KR100580595B1 - Performanced-improving method of PET recycling polymer concrete to apply highly efficient nano particles - Google Patents

Performanced-improving method of PET recycling polymer concrete to apply highly efficient nano particles Download PDF

Info

Publication number
KR100580595B1
KR100580595B1 KR1020030029951A KR20030029951A KR100580595B1 KR 100580595 B1 KR100580595 B1 KR 100580595B1 KR 1020030029951 A KR1020030029951 A KR 1020030029951A KR 20030029951 A KR20030029951 A KR 20030029951A KR 100580595 B1 KR100580595 B1 KR 100580595B1
Authority
KR
South Korea
Prior art keywords
aggregate
polymer concrete
recycled
weight
unsaturated polyester
Prior art date
Application number
KR1020030029951A
Other languages
Korean (ko)
Other versions
KR20040097609A (en
Inventor
조병완
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to KR1020030029951A priority Critical patent/KR100580595B1/en
Publication of KR20040097609A publication Critical patent/KR20040097609A/en
Application granted granted Critical
Publication of KR100580595B1 publication Critical patent/KR100580595B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/18Waste materials; Refuse organic
    • C04B18/20Waste materials; Refuse organic from macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/26Carbonates
    • C04B14/28Carbonates of calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • C04B18/167Recycled materials, i.e. waste materials reused in the production of the same materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/001Waste organic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

발명은 폐 PET 재생 불포화 폴리에스테르 수지 및 재생골재를 사용한 폴리머 콘크리트 제조방법에 관한 것으로 폐 PET 재생 불포화 폴리에스테르 수지 및 폐콘크리트를 이용하여 자원의 재활용과 환경보존 및 경제적 이득을 얻기 위한 것이다.The present invention relates to a method for producing polymer concrete using waste PET regenerative unsaturated polyester resin and recycled aggregates to obtain recycling of resources, environmental conservation and economic benefits using waste PET regenerative unsaturated polyester resin and waste concrete.

이에 따른 본 발명은, 폐 PET 재생 불포화 폴리에스테르 수지 5~30 중량%, 충전재 5~30 중량%, 재생골재 40~90 중량%로 구성되는 폴리머 콘크리트 조성물을 기본으로 하여 천연굵은골재의 재생골재 치환율 0~100%로 구성할 수 있고, 천연굵은골재의 재생골재 치환율 0~100%로 구성할 수 있으며, 또한 천연잔골재의 재생골재 치환율 0~100%로 구성할 수 있으며, 천연굵은골재와 천연잔골재 모두를 치환하며 치환율을 각각 0~100%로 구성할 수 있도록 하였다. Accordingly, the present invention, the recycled aggregate replacement rate of natural coarse aggregate based on the polymer concrete composition composed of 5-30% by weight of waste PET regenerated unsaturated polyester resin, 5-30% by weight filler, 40-90% by weight recycled aggregate It can be composed of 0 ~ 100%, can be composed of 0 ~ 100% replacement rate of recycled aggregate of natural coarse aggregate, and can also be composed of 0 ~ 100% replacement rate of recycled aggregate of natural fine aggregate, natural coarse aggregate and natural fine aggregate Substituting all of them, the substitution rate was configured to be 0 to 100% each.

PET, 폴리머 콘크리트 PET, Polymer Concrete

Description

폐 피이티 재생 불포화 폴리에스테르 수지와 재생골재를 이용한 폴리머 콘크리트 조성물 및 이의 제조 방법{Performanced-improving method of PET recycling polymer concrete to apply highly efficient nano particles} Performance-improving method of PET recycling polymer concrete to apply highly efficient nano particles using waste Piti recycled unsaturated polyester resin and recycled aggregate

본 발명은 폐 PET 재생 불포화 폴리에스테르 수지 및 재생골재를 사용한 폴리머 콘크리트 제조방법에 관한 것으로 폐 PET 재생 불포화 폴리에스테르 수지 및 폐콘크리트를 이용하여 자원의 재활용과 환경보존 및 경제적 이득을 얻기 위한 것이다.The present invention relates to a method for producing polymer concrete using waste PET regenerative unsaturated polyester resin and recycled aggregates to obtain recycling of resources, environmental conservation and economic benefits using waste PET regenerative unsaturated polyester resin and waste concrete.

일반적으로 국내의 폐콘크리트의 발생량은 정확히 파악되어 있지는 않으나 연간 콘크리트 생산량 1억㎥의 약 5(%)인 500만㎥ 정도가 폐기 콘크리트로 발생된다고 추정된다. 더욱이 최근 환경파괴와 부존자원 고갈 등의 이유로 천연골재의 채취가 규제됨에 따라 골재난이 심각한 상황을 고려할 때 폐콘크리트의 건설재료로의 이용은 환경보전 및 비용 면에서 그 가치가 클 뿐만 아니라 천연골재의 채취, 선별, 유해물제거, 함수량 조절 등의 번거로운 골재 준비 작업소요 또한 줄일 수 있다.In general, the amount of waste concrete produced in Korea is not exactly known, but it is estimated that about 5 million ㎥, about 5% (%) of annual concrete output of 100 million ㎥ occurs as waste concrete. In addition, since the collection of natural aggregates is recently regulated due to environmental destruction and depletion of resources, the use of waste concrete as a construction material is not only valuable in terms of environmental conservation and cost, but also natural aggregates. Also, cumbersome aggregate preparation work such as harvesting, screening, removal of pests and water content control can be reduced.

