were spherical: needle = 5: 5.

상기와 같이 제조된 적층 세라믹 콘덴서 시편들에 대하여 비저항, 정전용량, 유전손실, 등가직렬저항(ESR) 및 열충격 사이클후 크랙발생율을 측정하고, 그 결과를 하기 표 2에 나타내었다.Specific resistance, capacitance, dielectric loss, equivalent series resistance (ESR) and crack incidence after thermal shock cycles of the multilayer ceramic capacitor specimens manufactured as described above were measured, and the results are shown in Table 2 below.

이들 시편들에 대한 특성들은 실시예 1에서와 동일한 방법으로 측정한 것이다.The properties for these specimens were measured in the same way as in Example 1.

시편 NoPsalm No 나노입자 종류Nanoparticle type 함량 (wt%)Content (wt%) 비저항 (Ω.㎝)Resistivity (Ω.㎝) 정전용량 (㎊)Capacitance tanδ (%)tanδ (%) ESR (mΩ)ESR (mΩ) 열충격사이클후 크랙발생율Cracking Rate After Thermal Shock Cycle 1One CC 0.150.15 3.6×10-4 3.6 × 10 -4 4722047220 0.70.7 3737 0/400/40 22 CC 0.70.7 3.1×10-4 3.1 × 10 -4 4708047080 0.70.7 3232 0/400/40 33 NiNi 0.80.8 3.8×10-4 3.8 × 10 -4 4711047110 0.70.7 3737 0/400/40 44 NiNi 3.03.0 6.5×10-4 6.5 × 10 -4 4716047160 0.70.7 3131 0/400/40 55 CuCu 0.80.8 2.9×10-4 2.9 × 10 -4 4712047120 0.70.7 3838 0/400/40 66 CuCu 3.03.0 6.4×10-4 6.4 × 10 -4 4720047200 0.70.7 3333 0/400/40 77 -- 00 3.1×10-3 3.1 × 10 -3 4710047100 0.70.7 6868 0/400/40

상기 표 2에 나타난 바와 같이, 나노입자의 함량을 각각 C: 0.15 ~ 0.7wt%, Cu: 0.8 ~ 3.0wt%, Ni: 0.8 ~ 3.0wt%로 할 경우 ESR이 개선됨과 동시에 열충격 완화효과도 함께 얻어짐을 알 수 있다.As shown in Table 2, when the content of the nanoparticles are 0.15 ~ 0.7wt%, Cu: 0.8 ~ 3.0wt%, Ni: 0.8 ~ 3.0wt%, respectively, ESR is improved and thermal shock alleviation effects are also provided. It can be seen that.

상술한 바와 같이, 본 발명은 티탄산바륨을 유전체 재료로 하고 Ni내부전극을 교대로 쌓은 적층 세라믹 콘덴서에서 외부전극과 도금층 사이에 위치하는 Ag-에폭시 수지층에 의하여 발생하는 등가직렬저항(ESR)문제를 개선하고 또한 기계적 충 격 또는 열충격에 의한 적층 세라믹 콘덴서의 단자 전극 및 내부전극의 강도열화를 억제하여 신뢰성 향상을 꾀할 수 있는 효과가 있는 것이다.As described above, the present invention is an equivalent series resistance (ESR) problem caused by an Ag-epoxy resin layer positioned between an external electrode and a plating layer in a multilayer ceramic capacitor in which barium titanate is used as a dielectric material and Ni internal electrodes are alternately stacked. In addition, it is possible to improve the reliability by suppressing the deterioration of the strength of the terminal electrode and the internal electrode of the multilayer ceramic capacitor by mechanical shock or thermal shock.