현재 이 폐콘크리트를 활용한 재생골재를 사용하여 콘크리트 구조물에 적용하려는 사례를 많이 볼 수 있는데 이러한 재생골재의 경우 자연산 골재보다 여려가지 물리적 성상이 열악하다는 문제점을 안고 있다. 즉, 높은 흡수율, 다량의 미립분 및 불순물의 함유로 인해 아직 굳지 않은 상태에서의 현저한 슬럼프저하(slump loss)와 경화상태에서의 내구성저하 등의 문제점을 지니고 있으며, 또한 재생골재 콘크리트는 일반 콘크리트와 동일 수준의 콘시스텐시와 워커빌리티를 얻기 위해 단위수량과 잔골재율을 높여야 하기 때문에 재생골재 콘크리트는 시공성 분만 아니라 압축강도 특성을 비롯한 공학적 특성이 불리한 것으로 지적되어 왔다. 따라서 지금까지의 폐콘크리트 처리는 대지조성재, 노반재 및 아스팔트 혼합재 등의 저급용도에 한정되어 있으며 2차 제품으로의 생산은 전무한 실정이다.At present, there are many cases of applying recycled aggregates using the waste concrete to concrete structures, which have a problem in that various recycled aggregates are inferior to natural aggregates. In other words, due to the high absorption rate, containing a large amount of fines and impurities, there is a problem such as a significant slump loss in the state that is not yet hardened and a durability decrease in the hardened state. Reclaimed aggregate concrete has been pointed out to be disadvantageous in terms of engineering characteristics including compressive strength, as well as constructability, because the unit quantity and fine aggregate ratio must be increased to achieve the same level of consistency and workability. Therefore, until now, waste concrete treatment is limited to low-grade applications such as land composition, subgrade materials and asphalt mixtures, and there is no production of secondary products.

또한 종래의 폴리머 콘크리트는 기본적으로 생산비용이 커 고스란히 소비자가격에 반영되는 문제점도 제기되어 왔다.In addition, the conventional polymer concrete has been raised a problem that the production cost is basically reflected in the consumer price.

이에 본 발명자는 폐 PET를 재생한 불포화 폴리에스테르 수지를 결합재로 사용하여 재생골재 사용시 나타나는 문제점을 보완한 폴리머 콘크리트를 개발하여 생산단가를 낮추는 동시에 환경보전의 효과도 기대할 수 있는 기계적 강도가 우수한 폴리머 콘크리트의 제조방법을 제시하였다.Therefore, the present inventors developed a polymer concrete that compensates for the problems in using recycled aggregates by using an unsaturated polyester resin that recycled waste PET as a binder, thereby lowering production costs and having excellent mechanical strength. The preparation method of the present invention was presented.

본 발명의 목적은 새로운 조성의 폴리머 콘크리트 조성물을 제공하는 것이다.It is an object of the present invention to provide a polymer concrete composition of new composition.

또한 본 발명의 목적은 상기 조성물을 이용하여 저렴하고 기계적 강도가 우수한 폴리머 콘크리트 및 이의 제조방법을 제공하는 것이다.It is also an object of the present invention to provide an inexpensive and excellent mechanical strength using the composition and a method for producing the polymer concrete.

상기 목적을 달성하기 위하여, 본 발명에서는 폐 PET 재생 불포화 폴리에스테르 수지와 재생골재를 포함하는 것을 특징으로 하는 폴리머 콘크리트 조성물을 제공한다.In order to achieve the above object, the present invention provides a polymer concrete composition comprising a waste PET recycled unsaturated polyester resin and recycled aggregate.

또한 본 발명에서는 상기 폴리머 콘크리트 조성물로 제조되는 폴리머 콘크리트 및 이의 제조방법을 제공한다.In another aspect, the present invention provides a polymer concrete and a method for producing the polymer concrete composition.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에 의한 폴리머 콘크리트 조성물은 폐 PET 재생 불포화 폴리에스테르 수지와 재생골재를 포함하고 있는 것이 특징이다. 종래 폴리머 콘크리트에서는 열가소성 수지를 사용하였으나 강도 등의 기계적 특성이 불량하고 경화 수축이 발생하는 문제점이 있었다. 반면 본 발명에서는 열경화성 수지인 폐 PET 재생 불포화 폴리에스테르 수지를 사용함으로써 폴리머 콘크리트의 기계적 특성이 향상되었다. 또한 본 발명에 의한 폴리머 콘크리트 조성물은 재생골재를 사용함으로써 기존 재생골재를 이용한 시멘트 콘크리트의 여러 가지의 열악한 물리적 성상의 단점을 보완하였다.The polymer concrete composition according to the present invention is characterized in that it contains waste PET recycled unsaturated polyester resin and recycled aggregate. In the conventional polymer concrete, a thermoplastic resin was used, but mechanical properties such as strength were poor, and there was a problem in that curing shrinkage occurred. In contrast, in the present invention, mechanical properties of polymer concrete are improved by using waste PET regenerated unsaturated polyester resin, which is a thermosetting resin. In addition, the polymer concrete composition according to the present invention compensates for the disadvantages of various poor physical properties of the cement concrete by using the recycled aggregate.


구체적으로 본 발명에 의한 폴리머 콘크리트 조성물은 전체중량에 대한 폐 PET 재생 폴리 에스테르 수지 5~30중량%, 골재량 40~90중량%, 충전재 5~30중량%로 하고, 전수지량에 대한 개시제(촉매)는 0.1~5.0중량%로 구성되는 것이 바람직하다.

Specifically, the polymer concrete composition according to the present invention is 5 to 30% by weight of waste PET regenerated polyester resin, aggregate amount of 40 to 90% by weight, filler 5 to 30% by weight, and an initiator (catalyst) to the total amount of resin. Is preferably composed of 0.1 to 5.0% by weight.

양생방법은 일반적인 상온양생(20± 3℃) 및 고온양생(50~200℃에서 24시간 이상 양생)을 실시하는 것이 바람직하다.The curing method is preferably performed at room temperature curing (20 ± 3 ℃) and high temperature curing (curing for 24 hours or more at 50 ~ 200 ℃).

수지의 함량이 너무 작으면 입자간 결합력이 약해지고 이에 따른 강도의 저하가 나타날 수 있으므로 상기와 같은 조성비가 되도록 첨가하는 것이 바람직하다.If the content of the resin is too small, it is preferable to add the composition ratio as described above, since the bonding strength between particles may be weakened and the strength may be lowered accordingly.


충전재가 전혀 포함되지 않으면 상기 조성물을 사용하여 경화체를 제조할 때 강도의 발현에 문제가 될 수 있으므로 첨가하는 것이 바람직하나 전체중량에 대한 50중량%는 넘지 않도록 하며, 본 발명에 있어서는 중탄산칼슘 또는 플라이 애쉬를 사용하는 것이 바람직하며 5~30중량%를 첨가한다.

If the filler is not included at all, it may be a problem in the development of strength when preparing the cured product using the composition, but it is preferable to add it, but not more than 50% by weight based on the total weight, in the present invention calcium bicarbonate or ply It is preferable to use ash, and 5 to 30% by weight is added.

본 발명에 의한 상기 폴리머 콘크리트 조성물에서 사용된 열경화성 고분자 수지는 폐 PET 재생 불포화 폴리에스테르 수지로서 폐 PET 재생 불포화 폴리에스테르 수지란 폐 PET를 재활용하여 불포화 폴리에스테르 수지를 만든 것을 말하며, 수지의 생산에 사용되는 PET조각들은 대게 음료수병으로부터 얻어진다. 이때에 여러 종류의 특허성분이 유연성이나 강성을 부여하기 위해서 추가된다.The thermosetting polymer resin used in the polymer concrete composition according to the present invention refers to waste PET recycled unsaturated polyester resin, which is made of recycled waste PET to make unsaturated polyester resin, and used for the production of resin. PET pieces are usually obtained from drinking water bottles. At this time, various kinds of patent components are added to give flexibility or rigidity.

일반적으로 폴리머 콘크리트에는 에폭시 수지, 폴리우레탄 수지, 아크릴레이트 수지, 불포화 폴리에스테르 수지 등의 고분자 수지가 사용되고 있다. 에폭시 수지는 경화 거동을 조절하기가 용이하지 않아서 실제 콘크리트 제작에 어려움이 따르기는 하지만, 반응시 낮은 수축율과 골재와의 강한 결합력 등의 장점을 갖고 있다. 폴리우레탄은 에폭시 수지와 마찬가지로 축합 반응을 통해 결합하기 때문에 경화 반응을 조적하기가 용이하지는 않은 면이 있다. 이에 비해서 아크릴레이트 수지나 불포화 폴리에스테르 수지는 라디칼 반응을 통해서 경화가 일어나므로 용이하게 고형화를 조절할 수 있다. 특히 아크릴레이트 수지는 휘발성이 강하며 골재와의 결합력이 충분하지 않기도 하지만, 단량체로 주로 메틸 메타크릴레이트(methyl methacrylate, MMA)를 사용하므로 낮은 점성으로 인해 쉽게 골재와 섞을 수 있다는 장점이 있다. 불포화 폴리에스테르는 폴리머 콘크리트 결합제로서 가장 널리 사용되는 물질로서, 골재와의 결합력이 좋고 분자량도 큰 장점이 있다. 액상의 불포화 폴리에스테르 등의 상기 고분자 수지는 하나의 분자에 여러 개의 미반응 이중 결합을 포함하고 있으며, 이 부분이 라디칼 반응을 하면서 경화를 유도하게 된다. 또한 불포화 폴리에스테르 외에도 스티렌 단량체를 수지 내부에 희석제로 첨가하여 수지의 점성을 낮춤으로써 작업성을 향상시킬 뿐만 아니라 가교도를 조절할 수 있다.Generally, polymer resins such as epoxy resins, polyurethane resins, acrylate resins and unsaturated polyester resins are used for polymer concrete. Epoxy resin is difficult to control the hardening behavior, but it is difficult to manufacture concrete, but it has advantages such as low shrinkage rate and strong bonding strength with the aggregate. Polyurethane, like epoxy resin, is bonded through a condensation reaction, so it may not be easy to cure the curing reaction. On the other hand, since acrylate resin and unsaturated polyester resin harden | cure through a radical reaction, solidification can be adjusted easily. In particular, the acrylate resin has a strong volatility and may not have sufficient binding strength with the aggregates, but since it mainly uses methyl methacrylate (methyl methacrylate, MMA) as a monomer, there is an advantage that it can be easily mixed with the aggregates due to low viscosity. Unsaturated polyester is the most widely used material as a polymer concrete binder, and has the advantage of good binding strength and high molecular weight. The polymer resin, such as a liquid unsaturated polyester, contains a plurality of unreacted double bonds in one molecule, and this part induces curing while undergoing a radical reaction. In addition to the unsaturated polyester, styrene monomer can be added to the inside of the resin as a diluent to lower the viscosity of the resin, thereby improving workability and controlling the degree of crosslinking.