Claims (4)

적층 세라믹 콘덴서의 외부전극과 도금층 사이에 적용되고, 그리고 2∼10㎛ 입자크기의 Ag 금속분말을 함유하는 적층 세라믹 콘덴서의 외부전극용 Ag-에폭시 수지(Ag-Epoxy)조성물에 있어서, In an Ag-epoxy resin composition for an external electrode of a multilayer ceramic capacitor, which is applied between an external electrode of a multilayer ceramic capacitor and a plating layer, and contains an Ag metal powder having a particle size of 2 to 10 µm, 0.5㎛ (500nm) 이하의 입자크기를 갖는 Ag, C, Cu 및 Ni 입자들로 이루어진 전도성 나노입자그룹으로부터 선택된 1종 또는 2종 이상의 나노입자가 상기 Ag 금속분말 중량비로 Ag: 1.0 ~ 5.0wt%, C: 0.15 ~ 0.7wt%, Cu: 0.8 ~ 3.0wt%, 및 Ni: 0.8 ~ 3.0wt%의 함량범위내에서 추가로 첨가되어 조성되는 것을 특징으로 하는 적층 세라믹 콘덴서의 외부전극용 전도성 Ag-에폭시 수지 조성물One or two or more nanoparticles selected from the group of conductive nanoparticles consisting of Ag, C, Cu, and Ni particles having a particle size of 0.5 μm (500 nm) or less are present in an Ag metal powder weight ratio of 1.0 to 5.0 wt%. , Ag: 0.15 ~ 0.7wt%, Cu: 0.8 ~ 3.0wt%, and Ni: 0.8 ~ 3.0wt% of the conductive Ag- for the external electrode of the multilayer ceramic capacitor, characterized in that the composition further added to the composition Epoxy resin composition 제1항에 있어서, 나노입자는 구형, 침상형 또는 이들의 혼합형으로 이루어져 있는 것을 특징으로 하는 적층 세라믹 콘덴서의 외부전극용 전도성 Ag-에폭시 수지 조성물The conductive Ag-epoxy resin composition for external electrodes of a multilayer ceramic capacitor according to claim 1, wherein the nanoparticles comprise a spherical shape, a needle shape, or a mixture thereof. 유전체층, 내부전극, 외부전극과 도금층을 포함하고, 그리고 외부전극과 도금층사이에 2∼10㎛의 입자크기의 Ag 금속분말을 함유하는 Ag-에폭시 수지 조성물로 형성된 Ag-에폭시 수지층이 위치되어 있는 적층 세라믹 콘덴서에 있어서, An Ag-epoxy resin layer comprising a dielectric layer, an internal electrode, an external electrode and a plating layer, and an Ag-epoxy resin composition containing an Ag metal powder having a particle size of 2 to 10 μm is located between the external electrode and the plating layer. In the multilayer ceramic capacitor, 상기 외부전극과 도금층사이의 수지층이 상기 Ag-에폭시 수지 (Ag-Epoxy)조성물에 0.5㎛ (500nm) 이하의 입자크기를 갖는 Ag, C, Cu 및 Ni 입자들로 이루어진 전도성 나노입자그룹으로부터 선택된 1종 또는 2종 이상의 나노입자가 상기 Ag 금속분말 중량비로 Ag: 1.0 ~ 5.0wt%, C: 0.15 ~ 0.7wt%, Cu: 0.8 ~ 3.0wt%, 및 Ni: 0.8 ~ 3.0wt%의 함량범위내에서 추가로 첨가되어 조성되는 Ag-에폭시 수지 조성물로 형성되는 것을 특징으로 하는 적층 세라믹 콘덴서The resin layer between the external electrode and the plating layer is selected from a group of conductive nanoparticles consisting of Ag, C, Cu and Ni particles having a particle size of 0.5 μm (500 nm) or less in the Ag-Epoxy composition. One or two or more kinds of nanoparticles in the Ag metal powder weight ratio of Ag: 1.0 to 5.0wt%, C: 0.15 to 0.7wt%, Cu: 0.8 to 3.0wt%, and Ni: 0.8 to 3.0wt% Multilayer ceramic capacitors, characterized in that formed from Ag-epoxy resin composition further added in 제3항에 있어서, 나노입자는 구형, 침상형 또는 이들의 혼합형으로 이루어져 있는 것을 특징으로 하는 적층 세라믹 콘덴서4. The multilayer ceramic capacitor according to claim 3, wherein the nanoparticles are spherical, acicular, or a mixture thereof.
KR1020040027845A 2004-04-22 2004-04-22 Conductive Ag-Epoxy Resin Compositions and Multilayer Ceramic Capacitor Using the Compositions KR100586962B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040027845A KR100586962B1 (en) 2004-04-22 2004-04-22 Conductive Ag-Epoxy Resin Compositions and Multilayer Ceramic Capacitor Using the Compositions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040027845A KR100586962B1 (en) 2004-04-22 2004-04-22 Conductive Ag-Epoxy Resin Compositions and Multilayer Ceramic Capacitor Using the Compositions