폴리머 콘크리트에서도 골재를 사용하는 것은 일반 시멘트 콘크리트와 동일하다. 그러나 친수성인 골재가 수분을 흡수하면 폴리머 콘크리트에서는 골재를 둘러싼 결합재층과 골재 표면 사이에 수막이 형성되어 결합재와 골재간의 접착력을 약화시켜 강도가 저하되므로 함수량이 0.3% 이하가 되도록 건조시킬 필요가 있다. 본 발명에 의한 상기 폴리머 콘크리트 조성물에서 재생골재는 폐콘크리트를 파쇄하여 제조하며 잔골재가 0.074~5mm, 특히 0.1 ~ 1.0mm인 것을 사용하고 굵은 골재는 5~50mm인 것을 사용한다.The use of aggregate in polymer concrete is the same as in normal cement concrete. However, when the hydrophilic aggregate absorbs moisture, in the polymer concrete, a water film is formed between the binder layer surrounding the aggregate and the aggregate surface, thereby weakening the adhesive strength between the binder and the aggregate, so that the strength is lowered. Therefore, it is necessary to dry the water content to 0.3% or less. . In the polymer concrete composition according to the present invention, the recycled aggregate is manufactured by crushing waste concrete, and the fine aggregate uses 0.074 to 5 mm, especially 0.1 to 1.0 mm, and the coarse aggregate uses 5 to 50 mm.

충전재는 단위체적당 수지의 사용량을 감소시키고 점성을 증가시켜 부착력을 크게 할 목적으로 미립 충진재를 사용한다. 점도를 감소시키기 위해서는 구형의 불활성 세립자가 유리하지만 증량이라는 점에서는 형상이 불규칙하여 비표면적이 큰 것일수록 유리하다.The filler is a particulate filler for the purpose of reducing the amount of resin used per unit volume and increasing the viscosity to increase the adhesion. In order to reduce the viscosity, spherical inert fine particles are advantageous, but in terms of increase in size, irregular shapes are more advantageous in that the specific surface area is larger.

이하 본 발명을 실시예에 의하여 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

단, 하기 실시예들은 본 발명을 예시하는 것으로 본 발명의 내용이 실시예에 의해 한정되는 것은 아니다.However, the following examples are illustrative of the present invention, and the content of the present invention is not limited by the examples.

<실시예 1~13> 폴리머 콘크리트의 제조 및 특성<Examples 1-13> Preparation and Properties of Polymer Concrete

하기 표 1,3,4와 같은 조성비의 폴리머 콘크리트 조성물을 혼합하여 폴리머 콘크리트를 제조하였다.To prepare a polymer concrete by mixing the polymer concrete composition of the composition ratio as shown in Table 1, 3, 4.

성형 몰드는 ø 7.5㎝× 15㎝ 크기와 6× 6× 24㎝ 크기의 성형몰드를 사용하였다.The molding mold used was a molding mold having a size of 7.5 cm x 15 cm and a size of 6 x 6 x 24 cm.

결합재인 폐 PET 재생 불포화 폴리에스테르 수지는 코발트계 경화촉진제가 첨가되어 있는 C사의 제품을 사용하였다.Waste PET regenerated unsaturated polyester resin as a binder was used as a product of C company to which a cobalt-based curing accelerator is added.

개시제로서는 메틸에틸케톤 퍼옥사이드(MEKPO)를 사용한다. 본 발명에 사용된 C사의 수지에는 이미 경화 촉진제가 첨가되어 있으므로, 개시제만 첨가시키면 경화 반응을 일으키게 되어있다.Methyl ethyl ketone peroxide (MEKPO) is used as an initiator. Since the hardening accelerator is already added to resin C of the company used for this invention, when only an initiator is added, hardening reaction will arise.

충전재로는 가격이 저렴하고 구입에 용이할 뿐만 아니라 큰 비표면적을 가지고 있어 폴리머 콘크리트 배합시 중량에 유리한 점을 지니고 있는 중탄산칼슘 및 플라이 애쉬(fly-ash)를 충전재로 사용한다.As a filler, it is inexpensive, easy to purchase, and has a large specific surface area, which uses calcium bicarbonate and fly-ash as a filler, which has an advantage in weight in polymer concrete blending.

각 재료는 무게로 계량하였으며 1회 계량분의 0.5%까지 읽을 수 있는 계량기를 사용하였다. 또한 배치 믹서기를 사용하여 혼합하였다. 이형제로 왁스를 사용하였고 외부진동기를 이용하여 다짐을 실시하였다.Each material was weighed and weighed up to 0.5% of the weight per batch. It was also mixed using a batch mixer. Wax was used as a release agent and compaction was performed using an external vibrator.

[표 1]TABLE 1

수지량별 폴리머 콘크리트 조성물(중량%, wt.%)Polymer concrete composition by weight (wt%, wt.%)

실시예 번호Example number 수지 (UPE)Resin (UPE) 충전재filling 골 재Aggregate 재생굵은골재Recycled coarse aggregate 재생잔골재Recycled aggregate 1One 99 99 4141 4141 22 1111 1111 3939 3939 33 1313 1313 3737 3737 44 1515 1515 3535 3535

<실험예 1> 기계적 강도 측정Experimental Example 1 Mechanical Strength Measurement


실시예 1~4에서 제작된 시험체에 대하여 강도를 측정하였다. 즉 실시예 1~4로 제작된 시험체는 수지(UPE) 9 내지 15 중량%, 충전재 9 내지 15 중량%, 재생굵은골재 35 내지 41 중량%, 재생잔골재 35 내지 41 중량%로 되는 골재를 포함한 것으로, 상온양생(20±3℃) 및 고온양생(100℃에서 24시간 이상 이상 7일 이하 양생)되었으며 일반 시멘트 콘크리트와는 달리 폴리머 콘크리트는 조강성이 우수하므로 재령 7일 강도를 측정하였다.

The intensity | strength was measured about the test body produced in Examples 1-4. In other words, the test body manufactured in Examples 1 to 4 includes aggregates including 9 to 15 wt% of resin (UPE), 9 to 15 wt% of filler, 35 to 41 wt% of regenerated coarse aggregate, and 35 to 41 wt% of regenerated fine aggregate. , Room temperature curing (20 ± 3 ℃) and high temperature curing (curing over 24 hours at 100 ℃ for more than 7 days). Unlike general cement concrete, polymer concrete has good roughness and therefore strength was measured for 7 days.

압축시험은 각각 5개의 시험체를 UTM(압축시험기)에서 재하속도가 매초 2.5kgf/㎠가 되도록 하중을 가하여 파괴시 하중을 측정하였고 그 크기를 시험체 단면적으로 나누어 압축강도를 산출 및 평균하였다. 휨인장강도 역시 인장시험기를 사용하여 직접인장시험을 실시하여 압축강도와 같은 방법으로 휨인장강도를 산출하였다.In the compression test, five specimens were loaded in a UTM (compression tester) so that the loading speed was 2.5kgf / cm2 per second, and the load at break was measured. The size was divided by the cross section of the specimen to calculate and average the compressive strength. The flexural tensile strength was also obtained by direct tension test using a tensile tester to calculate the flexural tensile strength in the same way as the compressive strength.

그 결과를 하기 표 2에 나타내었다.The results are shown in Table 2 below.

[표2][Table 2]

기계적 강도Mechanical strength

실시예 번호Example number 압축강도(kgf/㎠)Compressive strength (kgf / ㎠) 휨인장강도(kgf/㎠)Flexural tensile strength (kgf / ㎠) 상온양생(20±3℃)Room temperature curing (20 ± 3 ℃) 고온양생(100℃)High Temperature Curing (100 ℃) 상온양생(20±3℃)Room temperature curing (20 ± 3 ℃) 고온양생(100℃)High Temperature Curing (100 ℃) 1One 713713 761761 285285 295295 22 756756 832832 306306 317317 33 768768 844844 313313 325325 44 779779 856856 316316 328328


상기 실시예에서 알 수 있듯이 수지량이 늘어남에 따라 강도가 증가하였다. 그러나 수지량 11중량% 이상이 되면 압축 강도의 증가량이 둔화되어 비용을 고려할 때 수지량 11중량%를 배합비로 하는 것이 가장 바람직하다 하겠다. 따라서 이하 실시예는 수지함량 11 중량%를 제시하였다.

As can be seen in the above examples, the strength increased as the amount of resin increased. However, when the amount of the resin is 11% by weight or more, the increase in the compressive strength is slowed down, and it is most preferable to use the amount of the resin in the amount of 11% by weight in consideration of the cost. Thus, the following example presents a resin content of 11% by weight.

[표3]Table 3

굵은골재대체 중량별 폴리머 콘크리트 조성물(중량%)
실시예번호 수지 (UPE) 충전재 골 재 굵은골재(39 중량%) 잔골재(39 중량%) 천연골재 (NC) 재생골재 (GC) 천연골재 (NF) 재생골재 (GF) 5 11 중량% 11 중량% 100% 0% 100% 0% 6 11 중량% 11 중량% 70% 30% 100% 0% 7 11 중량% 11 중량% 50% 50% 100% 0% 8 11 중량% 11 중량% 30% 70% 100% 0% 9 11 중량% 11 중량% 0% 100% 100% 0% 비고 각 재료의 배합량은 전체 중량에 대한 비(중량%)이다. 수지함유량은 개시제와 촉진제가 수지중량대비 각각 1중량%씩 포함된 것이다.
Polymer concrete composition by weight of coarse aggregate (% by weight)
Example Number Resin (UPE) filling Aggregate Coarse aggregate (39% by weight) Fine Aggregate (39% by weight) Natural Aggregate (NC) Recycled Aggregate (GC) Natural Aggregate (NF) Recycled Aggregate (GF) 5 11 wt% 11 wt% 100% 0% 100% 0% 6 11 wt% 11 wt% 70% 30% 100% 0% 7 11 wt% 11 wt% 50% 50% 100% 0% 8 11 wt% 11 wt% 30% 70% 100% 0% 9 11 wt% 11 wt% 0% 100% 100% 0% Remarks The compounding quantity of each material is the ratio (weight%) with respect to the total weight. The resin content is that the initiator and the accelerator are included by 1% by weight relative to the weight of the resin, respectively.