Publications (2)

Publication Number Publication Date
KR20050102767A KR20050102767A (en) 2005-10-27
KR100586962B1 true KR100586962B1 (en) 2006-06-08

Family

ID=37280856

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040027845A KR100586962B1 (en) 2004-04-22 2004-04-22 Conductive Ag-Epoxy Resin Compositions and Multilayer Ceramic Capacitor Using the Compositions

Country Status (1)

Country Link
KR (1) KR100586962B1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150037191A (en) 2013-09-30 2015-04-08 삼성전기주식회사 Multi-layered ceramic capacitor, manufacturing method thereof and board for mounting the same
KR20150049919A (en) 2013-10-31 2015-05-08 삼성전기주식회사 Fabricating method of multi-layered ceramic capacitor
KR20150058824A (en) 2013-11-21 2015-05-29 삼성전기주식회사 Multilayered ceramic electronic component and board for mounting the same
KR20150068622A (en) 2013-12-12 2015-06-22 삼성전기주식회사 Multi-layered ceramic capacitor, manufacturing method thereof and board for mounting the same
KR20150117925A (en) 2014-04-11 2015-10-21 삼성전기주식회사 Multi-layered ceramic capacitor and board having the same mounted thereon
US9208947B2 (en) 2013-09-09 2015-12-08 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and board having multilayer ceramic capacitor embedded therein
KR20160005492A (en) 2014-07-07 2016-01-15 삼성전기주식회사 Multi-layered ceramic capacitor, manufacturing method of the same and board having the same mounted thereon
US9251956B2 (en) 2012-05-04 2016-02-02 Samsung Electronics Co., Ltd. Conductive resin composition and multilayer ceramic capacitor having the same
KR20160012830A (en) 2014-07-25 2016-02-03 삼성전기주식회사 Multi-layered ceramic electronic part
US9330847B2 (en) 2014-01-27 2016-05-03 Samsung Electro-Mechanics Co., Ltd. Conductive paste for external electrodes and multilayer ceramic electronic component manufactured using the same
US9336946B2 (en) 2014-03-07 2016-05-10 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and assembly board having the same
US9343235B2 (en) 2014-04-03 2016-05-17 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and assembly board having the same
US9368278B2 (en) 2013-12-03 2016-06-14 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor, manufacturing method thereof, and board having the same mounted thereon
US9390860B2 (en) 2013-12-30 2016-07-12 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component, method of manufacturing the same, and board having the same mounted thereon
KR20160089819A (en) 2015-01-20 2016-07-28 삼성전기주식회사 Multi layered ceramic electronic component, manufacturing method thereof and circuit board for mounting the same
KR20160109858A (en) 2015-03-13 2016-09-21 삼성전기주식회사 Multi layered ceramic electronic component, manufacturing method thereof and circuit board having the same
US9514884B2 (en) 2013-11-15 2016-12-06 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and board having the same mounted thereon
KR20190094138A (en) 2019-07-30 2019-08-12 삼성전기주식회사 Multi-layered ceramic capacitor, manufacturing method thereof and board for mounting the same
KR20200049740A (en) 2014-04-11 2020-05-08 삼성전기주식회사 Multi-layered ceramic capacitor and board having the same mounted thereon

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100755654B1 (en) * 2006-06-09 2007-09-04 삼성전기주식회사 Multilayer ceramic capacitor having controlled esr
KR101053329B1 (en) 2009-07-09 2011-08-01 삼성전기주식회사 Ceramic electronic components
KR101153550B1 (en) * 2010-12-17 2012-06-11 삼성전기주식회사 Fabricating method for multi layer ceramic electronic device and multi layer ceramic electronic device using thereof
KR101912263B1 (en) 2011-10-04 2018-10-30 삼성전기 주식회사 Multilayer Ceramic Electronic Component and Manufacturing Method thereof
JP5794222B2 (en) 2012-02-03 2015-10-14 株式会社村田製作所 Ceramic electronic components
KR102004759B1 (en) 2012-06-11 2019-07-29 삼성전기주식회사 Conductive paste composition for external electrode and multi-layered ceramic electronic parts fabricated by using the same
KR101719838B1 (en) * 2012-09-06 2017-03-24 삼성전기주식회사 CONDUCTIVE RESIN COMPOSITION and MULTILAYER CERAMIC COMPONENTS HAVING THE SAME
KR102078017B1 (en) 2012-10-19 2020-02-17 삼성전기주식회사 Multi-layered ceramic electronic parts and fabricating method thereof
KR101462754B1 (en) 2013-01-24 2014-11-17 삼성전기주식회사 Multi-layered ceramic electronic parts and fabricating method thereof
KR101462769B1 (en) 2013-03-28 2014-11-20 삼성전기주식회사 Multi layered ceramic capacitor, fabricating method thereof and circuit board for mounting the same
KR102097329B1 (en) 2013-09-12 2020-04-06 삼성전기주식회사 Multi-layered ceramic capacitor, manufacturing method thereof and board for mounting the same
KR102032757B1 (en) 2014-10-06 2019-10-17 삼성전기주식회사 Conductive paste for external electrode, multi-layered ceramic electronic parts fabricated by using the same and fabricating method thereof

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9251956B2 (en) 2012-05-04 2016-02-02 Samsung Electronics Co., Ltd. Conductive resin composition and multilayer ceramic capacitor having the same
US10199133B2 (en) 2012-05-04 2019-02-05 Samsung Electro-Mechanics Co., Ltd. Conductive resin composition and multilayer ceramic capacitor having the same
US9208947B2 (en) 2013-09-09 2015-12-08 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and board having multilayer ceramic capacitor embedded therein
KR20150037191A (en) 2013-09-30 2015-04-08 삼성전기주식회사 Multi-layered ceramic capacitor, manufacturing method thereof and board for mounting the same
KR20150049919A (en) 2013-10-31 2015-05-08 삼성전기주식회사 Fabricating method of multi-layered ceramic capacitor
US9514884B2 (en) 2013-11-15 2016-12-06 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and board having the same mounted thereon
US9281120B2 (en) 2013-11-21 2016-03-08 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and board having the same mounted thereon
KR20150058824A (en) 2013-11-21 2015-05-29 삼성전기주식회사 Multilayered ceramic electronic component and board for mounting the same
US9368278B2 (en) 2013-12-03 2016-06-14 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor, manufacturing method thereof, and board having the same mounted thereon
KR20150068622A (en) 2013-12-12 2015-06-22 삼성전기주식회사 Multi-layered ceramic capacitor, manufacturing method thereof and board for mounting the same
US9390860B2 (en) 2013-12-30 2016-07-12 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component, method of manufacturing the same, and board having the same mounted thereon
US9330847B2 (en) 2014-01-27 2016-05-03 Samsung Electro-Mechanics Co., Ltd. Conductive paste for external electrodes and multilayer ceramic electronic component manufactured using the same
US9336946B2 (en) 2014-03-07 2016-05-10 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component and assembly board having the same
US9343235B2 (en) 2014-04-03 2016-05-17 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor and assembly board having the same
KR20150117925A (en) 2014-04-11 2015-10-21 삼성전기주식회사 Multi-layered ceramic capacitor and board having the same mounted thereon
KR20200049740A (en) 2014-04-11 2020-05-08 삼성전기주식회사 Multi-layered ceramic capacitor and board having the same mounted thereon
KR20160005492A (en) 2014-07-07 2016-01-15 삼성전기주식회사 Multi-layered ceramic capacitor, manufacturing method of the same and board having the same mounted thereon
US9704648B2 (en) 2014-07-07 2017-07-11 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor, manufacturing method thereof, and board having the same
KR20160012830A (en) 2014-07-25 2016-02-03 삼성전기주식회사 Multi-layered ceramic electronic part
US9412520B2 (en) 2014-07-25 2016-08-09 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component
KR20160089819A (en) 2015-01-20 2016-07-28 삼성전기주식회사 Multi layered ceramic electronic component, manufacturing method thereof and circuit board for mounting the same
US9743514B2 (en) 2015-01-20 2017-08-22 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic electronic component, method of manufacturing the same, and circuit board having the same
KR20160109858A (en) 2015-03-13 2016-09-21 삼성전기주식회사 Multi layered ceramic electronic component, manufacturing method thereof and circuit board having the same
KR20190094138A (en) 2019-07-30 2019-08-12 삼성전기주식회사 Multi-layered ceramic capacitor, manufacturing method thereof and board for mounting the same