실시예번호Example Number 수지 (UPE)Resin (UPE) 충전재filling 골 재Aggregate 굵은골재(39%)Coarse aggregate (39%) 잔골재(39%)Fine Aggregate (39%) 천연골재 (NC)Natural Aggregate (NC) 재생골재 (GC)Recycled Aggregate (GC) 천연골재 (NF)Natural Aggregate (NF) 재생골재 (GF)Recycled Aggregate (GF) 55 11%11% 11%11% 100100 00 100100 00 66 11%11% 11%11% 7070 3030 100100 00 77 11%11% 11%11% 5050 5050 100100 00 88 11%11% 11%11% 3030 7070 100100 00 99 11%11% 11%11% 00 100100 100100 00 비고Remarks 각 재료의 배합량은 전체 중량에 대한 비이다. 수지함유량은 개시제와 촉진제가 수지중량대비 각각 1%씩 포함된 것이다.The compounding quantity of each material is a ratio with respect to the total weight. The resin content is that the initiator and the accelerator are included by 1% by weight of the resin, respectively.

[표4]Table 4

잔골재대체 중량별 폴리머 콘크리트 조성물(중량%)
실시예번호 수지 (UPE) 충전재 골 재 굵은골재(39 중량%) 잔골재(39 중량%) 천연골재 (NC) 재생골재 (GC) 천연골재 (NF) 재생골재 (GF) 10 11 중량% 11 중량% 100% 0% 70% 30% 11 11 중량% 11 중량% 100% 0% 50% 50% 12 11 중량% 11 중량% 100% 0% 30% 70% 13 11 중량% 11 중량% 100% 0% 0% 100% 비고 각 재료의 배합량은 전체 중량에 대한 비(중량%)이다. 수지함유량은 개시제와 촉진제가 수지중량대비 각각 1중량%씩 포함된 것이다.
Polymer concrete composition (wt%) by weight of fine aggregate
Example Number Resin (UPE) filling Aggregate Coarse aggregate (39% by weight) Fine Aggregate (39% by weight) Natural Aggregate (NC) Recycled Aggregate (GC) Natural Aggregate (NF) Recycled Aggregate (GF) 10 11 wt% 11 wt% 100% 0% 70% 30% 11 11 wt% 11 wt% 100% 0% 50% 50% 12 11 wt% 11 wt% 100% 0% 30% 70% 13 11 wt% 11 wt% 100% 0% 0% 100% Remarks The compounding quantity of each material is the ratio (weight%) with respect to the total weight. The resin content is that the initiator and the accelerator are included by 1% by weight relative to the weight of the resin, respectively.

실시예번호Example Number 수지 (UPE)Resin (UPE) 충전재filling 골 재Aggregate 굵은골재(39%)Coarse aggregate (39%) 잔골재(39%)Fine Aggregate (39%) 천연골재 (NC)Natural Aggregate (NC) 재생골재 (GC)Recycled Aggregate (GC) 천연골재 (NF)Natural Aggregate (NF) 재생골재 (GF)Recycled Aggregate (GF) 1010 11%11% 11%11% 100100 00 7070 3030 1111 11%11% 11%11% 100100 00 5050 5050 1212 11%11% 11%11% 100100 00 3030 7070 1313 11%11% 11%11% 100100 00 00 100100 비고Remarks 각 재료의 배합량은 전체 중량에 대한 비이다. 수지함유량은 개시제와 촉진제가 수지중량대비 각각 1%씩 포함된 것이다.The compounding quantity of each material is a ratio with respect to the total weight. The resin content is that the initiator and the accelerator are included by 1% by weight of the resin, respectively.

<실험예 2> 기계적 강도 측정Experimental Example 2 Mechanical Strength Measurement


실시예 5~13에서 제작된 시험체에 대하여 강도를 측정하였다. 즉 실시예 5 내지 13에서는 수지(UPE)의 함량은 11 중량%로 하고, 충전재의 함량은 11중량%로 한 것이다. 특히 실시예 5 내지 9에 대한 표 3에서 골재는 각각 천연골재 및 재생골재를 포함하는 굵은골재를 39 중량%로, 잔골재를 39 중량%로 하였으며, 이때 굵은골재에 있어서 천연골재에 대한 재생골재의 치환율이 0 내지 100%의 비율로 구성한 것이다. 그리고 실시예 10 내지 13에 대한 표 4에서 골재는 각각 천연골재 및 재생골재를 포함하는 굵은골재를 39 중량%로, 잔골재 39 중량%로 하였으며, 이때 굵은골재에 있어서 천연골재에 대한 재생골재의 치환율이 30 내지 100%의 비율로 구성한 것이다. 그리고 이에 대한 압축강도시험과 휨인장강도시험은 실시예 1~4에서 실시한 바와 같이 각각 실시하였다.

The strength was measured about the test body produced in Examples 5-13. That is, in Examples 5 to 13, the content of the resin (UPE) is 11% by weight, and the content of the filler is 11% by weight. In particular, aggregates in Table 3 for Examples 5 to 9 were 39% by weight of coarse aggregates each comprising natural aggregates and recycled aggregates, and 39% by weight of fine aggregates. Substitution rate is comprised in the ratio of 0 to 100%. And the aggregate in Table 4 for Examples 10 to 13 was 39% by weight of the coarse aggregate, including natural aggregate and recycled aggregate, respectively 39% by weight of the aggregate, wherein the replacement rate of the recycled aggregate to natural aggregate in the coarse aggregate The ratio is 30 to 100%. In addition, the compressive strength test and the flexural tensile strength test for this were performed as in Examples 1 to 4, respectively.

그 결과를 하기 표 5에 나타내었다.The results are shown in Table 5 below.

[표5]Table 5

기계적 강도Mechanical strength

실시예 번호Example number 압축강도(kgf/㎠)Compressive strength (kgf / ㎠) 휨인장강도(kgf/㎠)Flexural tensile strength (kgf / ㎠) 비고Remarks 상온양생(20±3℃)Room temperature curing (20 ± 3 ℃) 고온양생(100℃)High Temperature Curing (100 ℃) 상온양생(20±3℃)Room temperature curing (20 ± 3 ℃) 고온양생(100℃)High Temperature Curing (100 ℃) 55 812812 893893 325325 341341 천연골재Natural aggregate 66 764764 840840 309309 321321 굵은골재 치환Coarse aggregate replacement 77 763763 839839 308308 319319 88 759759 835835 307307 318318 99 756756 832832 305305 316316 1010 770770 846846 313313 325325 잔골재 치환Fine aggregate substitution 1111 767767 843843 310310 322322 1212 765765 840840 308308 320320 1313 758758 834834 307307 318318

상기 표 5에서 볼 수 있듯이, 본 발명에 의한 폴리머 콘크리트의 기계적 강도는 시멘트 콘크리트의 강도에 비해 아주 우수하였고 골재 치환율에 따라 천연골재만의 폴리머 콘크리트의 강도와도 큰 차이를 보이지 않았다.As can be seen in Table 5, the mechanical strength of the polymer concrete according to the present invention was very excellent compared to the strength of the cement concrete and did not show a significant difference from the strength of the polymer concrete only natural aggregates according to the aggregate replacement rate.

상기에서 살펴본 바와 같이, 본 발명에 의한 폴리머 콘크리트는 인장 강도나 압축 강도에 있어 일반 시멘트 콘크리트보다 우수한 기계적 강도를 지니고 있으며, 천연골재를 이용한 폴리머 콘크리트에서의 기계적 강도면에서 큰 차이를 보이지 않아 재생골재를 사용한 일반 시멘트 콘크리트에서 문제점으로 지적되어 온 슬럼프저하와 내구성저하 등의 문제가 해결되었다. 따라서 본 발명에 의한 폴리머 콘크리트는 일반 구조재료로서 사용이 가능하며 폐 PET 재생 폴리에스테르 수지와 재생골재를 사용함으로써 폴리머 콘크리트의 고비용 문제 해결과 더불어 천연골재의 대체재료 확보 및 폐 PET의 재활용에 따른 환경보존의 효과 또한 얻을 수 있다.As described above, the polymer concrete according to the present invention has mechanical strength superior to that of general cement concrete in tensile strength or compressive strength, and does not show a large difference in mechanical strength in polymer concrete using natural aggregate. Problems such as slump reduction and durability reduction that have been pointed out as problems in general cement concrete using FT have been solved. Therefore, the polymer concrete according to the present invention can be used as a general structural material and by using waste PET recycled polyester resin and recycled aggregate, solving the high cost problem of polymer concrete, securing alternative materials of natural aggregate, and environment by recycling waste PET. The effect of preservation can also be obtained.

Claims (8)

폐 PET 재생 불포화 폴리에스테르 수지, 충전재, 재생골재를 포함하며,Waste PET regenerated unsaturated polyester resins, fillers, recycled aggregates, 상기 충전재는 중탄산칼슘 및 플라이 애쉬(fly-ash)인 폴리머 콘크리트 조성물에 있어서,In the polymer concrete composition wherein the filler is calcium bicarbonate and fly-ash, 상기 폐 PET 재생 불포화 폴리에스테르 수지 5~30 중량%, 상기 충전재 5~30 중량%, 상기 재생골재 40~90 중량%를 포함하는 것을 특징으로 하는 폴리머 콘크리트 조성물.5 to 30% by weight of the waste PET regenerated unsaturated polyester resin, 5 to 30% by weight of the filler, 40 to 90% by weight of the recycled aggregate. 폐 PET 재생 불포화 폴리에스테르 수지, 충전재, 재생골재가 포함된 골재를 포함하며,Waste aggregates containing recycled unsaturated polyester resins, fillers, recycled aggregates, 상기 충전재는 중탄산칼슘 및 플라이 애쉬(fly-ash)인 폴리머 콘크리트 조성물에 있어서,In the polymer concrete composition wherein the filler is calcium bicarbonate and fly-ash, 상기 폐 PET 재생 불포화 폴리에스테르 수지 5~30 중량%, 상기 충전재 5~30 중량%, 천연굵은골재 40~90 중량%를 포함하는 상기 골재를 포함하며,5 to 30 wt% of the waste PET regenerated unsaturated polyester resin, 5 to 30 wt% of the filler, and the aggregate including 40 to 90 wt% of natural coarse aggregate, 상기 천연굵은골재에 대한 재생골재 치환율이 0~100%인 것을 특징으로 하는 폴리머 콘크리트 조성물.Polymer concrete composition, characterized in that the replacement aggregate replacement rate for the natural coarse aggregate is 0 ~ 100%. 폐 PET 재생 불포화 폴리에스테르 수지, 충전재, 재생골재가 포함된 골재를 포함하며,Waste aggregates containing recycled unsaturated polyester resins, fillers, recycled aggregates, 상기 충전재는 중탄산칼슘 및 플라이 애쉬(fly-ash)인 폴리머 콘크리트 조성물에 있어서,In the polymer concrete composition wherein the filler is calcium bicarbonate and fly-ash, 상기 폐 PET 재생 불포화 폴리에스테르 수지 5~30 중량%, 상기 충전재 5~30 중량%, 천연잔골재 40~90 중량%를 포함하는 상기 골재를 포함하며,5 to 30 wt% of the waste PET regenerated unsaturated polyester resin, 5 to 30 wt% of the filler, and the aggregate including 40 to 90 wt% of natural fine aggregate, 상기 천연잔골재에 대한 재생골재 치환율이 0~100%인 것을 특징으로 하는 폴리머 콘크리트 조성물.Polymer concrete composition, characterized in that the replacement aggregate replacement rate for the natural fine aggregate is 0 ~ 100%. 삭제delete 삭제delete 삭제delete 제1항 내지 제3항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 3, 상기 재생골재는 0.1~1.0mm인 잔골재인 것을 특징으로 하는 폴리머 콘크리트 조성물.The recycled aggregate is a polymer concrete composition, characterized in that the fine aggregate of 0.1 ~ 1.0mm. 제1항 내지 제3항에 의해 조성되는 폴리머 콘크리트 조성물을,The polymer concrete composition of claim 1, wherein 상온(20± 3℃) 또는 50~200℃에서 24시간 이상 7일 이하에서 양생하는 것을 특징으로 하는 폴리머 콘크리트의 제조 방법.Method for producing polymer concrete, characterized in that curing at room temperature (20 ± 3 ℃) or 50 ~ 200 ℃ 24 hours or more than 7 days.
KR1020030029951A 2003-05-12 2003-05-12 Performanced-improving method of PET recycling polymer concrete to apply highly efficient nano particles KR100580595B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030029951A KR100580595B1 (en) 2003-05-12 2003-05-12 Performanced-improving method of PET recycling polymer concrete to apply highly efficient nano particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030029951A KR100580595B1 (en) 2003-05-12 2003-05-12 Performanced-improving method of PET recycling polymer concrete to apply highly efficient nano particles