Also Published As

Publication number Publication date
KR20050102767A (en) 2005-10-27

Similar Documents

Publication Publication Date Title
KR100586962B1 (en) Conductive Ag-Epoxy Resin Compositions and Multilayer Ceramic Capacitor Using the Compositions
US8390983B2 (en) Multilayer ceramic capacitor
US9743514B2 (en) Multilayer ceramic electronic component, method of manufacturing the same, and circuit board having the same
KR102004773B1 (en) Multilayered ceramic electronic component and board for mounting the same
US8345405B2 (en) Multilayer ceramic capacitor
KR101079546B1 (en) Multilayer ceramic capacitor
KR101771728B1 (en) Laminated ceramic electronic parts and fabricating method thereof
KR101565651B1 (en) Multi-layered ceramic capacitor and board for mounting the same
KR100930184B1 (en) Dielectric Composition and Multilayer Ceramic Capacitor Embedded Low Temperature Simultaneous Ceramic Substrate Using the Same
KR101496814B1 (en) Multilayered ceramic capacitor, the method of the same and board for mounting the same
US9424989B2 (en) Embedded multilayer ceramic electronic component and printed circuit board having the same
KR20130123848A (en) Conductive resin composition, multi layer ceramic capacitor having the same and manufacturing method thereof
JP5156805B2 (en) Multilayer ceramic capacitor
US20130002388A1 (en) Multilayered ceramic electronic component and manufacturing method thereof
KR20200049661A (en) Multi-layer ceramic electronic device
KR20110067509A (en) Paste compound for termination electrode and multilayer ceramic capacitor comprising the same and manufactuaring method thereof
KR101719838B1 (en) CONDUCTIVE RESIN COMPOSITION and MULTILAYER CERAMIC COMPONENTS HAVING THE SAME
JP2018006501A (en) Electronic component
CN103887063A (en) Multilayer ceramic electronic component
JP2018117051A (en) Multilayer ceramic capacitor
KR100755654B1 (en) Multilayer ceramic capacitor having controlled esr
JP6314466B2 (en) Multilayer ceramic electronic components
KR20210149355A (en) Electronic component and method for manufacturing the same
JP6882122B2 (en) Chip electronic components and modules
JP2021166214A (en) Multilayer ceramic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130403

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140325

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180403

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190401

Year of fee payment: 14