Publications (2)

Publication Number Publication Date
KR20040097609A KR20040097609A (en) 2004-11-18
KR100580595B1 true KR100580595B1 (en) 2006-05-16

Family

ID=37375750

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030029951A KR100580595B1 (en) 2003-05-12 2003-05-12 Performanced-improving method of PET recycling polymer concrete to apply highly efficient nano particles

Country Status (1)

Country Link
KR (1) KR100580595B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102337439B1 (en) * 2021-02-26 2021-12-30 최영근 No-Fines Polymer Concrete for Block Products using Recycled Aggregate and Tere Type Unsaturated Polyester Resin and Its Manufacturing Method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102976663A (en) * 2012-11-29 2013-03-20 山东大学 Polymer modified polyethylene terephthalate (PET) concrete and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102337439B1 (en) * 2021-02-26 2021-12-30 최영근 No-Fines Polymer Concrete for Block Products using Recycled Aggregate and Tere Type Unsaturated Polyester Resin and Its Manufacturing Method

Also Published As

Publication number Publication date
KR20040097609A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
Byung-Wan et al. Mechanical properties of polyester polymer concrete using recycled polyethylene terephthalate
KR20030001325A (en) Paving material for footways and method of producing the same
KR102120445B1 (en) Artificial Aggregate Made of Industrial By-products And Recycled Plastic, And Method for Manufacturing the Same
KR101498986B1 (en) Low moisture content plastic composition comprising hydraulic cement and manufacturing method thereof
KR100580595B1 (en) Performanced-improving method of PET recycling polymer concrete to apply highly efficient nano particles
EP4242374A1 (en) Railroad wood tie containing plastic waste
US6099638A (en) Cement composition for modeling
JPS62164735A (en) Reinforced thermosetting resin composite material
KR102337439B1 (en) No-Fines Polymer Concrete for Block Products using Recycled Aggregate and Tere Type Unsaturated Polyester Resin and Its Manufacturing Method
KR100547946B1 (en) A manufacturing process of polymer concrete using unsaturated polyester resin based on PET wasted and glass wasted
KR102127999B1 (en) Asphalt concrete compound containing of high strength asphalt modifier composition and a method using the same
JP2003238223A (en) Thermoplastic hydraulic composition
CN107135652A (en) The cement without grand defect with improved moisture-proof
JP4364972B2 (en) Method for producing immediate demolding concrete block
KR100580597B1 (en) Piti recycled polymer concrete composition using high-performance nanomaterial and manufacturing method thereof
KR100331789B1 (en) Elastic and absorbent road pavement material and method of making it
KR100466285B1 (en) Water-permeable construction materials using waste fiber reinforced plastics
JP4226805B2 (en) Wood cement board and manufacturing method thereof
EP0067183A1 (en) Cementitious article
KR102570964B1 (en) Asphalt modifier composition, asphalt concrete composition including the same and construction method using the same
JPH0368661A (en) Marbled plastic molding having mottled pattern and production thereof
JPS6172667A (en) Extrusion molded product and manufacture
JPS6078003A (en) Elastic paving floor material
KR20240018480A (en) How to make cement plastic mixture
Raji et al. Effect Of Asbestos, Cellulose Wood And Rice Husk Fibres On The Compressive Strength Of Polymer Concrete

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100330

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee