KR100578870B1 - Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same - Google Patents

Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same Download PDF

Info

Publication number
KR100578870B1
KR100578870B1 KR1020040015478A KR20040015478A KR100578870B1 KR 100578870 B1 KR100578870 B1 KR 100578870B1 KR 1020040015478 A KR1020040015478 A KR 1020040015478A KR 20040015478 A KR20040015478 A KR 20040015478A KR 100578870 B1 KR100578870 B1 KR 100578870B1
Authority
KR
South Korea
Prior art keywords
active material
mixture
carbon
containing compound
sio
Prior art date
Application number
KR1020040015478A
Other languages
Korean (ko)
Other versions
KR20050090218A (en
Inventor
이상민
정구진
김성수
닛타요시아키
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020040015478A priority Critical patent/KR100578870B1/en
Priority to JP2005063655A priority patent/JP4401984B2/en
Priority to US11/077,377 priority patent/US8709653B2/en
Priority to CNB2005100640935A priority patent/CN100547830C/en
Publication of KR20050090218A publication Critical patent/KR20050090218A/en
Application granted granted Critical
Publication of KR100578870B1 publication Critical patent/KR100578870B1/en
Priority to US14/261,059 priority patent/US9012082B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136204Arrangements to prevent high voltage or static electricity failures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/22Antistatic materials or arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 실리콘 옥사이드(SiOx; x는 1.5 이하)에 B, P, Li, Ge, Al, V 또는 이들의 혼합물로 이루어진 군에서 선택되는 원소가 도핑되어 있는 코어물질; 및 상기 코어물질의 표면에 존재하는 탄소물질을 포함하는 실리콘옥사이드-탄소 복합체로 이루어진 리튬 이차 전지용 음극 활물질을 제공한다. 본 발명의 음극 활물질은 리튬 이차 전지의 수명특성과 고율 충방전 특성을 우수하게 개선할 수 있다.The present invention provides a silicon oxide (SiO x ; x is 1.5 or less) is a core material doped with an element selected from the group consisting of B, P, Li, Ge, Al, V or a mixture thereof; And a silicon oxide-carbon composite including a carbon material present on the surface of the core material. The negative electrode active material of the present invention can improve the life characteristics and high rate charge and discharge characteristics of the lithium secondary battery excellently.

도핑, 실리콘옥사이드, 음극활물질, 리튬이차전지Doping, silicon oxide, anode active material, lithium secondary battery

Description

리튬 이차 전지용 음극 활물질, 그의 제조 방법 및 그를 포함하는 리튬 이차 전지{NEGATIVE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY, METHOD OF PREPARING SAME, AND LITHIUM SECONDARY BATTERY COMPRISING SAME} A negative electrode active material for a lithium secondary battery, a method of manufacturing the same, and a lithium secondary battery including the same TECHNICAL FIELD

도 1은 본 발명의 실리콘 옥사이드-탄소 복합체를 모식적으로 나타낸 단면도이다. 1 is a cross-sectional view schematically showing the silicon oxide-carbon composite of the present invention.

도 2는 본 발명의 실시형태인 리튬 이차 전지의 일예를 표시한 사시도이다.2 is a perspective view showing an example of a lithium secondary battery according to an embodiment of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of Symbols for Main Parts of Drawings>

1: 리튬 이차 전지 2: 음극1: lithium secondary battery 2: negative electrode

3: 양극 4: 세퍼레이터3: anode 4: separator

5: 전지 용기 6: 봉입부재5: battery container 6: sealing member

[산업상 이용 분야][Industrial use]

본 발명은 리튬 이차 전지용 음극 활물질, 그의 제조 방법 및 그를 포함하는 리튬 이차 전지에 관한 것으로서, 보다 상세하게는, 수명 특성과 고율 충방전 특성이 우수한 리튬 이차 전지용 음극 활물질, 그의 제조 방법 및 그를 포함하는 리튬 이차 전지에 관한 것이다.The present invention relates to a negative electrode active material for a lithium secondary battery, a method for manufacturing the same, and a lithium secondary battery including the same. More specifically, a negative electrode active material for a lithium secondary battery excellent in lifespan characteristics and high rate charge-discharge characteristics, a method for producing the same, and the same It relates to a lithium secondary battery.

[종래 기술][Prior art]

최근 휴대전자 기기의 소량 경량화 및 고성능화에 대응하기 위하여 리튬 이차 전지의 고용량화가 시급한 과제로 대두되고 있다. 그러나, 리튬 이차 전지의 음극 활물질의 하나인 흑연은 372 mAh/g의 이론용량을 가지지만, 이것보다도 고용량인 음극 활물질을 얻고자 하기 위해서는 비정질 탄소재 또는 탄소재료를 대체할 수 있는 신규재료의 개발을 진행시킬 필요가 있다. Recently, in order to cope with small weight and high performance of portable electronic devices, high capacity of lithium secondary batteries has emerged as an urgent problem. However, graphite, which is one of the negative electrode active materials of a lithium secondary battery, has a theoretical capacity of 372 mAh / g, but in order to obtain a higher capacity negative electrode active material, development of a new material that can replace amorphous carbon materials or carbon materials. It is necessary to proceed.

흑연을 대체할 수 있는 신규재료로서는 종래부터 규소나 그 화합물이 검토되어 오고 있다. 규소나 그 화합물은 규소자체가 리튬과 합금을 형성하고, 흑연보다도 큰 전기용량을 나타내는 것으로 알려져 있다.Silicon and its compound have been examined conventionally as a novel material which can replace graphite. Silicon and its compounds are known to form an alloy with lithium and exhibit a larger capacitance than graphite.

그래서 최근에는 리튬 이차 전지의 음극 재료로서, (1)흑연에 규소화합물의 분말을 단순히 혼합한 재료, (2)실란커플링제 등을 이용하여 흑연표면에 미분발의 규소화합물 등을 화학적으로 고정한 재료, (3)흑연계탄소물질과 Si 등의 금속물질을 비정질인 탄소물질로 결합 또는 피복한 재료가 제안되고 있다.Therefore, recently, as a negative electrode material of a lithium secondary battery, (1) a material in which a silicon compound powder is simply mixed with graphite, (2) a fine powder silicon compound or the like is chemically fixed on the graphite surface by using a silane coupling agent or the like, (3) A material in which a graphite carbon material and a metal material such as Si is bonded or coated with an amorphous carbon material has been proposed.

그러나, 상기한 (1)흑연에 규소화합물의 분말을 단순히 혼합한 재료는 흑연과 규소화합물이 반드시 밀착되어 있지 않기 때문에, 충방전 사이클이 진행됨에 따라 흑연이 팽창 또는 수축했을 때에 규소화합물이 흑연으로부터 유리되며, 이 규소화합물 자체가 전자 전도성이 낮기 때문에, 규소화합물이 음극 활물질로서 충분히 이용되지 않게 되어, 리튬 이차 전지의 사이클특성이 저하된다는 문제점이 있다.However, since the graphite and the silicon compound are not necessarily in close contact with each other in the above-mentioned material (1) in which the powder of the silicon compound is simply mixed, the silicon compound is separated from the graphite when the graphite expands or contracts as the charge and discharge cycle proceeds. Since the silicon compound itself has low electron conductivity, there is a problem that the silicon compound is not sufficiently used as a negative electrode active material, and the cycle characteristics of the lithium secondary battery are lowered.

또한 상기한 (2)실란커플링제 등을 이용하여 흑연표면에 미분발의 규소화합 물 등을 화학적으로 고정한 재료는 충방전 사이클이 초기중에는 흑연에 규소화합물이 밀착된 상태로 유지되어 규소화합물이 흑연과 같이 음극 활물질로서 기능하지만, 충방전 사이클이 진행됨에 따라 리튬과의 합금형성에 따라 규소화합물 자체가 팽창하여, 이에 따라 실란커플링제에 의한 결합을 파괴하여 규소화합물이 흑연으로부터 유리되어, 규소화합물이 음극 활물질로서 충분히 이용될 수 없어서, 리튬 이차 전지의 사이클특성이 저하된다는 문제점이 있다. 또한 음극 재료 제조시에 실란커플링 처리가 균질하게 행해지지 않는 경우가 있어, 안정된 품질의 음극 재료를 용이하게 제조할 수 없다는 문제점이 있다.In addition, the material (2) chemically fixed with finely divided silicon compounds on the graphite surface by using the silane coupling agent or the like is maintained in a state in which the silicon compound is in close contact with the graphite during the initial charge and discharge cycle. As a negative electrode active material, as the charge and discharge cycle proceeds, the silicon compound itself expands as the alloy is formed with lithium, thereby destroying the bond by the silane coupling agent, thereby releasing the silicon compound from the graphite. There is a problem that the cycle characteristics of the lithium secondary battery may be lowered because it cannot be sufficiently used as a negative electrode active material. In addition, the silane coupling treatment may not be performed homogeneously at the time of manufacturing the negative electrode material, and there is a problem that a negative electrode material of stable quality cannot be easily produced.

또한 상기한 (3)흑연계 탄소물질과 Si 등의 금속물질을 비정질인 탄소물질로 결합 또는 피복한 재료는 (2)실란커플링제 등을 이용하여 흑연표면에 미분발의 규소화합물 등을 화학적으로 고정한 재료의 상기 문제점과 동일한 문제점이 있다. 즉, 충방전 사이클이 진행되면, 리튬과의 합금형성에 따른 금속물질 자체의 팽창에 의해 비정질 탄소물질에 의한 결합이 파괴되어 금속물질이 흑연계 탄소물질로부터 유리되어, 금속물질이 음극 활물질로서 충분히 이용되지 않게 되어, 사이클특성이 저하된다는 문제점이 있었다.In addition, (3) the material which combines or coats the graphite-based carbon material and metal materials such as Si with an amorphous carbon material is (2) chemically fixing finely divided silicon compounds or the like on the graphite surface using a silane coupling agent or the like. There is the same problem as the above problem of the material. That is, as the charge and discharge cycle proceeds, the bond by the amorphous carbon material is broken by the expansion of the metal material itself due to the alloy formation with lithium, and the metal material is released from the graphite carbon material, so that the metal material is sufficiently used as the negative electrode active material. There was a problem that it was not used and the cycle characteristics were lowered.

본 발명은 상기 문제점을 해결하기 위한 것으로서, 수명특성과 고율 충방전 특성이 우수한 리튬 이차 전지용 음극 활물질 및 이의 제조방법을 제공하기 위한 것이다.The present invention is to solve the above problems, to provide a negative electrode active material for a lithium secondary battery excellent in life characteristics and high rate charge-discharge characteristics and a method of manufacturing the same.

본 발명은 또한 상기 음극 활물질을 포함하는 리튬 이차 전지를 제공하기 위 한 것이다.The present invention also provides a lithium secondary battery including the negative electrode active material.

본 발명은 실리콘 옥사이드(SiOx; x는 1.5 이하)에 B, P, Li, Ge, Al, V 또는 이들의 혼합물로 이루어진 군에서 선택되는 원소가 도핑되어 있는 코어물질; 및 상기 코어물질의 표면에 존재하는 탄소물질을 포함하는 실리콘옥사이드-탄소 복합체로 이루어진 리튬 이차 전지용 음극 활물질을 제공한다.The present invention provides a silicon oxide (SiO x ; x is 1.5 or less) is a core material doped with an element selected from the group consisting of B, P, Li, Ge, Al, V or a mixture thereof; And a silicon oxide-carbon composite including a carbon material present on the surface of the core material.

본 발명은 또한 SiO2, Si 및 B-함유 화합물, P-함유 화합물, Li-함유 화합물, Ge-함유 화합물, Al-함유 화합물, V-함유 화합물 및 이들의 혼합물로 이루어진 군에서 선택되는 도핑원소-함유 화합물을 혼합하는 단계; 상기 혼합물을 열처리하여 B, P, Li, Ge, Al, V 또는 이들의 혼합물로 도핑된 실리콘 옥사이드(SiOx; x는 1.5 이하)의 코어물질을 제조하는 단계; 및 상기 코어물질을 탄소물질로 코팅하여 실리콘 옥사이드-탄소의 복합체를 제조하는 단계를 포함하는 리튬 이차 전지용 음극 활물질의 제조방법을 제공한다.The invention also relates to a doping element selected from the group consisting of SiO 2 , Si and B-containing compounds, P-containing compounds, Li-containing compounds, Ge-containing compounds, Al-containing compounds, V-containing compounds and mixtures thereof -Mixing the containing compound; Heat treating the mixture to prepare a core material of silicon oxide (SiO x ; x is 1.5 or less) doped with B, P, Li, Ge, Al, V or a mixture thereof; And it provides a method for producing a negative electrode active material for a lithium secondary battery comprising the step of coating the core material with a carbon material to produce a silicon oxide-carbon composite.

본 발명은 또한 상기 음극 활물질을 포함하는 음극; 리튬의 가역적인 인터칼레이션/디인터칼레이션이 가능한 양극 활물질을 포함하는 양극; 및 전해액을 포함하는 리튬 이차 전지를 제공한다.The present invention also includes a negative electrode comprising the negative electrode active material; A positive electrode including a positive electrode active material capable of reversible intercalation / deintercalation of lithium; And it provides a lithium secondary battery comprising an electrolyte solution.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 음극 활물질은 실리콘 옥사이드(SiOx; x는 1.5 이하)에 B, P, Li, Ge, Al, V 또는 이들의 혼합물로 이루어진 군에서 선택되는 원소가 도핑되어 있는 코어물질과 상기 코어물질의 표면에 존재하는 탄소물질을 포함하는 실리콘 옥사이드-탄소 복합체이다. 도 1은 본 발명의 실리콘 옥사이드-탄소 복합체를 모식적으로 나타낸 단면도이다. 도 1에서 볼 수 있는 것처럼, 본 발명의 실리콘 옥사이드-탄소 복합체는 B, P, Li, Ge, Al, V 또는 이들의 혼합물로 이루어진 군에서 선택되는 원소가 도핑된 비정질의 실리콘 옥사이드(11) 내에 나노크기의 실리콘 결정질(Si nano-cryatalline)(12)이 분산되어 있는 형태의 코어물질(10)의 표면에 탄소 물질(21)이 코팅되어 있는 구조를 갖는다.The negative electrode active material of the present invention is a core material doped with an element selected from the group consisting of silicon oxide (SiO x ; x is 1.5 or less) B, P, Li, Ge, Al, V or a mixture thereof and the core material Silicon oxide-carbon composite containing a carbon material present on the surface of. 1 is a cross-sectional view schematically showing the silicon oxide-carbon composite of the present invention. As can be seen in Figure 1, the silicon oxide-carbon composite of the present invention is in the amorphous silicon oxide (11) doped with an element selected from the group consisting of B, P, Li, Ge, Al, V or a mixture thereof. It has a structure in which the carbon material 21 is coated on the surface of the core material 10 in which the nano-sized silicon crystalline (Si nano-cryatalline) 12 is dispersed.

상기 코어물질을 이루는 SiOx는 비가역 용량이 높고, 수명이 짧으며, 고율 충방전 효율이 좋지 않다. 이는 충방전시 구조적인 안정성이 낮고 Li 원자의 확산속도가 낮기 때문인 것으로 생각된다. 본 발명에서는 B, P, Li, Ge, Al, V 또는 이들의 혼합물을 SiOx에 도핑함으로써 SiOx의 비정질화도를 높이고 Li 원자의 확산속도를 향상시킨다. 본 발명의 음극 활물질의 비정질화도는 50 % 이상이며, GITT(Galvanic Intermitant time technique) 방법에 따라 Li의 확산속도를 측정할 경우 10-8 cm2/sec 이상, 바람직하게는 10-8 내지 10-6 cm 2/sec의 확산속도를 가진다. 상기 비정질화도는 하기 계산식 1과 같이 정의 된다. SiO x constituting the core material has a high irreversible capacity, short lifetime, and poor high rate charge and discharge efficiency. This is thought to be due to the low structural stability during charging and discharging and the low diffusion rate of Li atoms. In the present invention, doping B, P, Li, Ge, Al, V or a mixture thereof to SiO x increases the degree of amorphousness of SiO x and improves the diffusion rate of Li atoms. The amorphous degree of at least 50% of the negative electrode active material of the present invention, when measuring the diffusion rate of Li according to GITT (Galvanic Intermitant time technique) how to 10 -8 cm 2 / sec or more, preferably 10 -8 to 10 - It has a diffusion rate of 6 cm 2 / sec. The amorphous degree is defined as in Equation 1 below.

[계산식 1][Calculation 1]

비정질화도(%) = ((급냉 처리후 주요 XRD 피크 강도)/(급냉 처리전 주요 XRD 피크 강도))*100% Amorphous = = ((major XRD peak intensity after quench) / (major XRD peak intensity after quench)) * 100

상기 SiOx의 x는 1.5 이하로 조절하는 것이 바람직하며, 0.5 내지 1.5인 것 이 더 바람직하다. x가 1.5를 초과하는 경우에는 전기화학적 반응 자리(site)인 Si의 상대적인 양이 적어 전체 에너지 밀도 감소를 유발할 수 있다. X of the SiO x is preferably adjusted to 1.5 or less, more preferably 0.5 to 1.5. If x exceeds 1.5, the relative amount of Si, the electrochemical reaction site, may be small, leading to a reduction in the overall energy density.

상기 도핑원소인 B, P, Li, Ge, Al, V 또는 이들의 혼합물의 도핑양은 코어물질 전체 중량에 대하여 50 중량% 이하인 것이 바람직하며, 10 내지 30 중량%인 것이 더 바람직하다. 상기 도핑양이 50 중량%를 초과하는 경우에는 에너지밀도 및 비가역 용량이 증가되는 문제점이 있다. The doping amount of the doping element B, P, Li, Ge, Al, V or a mixture thereof is preferably 50% by weight or less, more preferably 10 to 30% by weight based on the total weight of the core material. When the doping amount exceeds 50% by weight, there is a problem in that energy density and irreversible capacity are increased.

상기 코어물질을 코팅하는 탄소물질로는 결정질 탄소이나 비정질 탄소가 사용될 수 있다. 상기 결정성 탄소로는 판상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연 등이 있다. 상기 탄소물질은 실리콘 옥사이드-탄소물질 복합체 전체 중량에 대하여 10 내지 90 중량%로 코팅될 수 있으며, 바람직하게는 30 내지 70 중량%로 코팅될 수 있다. 탄소물질의 함량이 10 중량% 미만인 경우에는 상기 코어물질의 충방전시에 발생될 수 있는 활물질 부피 팽창에 대한 지지체로서의 역할이 현저히 감소하게 되어 전극수명에 악영향을 미칠 염려가 있으며, 90 중량%를 초과하는 경우에는 코어 물질의 구성 비율 감소로 인한 활물질 자체의 방전용량이 감소되어 기존 흑연재 음극 활물질과 비교하여 높은 에너지 밀도를 추구할 수 없다.As the carbon material coating the core material, crystalline carbon or amorphous carbon may be used. Examples of the crystalline carbon include plate-like, spherical or fibrous natural graphite or artificial graphite. The carbon material may be coated with 10 to 90% by weight, preferably 30 to 70% by weight, based on the total weight of the silicon oxide-carbon material composite. If the content of the carbon material is less than 10% by weight, the role as a support for the volume expansion of the active material that may occur during charging and discharging of the core material is significantly reduced, which may adversely affect the life of the electrode, 90% by weight When exceeded, the discharge capacity of the active material itself is reduced due to the reduction in the composition ratio of the core material, and thus it is impossible to pursue a high energy density compared with the conventional graphite material negative active material.

상기 비정질 탄소의 예로는 이흑연화성 탄소(소프트 카본(soft carbon), 저온 소성 탄소) 또는 난흑연화성 탄소(하드 카본(hard carbon))를 들 수 있다. Examples of the amorphous carbon include digraphitizable carbon (soft carbon, low temperature calcined carbon) or nongraphitizable carbon (hard carbon).

상기 소프트 카본은 석탄계 핏치, 석유계 핏치, 타르(tar), 저분자량의 중질유를 약 1000℃로 열처리하여 얻을 수 있다. The soft carbon may be obtained by heat treating coal-based pitch, petroleum-based pitch, tar, and low molecular weight heavy oil at about 1000 ° C.

상기 하드 카본은 페놀 수지, 나프탈렌 수지, 폴리비닐알콜 수지, 우레탄 수 지, 폴리이미드수지, 퓨란 수지, 셀룰로오스 수지, 에폭시 수지, 폴리스티렌 수지 등을 약 1000℃로 열처리하여 얻을 수 있다. 또한, 석유계, 석탄계 탄소 원료 또는 수지계 탄소를 300 내지 600℃로 열처리한 메조페이스 피치, 원료 코크스(raw cokes) 및 탄소 원료를 불융화처리한 후 또는 불융화처리하지 않고 600 내지 1500℃로 열처리한 메조페이스 핏치 탄화물, 소성된 코크스 등의 비정질 탄소를 사용할 수도 있다.The hard carbon may be obtained by heat-treating a phenol resin, naphthalene resin, polyvinyl alcohol resin, urethane resin, polyimide resin, furan resin, cellulose resin, epoxy resin, polystyrene resin and the like at about 1000 ° C. In addition, the mesoface pitch, raw cokes, and carbon raw materials obtained by heat-treating petroleum, coal-based carbon raw materials, or resin-based carbons at 300 to 600 ° C., are heat-treated at 600 to 1500 ° C. after infusible treatment or without infusible treatment. It is also possible to use amorphous carbon such as one mesophase pitch carbide, calcined coke, or the like.

이하에서는 본 발명의 음극 물질인 실리콘 옥사이드-탄소물질 복합체의 제조공정을 설명한다. 먼저 코어물질을 제조하기 위하여 SiO2와 Si의 혼합물에 B-함유 화합물, P-함유 화합물, Li-함유 화합물, Ge-함유 화합물, Al-함유 화합물, V-함유 화합물 또는 이들의 혼합물을 첨가하여 함께 열처리한다. SiO2와 Si는 3:1 내지 1:1 의 중량비로 혼합되는 것이 바람직하다.Hereinafter, a manufacturing process of a silicon oxide-carbon material composite which is a negative electrode material of the present invention will be described. First, a B-containing compound, a P-containing compound, a Li-containing compound, a Ge-containing compound, an Al-containing compound, a V-containing compound, or a mixture thereof is added to a mixture of SiO 2 and Si to prepare a core material. Heat treatment together. SiO 2 and Si are preferably mixed in a weight ratio of 3: 1 to 1: 1.

상기 도핑원소-함유 화합물은 유리질 형성 전구체(Glass network former)인 것이 바람직하다. 상기 B-함유 화합물의 예로는 B2O3, B2O 등이 있으며 P-함유 화합물의 예로는 P2O5, P2O3, 등이 있고, Li-함유 화합물로는 Li2O, Li2CO3, LiOH 등이 있고, Ge-함유 화합물로는 GeO2, Al-함유 화합물로는 Al2O3, V-함유 화합물로는 V2O5 등이 있다. 상기 유리질 형성 전구체는 SiO2 및 Si의 혼합물과 함께 혼합되며, 상기 혼합물 전체 중량에 대하여 50 중량% 이하로 첨가되는 것이 바람직하고, 10 내지 30 중량%로 첨가되는 것이 더 바람직하다.The doping element-containing compound is preferably a glass network former. Examples of the B-containing compound include B 2 O 3 , B 2 O, and the like, and examples of the P-containing compound include P 2 O 5 , P 2 O 3 , and the like, and Li-containing compounds include Li 2 O, Li 2 CO 3 , LiOH, and the like, Ge-containing compounds include GeO 2 , Al-containing compounds include Al 2 O 3 , and V-containing compounds such as V 2 O 5 . The glassy precursor is mixed with a mixture of SiO 2 and Si, preferably added in an amount of up to 50% by weight, more preferably in an amount of 10 to 30% by weight, based on the total weight of the mixture.

상기 열처리 온도는 600 내지 1000℃인 것이 바람직하고, 800 내지 1000℃인 것이 더 바람직하다. 열처리 온도가 600℃ 미만이면 열확산 현상의 저하로 균일한 비정질 SiOx 형성이 어렵고, 상기 도핑원소가 도핑된 균일한 상태의 SiOx 형성이 어려워진다. 또한, 열처리 온도가 1000℃를 초과하면 Si 및 기타 다른 성분의 분해반응이 일어나, 원치 않는 제2상이 형성될 가능성이 있다. 또한, 상기 열처리 분위기는 불활성 분위기 또는 진공분위기인 것이 바람직하다. 이러한 열처리 공정에 의하여 B, P, Li, Ge, Al, V 또는 이들의 혼합물이 실리콘 옥사이드에 도핑되어 실리콘 옥사이드의 비정질화도와 Li의 확산속도를 향상시킬 수 있다. It is preferable that it is 600-1000 degreeC, and, as for the said heat processing temperature, it is more preferable that it is 800-1000 degreeC. If the heat treatment temperature is less than 600 ℃, it is difficult to form a uniform amorphous SiO x due to the reduction of the thermal diffusion phenomenon, it becomes difficult to form a uniform SiO x doped with the doping element. In addition, when the heat treatment temperature exceeds 1000 ° C., there is a possibility that decomposition reaction of Si and other components occurs, thereby forming an unwanted second phase. In addition, the heat treatment atmosphere is preferably an inert atmosphere or a vacuum atmosphere. By the heat treatment process, B, P, Li, Ge, Al, V, or a mixture thereof may be doped into silicon oxide to improve the amorphousness of silicon oxide and the diffusion rate of Li.

상기 열처리 공정 후에는 급냉 공정을 거친다. 상기 급냉 공정의 방식은 특정 방법에 한정되지는 않으나, 수냉식, 또는 용융 방사(melt-spinning) 방식 등을 이용할 수 있다. 상기 용융 방사 방식이란, 용해(鎔解)된 용해물을 특정 압력의 가스에 의하여 미세한 노즐을 통하여 상온 이하의 표면온도를 갖고 고속 회전하는 Cu-roll위에 분사시켜 급속 응고시키는 방법을 말한다. 상기 급냉시 냉각속도는 102 내지 107 K/sec인 것이 바람직하다. After the heat treatment step is subjected to a quenching step. The method of the quenching process is not limited to a specific method, but may be water-cooled or melt-spinning. The melt spinning method refers to a method of rapidly solidifying the dissolved melt by spraying it on a Cu-roll which rotates at a high speed with a surface temperature below normal temperature by using a gas of a specific pressure and having a surface temperature below normal temperature. The cooling rate during the quench is preferably 10 2 to 10 7 K / sec.

상기 열처리 공정 및 급냉 공정에 의하여 도핑원소를 포함하는 SiOx 코어물질을 제조한다. 상기 코어물질을 탄소물질로 코팅하여 본 발명의 실리콘 옥사이드-탄소 복합체 음극 물질을 제조한다.The SiO x core material including the doping element is manufactured by the heat treatment process and the quenching process. The core material is coated with a carbon material to prepare a silicon oxide-carbon composite anode material of the present invention.

상기 탄소물질은 결정질 탄소, 또는 비정질 탄소일 수 있으며, 결정질 탄소의 경우에는 상기 코어물질과 결정질 탄소를 고상 또는 액상으로 혼합한 후 코팅공 정을 실시함으로써 결정질 탄소를 코어물질에 코팅할 수 있다. The carbon material may be crystalline carbon or amorphous carbon, and in the case of crystalline carbon, the crystalline carbon may be coated on the core material by performing a coating process after mixing the core material and the crystalline carbon in a solid or liquid state.

고상으로 혼합하는 경우에는 주로 기계적인 혼합 방법으로 코팅공정을 실시할 수 있는데, 기계적 혼합 방법의 일 예로 니딩(kneading)하는 방법 및 혼합시 전단 응력(shear stress)이 걸릴 수 있도록 혼합기(mixer)의 날개 구조를 바꾼 미케니컬 혼합(mechanical mixing) 또는 기계적으로 입자간의 전단력을 가하여 입자 표면간의 융합을 유도하는 미케노케미칼(mechanochemical)법 등을 이용하는 방법을 들 수 있다. In the case of mixing in a solid phase, a coating process may be mainly performed by a mechanical mixing method. As an example of the mechanical mixing method, a kneading method and a shear stress may occur during mixing. Or a mechanical mixing method in which the wing structure is changed, or a mechanochemical method for inducing fusion between particle surfaces by mechanically applying shear force between particles.

액상으로 혼합하는 경우에는 고상으로 혼합하는 경우와 같이 기계적으로 혼합하거나, 또는 분무 건조(spray drying)하거나, 분무 열분해(spray pyrolysis)하거나, 냉동 건조(freeze drying)하여 실시할 수 있다. 액상 혼합의 경우 첨가되는 용매로는 물, 유기 용매 또는 그의 혼합물을 사용할 수 있으며, 상기 유기 용매로는 에탄올, 이소프로필 알콜, 톨루엔, 벤젠, 헥산, 테트라하이드로퓨란 등을 사용할 수 있다. In the case of mixing in a liquid phase, as in the case of mixing in a solid phase, mechanical mixing, spray drying, spray pyrolysis, or freeze drying may be performed. In the case of liquid mixing, water, an organic solvent, or a mixture thereof may be used as the solvent, and as the organic solvent, ethanol, isopropyl alcohol, toluene, benzene, hexane, tetrahydrofuran, or the like may be used.

비정질 탄소로 코팅하는 경우에는 비정질 탄소전구체로 코팅하여 열처리하여 탄소전구체를 탄화시키는 방법이 이용될 수 있다. 상기 코팅방법은 건식 또는 습식 혼합 모두 이용될 수 있다. 또한 메탄, 에탄, 프로판 등과 같이 탄소를 포함하는 기체를 이용한 화학증착(CVD)법과 같은 증착법도 이용될 수 있다. 상기 비정질 탄소 전구체로는 페놀 수지, 나프탈렌 수지, 폴리비닐알콜 수지, 우레탄 수지, 폴리이미드 수지, 퓨란 수지, 셀룰로즈 수지, 에폭시 수지, 폴리스티렌 수지 등의 수지류, 석탄계 핏치, 석유계 핏치, 타르(tar) 또는 저분자량의 중질유 등을 사용할 수 있다. In the case of coating with amorphous carbon, a method of carbonizing the carbon precursor by coating with an amorphous carbon precursor and performing heat treatment may be used. The coating method may be used both dry and wet mixing. Also, a deposition method such as chemical vapor deposition (CVD) using a gas containing carbon such as methane, ethane, propane, or the like may also be used. As the amorphous carbon precursor, resins such as phenol resin, naphthalene resin, polyvinyl alcohol resin, urethane resin, polyimide resin, furan resin, cellulose resin, epoxy resin, polystyrene resin, coal pitch, petroleum pitch, tar (tar) ) Or low molecular weight heavy oil.

본 발명의 리튬 이차 전지는 상기 음극 활물질로 제조된 음극을 포함한다. 상기 음극은 본 발명에 따른 음극 활물질을 바인더와 혼합하여 제조된 음극 합제를 구리 등의 집전체에 도포하여 음극으로 제조될 수 있으며, 필요에 따라 도전재를 첨가하여 음극으로 제조될 수 있다. The lithium secondary battery of the present invention includes a negative electrode made of the negative electrode active material. The negative electrode may be prepared as a negative electrode by applying a negative electrode mixture prepared by mixing the negative electrode active material according to the present invention with a binder to a current collector, such as copper, may be prepared as a negative electrode by adding a conductive material as necessary.

상기 도전재의 예로는, 니켈 분말, 산화 코발트, 산화 티탄, 카본 등이 있으며, 상기 도전재로 사용되는 카본의 예로는, 케첸 블랙, 아세틸렌 블랙, 퍼니스 블랙, 흑연, 탄소 섬유, 플러렌 등이 있다.Examples of the conductive material include nickel powder, cobalt oxide, titanium oxide, carbon, and the like, and examples of carbon used as the conductive material include ketjen black, acetylene black, furnace black, graphite, carbon fiber, and fullerene.

도 2는 본 발명의 실시 형태인 리튬 이차 전지(1)를 나타낸 것이다. 리튬 이차 전지(1)는 음극(2), 전극(3), 상기 음극(2)과 양극(3) 사이에 배치된 세퍼레이터(4), 상기 음극(2), 양극(3) 및 세퍼레이터(4)에 함침된 전해액과, 전지 용기(5)와, 전지 용기(5)를 봉입하는 봉입부재(6)를 주된 부분으로 하여 구성되어 있다. 도 2에 도시된 리튬 이차 전지의 형태는 원통형이나 이외에 원통형, 각형, 코인형, 또는 쉬트형 등의 다양한 형상으로 될 수 있다.2 shows a lithium secondary battery 1 which is an embodiment of the present invention. The lithium secondary battery 1 includes a negative electrode 2, an electrode 3, a separator 4 disposed between the negative electrode 2 and the positive electrode 3, the negative electrode 2, the positive electrode 3, and the separator 4. ), The battery container 5, and the sealing member 6 for sealing the battery container 5 are constituted as main parts. The shape of the lithium secondary battery illustrated in FIG. 2 may be in the form of a cylinder, in addition to various shapes such as a cylinder, a square, a coin, or a sheet.

상기 양극은 양극 활물질, 도전재 및 바인더로 이루어진 양극 합제를 구비하여 된 것이다. 양극 활물질로는 리튬을 가역적으로 인터칼레이션/디인터칼레이션 할 수 있는 화합물로 LiMn2O4, LiCoO2, LiNiO2, LiFeO2 , V2O5, TiS, MoS 등이 있다. 세퍼레이터로는 폴리에틸렌, 폴리프로필렌 등의 올레핀계 다공질 필름을 사용할 수 있다.The positive electrode is provided with a positive electrode mixture composed of a positive electrode active material, a conductive material and a binder. The positive electrode active material is a compound capable of reversibly intercalating / deintercalating lithium, such as LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , LiFeO 2 , V 2 O 5 , TiS, MoS, and the like. As the separator, an olefin porous film such as polyethylene or polypropylene can be used.

전해액으로는 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 벤조니트릴, 아세토니트릴, 테트라히드로퓨란, 2-메틸 테트라히드로퓨란, γ-부티로락톤, 디옥솔란, 4-메틸디옥솔란, N,N-디메틸포름아미드, 디메틸아세토아미드, 디메틸설폭사이드, 디옥산, 1,2-디메톡시에탄, 설포란, 디클로로에탄, 클로로벤젠, 니트로벤젠, 디메틸 카보네이트, 메틸에틸 카보네이트, 디에틸 카보네이트, 메틸프로필 카보네이트, 메틸이소프로필 카보네이트, 에틸부틸 카보네이트, 디프로필 카보네이트, 디이소프로필카보네이트, 디부틸 카보네이트, 디에틸렌글리콜, 디메틸에테르 등의 비프로톤성 용매, 또는 이들 용매 중 2종 이상을 혼합한 혼합 용매에, LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3 SO3, Li(CF3SO2)2N, LiC4F9SO 3, LiSbF6, LiAlO4, LiAlCl4, LiN(CxF2x+1SO2)(CyF 2y+1SO2)(단, x, y는 자연수), LiCl, LiI 등의 리튬염으로 이루어진 전해질 1종 또는 2종 이상을 혼합시킨 것을 용해한 것을 사용할 수 있다. As electrolyte, propylene carbonate, ethylene carbonate, butylene carbonate, benzonitrile, acetonitrile, tetrahydrofuran, 2-methyl tetrahydrofuran, γ-butyrolactone, dioxolane, 4-methyldioxolane, N, N-dimethyl Formamide, dimethylacetoamide, dimethyl sulfoxide, dioxane, 1,2-dimethoxyethane, sulfolane, dichloroethane, chlorobenzene, nitrobenzene, dimethyl carbonate, methylethyl carbonate, diethyl carbonate, methylpropyl carbonate, methyl LiPF 6 to an aprotic solvent such as isopropyl carbonate, ethylbutyl carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate, diethylene glycol, dimethyl ether, or a mixed solvent of two or more of these solvents. , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiN (C x F 2x + 1 SO 2 ) (C y F 2y + 1 SO 2 ) (where x and y are natural waters), a mixture of one or two or more electrolytes consisting of lithium salts such as LiCl and LiI can be used. have.

또한 상기 전해액 대신에 고분자 고체 전해질을 사용하여도 좋으며, 이 경우는 리튬이온에 대한 이온도전성이 높은 고분자를 사용하는 것이 바람직하고, 폴리에틸렌옥사이드, 폴리프로필렌옥사이드, 폴리에틸렌이민 등을 사용할 수 있고, 또한 이것의 고분자에 상기 용매와 용질을 첨가하여 겔상으로 한 것을 사용할 수 도 있다.In addition, a polymer solid electrolyte may be used instead of the electrolyte solution. In this case, it is preferable to use a polymer having high ion conductivity with respect to lithium ions, and polyethylene oxide, polypropylene oxide, polyethyleneimine and the like can be used. It is also possible to use a gel in which the solvent and the solute are added to the polymer of.

이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기한 실시예는 본 발명의 바람직한 일 실시예일 뿐, 본 발명이 하기한 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples and comparative examples of the present invention are described. However, the following examples are only preferred embodiments of the present invention, and the present invention is not limited to the following examples.

[실시예 1]Example 1

SiO2와 Si를 1:1의 몰비로 혼합한 혼합물 100 중량부에 대하여 B2O3 20 중량부를 첨가한 혼합물을 800 ℃ 에서 감압 열처리한 다음 103 K/sec.의 속도로 급냉하여 B가 6.2 중량% 도핑된 SiOx(x=1.48)를 제조하였다. 상기 도핑된 SiOx를 코어 물질로 하고, 그 표면 위에 화학증착(CVD) 코팅 공정을 이용하여 비정질 탄소물질을 30 중량%로 코팅하여 탄소가 코팅된 SiOx 복합체 음극 활물질을 제조하였다.20 parts by weight of B 2 O 3 was added to 100 parts by weight of a mixture of SiO 2 and Si in a molar ratio of 1: 1, and the mixture was heat-treated under reduced pressure at 800 ° C., and then quenched at a rate of 10 3 K / sec. 6.2 wt% doped SiO x (x = 1.48) was prepared. The doped SiO x was used as a core material, and an amorphous carbon material was coated at 30 wt% using a chemical vapor deposition (CVD) coating process on the surface thereof to prepare a SiO x composite anode active material coated with carbon.

[비교예 1]Comparative Example 1

입자 크기가 5 ㎛인 Si 분말의 표면 위에 화학증착(CVD) 코팅 공정을 이용하여 비정질 탄소물질을 30 중량%로 코팅하여 탄소가 코팅된 Si복합체 음극 활물질을 제조하였다.A carbon-coated Si composite anode active material was prepared by coating an amorphous carbon material at 30 wt% using a chemical vapor deposition (CVD) coating process on a surface of a Si powder having a particle size of 5 μm.

[비교예 2]Comparative Example 2

SiO2와 Si를 1:1의 몰비로 혼합한 혼합물을 800 ℃ 에서 감압 열처리한 다음 103 K/sec.의 속도로 급냉하여 SiOx(x=1)를 제조하였다. 상기 제조된 SiOx를 코어 물질로 하여, 그 표면 위에 화학증착(CVD) 코팅 공정을 이용하여 비정질 탄소재를 30 중량% 코팅한 후 탄소가 코팅된 SiOx 복합체 음극 활물질을 제조하였다.SiO 2 and Si were mixed at a molar ratio of 1: 1 by heat treatment at 800 ° C. under reduced pressure, and then rapidly cooled at a rate of 10 3 K / sec. To prepare SiO x (x = 1). By using the prepared SiO x as a core material, After coating 30% by weight of the amorphous carbon material on the surface by using a chemical vapor deposition (CVD) coating process, a carbon-coated SiO x composite anode active material was prepared.

[비교예 3] Comparative Example 3

SiO2와 Si를 3 : 1의 몰비로 혼합한 혼합물 100 중량부에 대하여 B2O3 20 중량부를 첨가한 혼합물을 800℃에서 감압 열처리한 다음, 103 K/sec.속도로 급냉하여 B가 5.2 중량% 도핑된 SiOx (x=1.95)를 제조하였다. 상기 도핑된 SiOx를 코어 물질로 하고, 그 표면 위에 화학증착(CVD) 코팅 공정을 이용하여 비정질 탄소물질을 30 중량%로 코팅하여 탄소가 코팅된 SiOx 복합체 음극 활물질을 제조하였다 . 20 parts by weight of B 2 O 3 was added to 100 parts by weight of the mixture of SiO 2 and Si in a molar ratio of 3: 1, and the mixture was heat-treated under reduced pressure at 800 ° C., followed by quenching at a speed of 10 3 K / sec. 5.2 wt% doped SiO x (x = 1.95) was prepared. The doped SiO x was used as a core material, and an amorphous carbon material was coated at 30 wt% using a chemical vapor deposition (CVD) coating process on the surface thereof to prepare a SiO x composite anode active material coated with carbon .

[충방전 시험용 테스트셀 작성][Create test cell for charge / discharge test]

실시예 1 및 비교예 1 내지 3의 음극 활물질과 폴리불화비닐리덴을 90:10의 비율로 N-메틸피롤리돈에서 혼합하여 각각의 음극 슬러리를 제조하였다. 이 슬러리를 닥터 블레이드 법으로 두께 10 ㎛의 구리 집전체에 도포하고, 진공 분위기 중에서 100℃, 1시간 건조하여 N-메틸피롤리돈을 휘발시켰다. 이와 같이 하여 두께 50 ㎛의 음극 활물질층을 구리 집전체에 적층한 다음 직경 16 ㎜의 원형으로 구멍을 뚫어 잘라 음극으로 하였다.Each negative electrode slurry was prepared by mixing the negative active materials of Example 1 and Comparative Examples 1 to 3 and polyvinylidene fluoride in N-methylpyrrolidone in a ratio of 90:10. This slurry was applied to a copper current collector having a thickness of 10 μm by a doctor blade method, dried at 100 ° C. for 1 hour in a vacuum atmosphere to volatilize N-methylpyrrolidone. Thus, the negative electrode active material layer of 50 micrometers in thickness was laminated | stacked on the copper collector, and it punched out circularly [diameter 16mm], and made it as a negative electrode.

이 음극을 작용극으로 하고 같은 직경의 원형으로 잘라낸 금속 리튬박을 대극으로 하여, 작용극과 대극 사이에 다공질 폴리프로필렌 필름으로 이루어진 세퍼레이터를 삽입하고, 전해질로서 디에틸 카보네이트(DEC)와 에틸렌 카보네이트(EC)의 혼합 용매(DEC : EC = 1 : 1)에 LiPF6가 1(몰/L)의 농도가 되도록 용해시킨 것을 사용하여 코인형 셀을 작성하였다.A separator made of a porous polypropylene film is inserted between the working electrode and the counter electrode with a metal lithium foil cut into a circular electrode having the same diameter as the working electrode as the counter electrode, and diethyl carbonate (DEC) and ethylene carbonate ( A coin-type cell was created using what dissolved LiPF 6 so that it might become 1 (mol / L) in the mixed solvent of EC) (DEC: EC = 1: 1).

그런 다음 충방전류 밀도를 0.2C으로 하고, 충전 종지 전압을 0V(Li/Li+), 방전 종지 전압을 2.0V(Li/Li+)로 하여 충방전 실험을 실시하였다. 실시예 1 및 비교예 1 내지 3에 의해 제조된 음극활물질의 합금 조성 비정질화도와 이를 이용하여 제조된 전지의 방전용량, 초기효율, 전극수명 측정 경과를 하기 표 1에 기재하였다. Then, charging and discharging experiments were carried out with a charging and discharging current density of 0.2C, a charging end voltage of 0 V (Li / Li + ), and a discharging end voltage of 2.0 V (Li / Li + ). Table 1 shows the alloy composition amorphousness of the negative electrode active materials prepared according to Example 1 and Comparative Examples 1 to 3, and the discharge capacity, initial efficiency, and electrode lifetime measurement of the battery manufactured using the same.

[표 1]TABLE 1

실시예 1Example 1 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 합금조성Alloy composition 카본코팅, B 도핑 SiOx(x=1.48)Carbon coated, B doped SiO x (x = 1.48) 카본코팅, SiCarbon Coating, Si 카본코팅 SiOx(x=1)Carbon Coating SiO x (x = 1) 카본코팅, B 도핑 SiOx(x=1.95)Carbon Coated, B Doped SiO x (x = 1.95) 방전용량(mAh/g)Discharge Capacity (mAh / g) 700700 12001200 850850 420420 초기효율(%)Initial Efficiency (%) 8888 9090 7878 7070 전극수명 (% at 100th cycle)Electrode life (% at 100th cycle) >90> 90 <40<40 <70<70 ~75To 75 비정질화도(%)Amorphous Degree (%) 8080 00 5050 7070

본 발명의 기술 범위는 상기 실시 형태에 한정되지 않고, 본 발명의 사상을 일탈하지 않는 범위 내에서 다양한 변경을 가하는 것이 가능하다. The technical scope of the present invention is not limited to the above embodiments, and various changes can be made without departing from the spirit of the present invention.

이상 상세하게 설명한 것과 같이 본 발명의 리튬 이차 전지용 음극 활물질은 B, P, Li, Ge, Al, V 또는 이들의 혼합물을 SiOx에 도핑함으로써 SiOx의 비정질화도를 높이고 Li 원자의 확산속도를 향상시킬 수 있어 리튬 이차 전지의 수명특성과 고율 충방전 특성을 우수하게 개선할 수 있다. As described in detail above, the anode active material for a lithium secondary battery of the present invention increases the amorphousness of SiO x and the diffusion rate of Li atoms by doping B, P, Li, Ge, Al, V, or a mixture thereof to SiO x . It is possible to excellently improve the life characteristics and high rate charge and discharge characteristics of the lithium secondary battery.

Claims (23)

실리콘 옥사이드에 B, P, Li, Ge, Al, V 또는 이들의 혼합물로 이루어진 군에서 선택되는 원소가 도핑되어 있는 코어물질; 및 A core material doped with silicon oxide, an element selected from the group consisting of B, P, Li, Ge, Al, V or a mixture thereof; And 상기 코어물질의 표면에 존재하는 탄소물질Carbon material present on the surface of the core material 을 포함하는 실리콘옥사이드-탄소 복합체로 이루어진 리튬 이차 전지용 음극 활물질.A negative electrode active material for a lithium secondary battery made of a silicon oxide-carbon composite comprising a. 삭제delete 제1항에 있어서, 상기 실리콘 옥사이드는 SiOx로 표시되며, 상기 x은 0.5 내지 1.5인 리튬 이차 전지용 음극 활물질.The negative active material of claim 1, wherein the silicon oxide is represented by SiO x , and x is 0.5 to 1.5. 제1항에 있어서, 상기 B, P, Li, Ge, Al, V 또는 이들의 혼합물의 도핑양은 전체 코어물질에 대하여 0 중량%를 초과하고 50 중량% 이하인 리튬 이차 전지용 음극 활물질.The negative active material of claim 1, wherein the doping amount of B, P, Li, Ge, Al, V, or a mixture thereof is more than 0 wt% and less than or equal to 50 wt% with respect to the total core material. 제4항에 있어서, 상기 B, P, Li, Ge, Al, V 또는 이들의 혼합물의 도핑양은 전체 코어물질에 대하여 10 내지 30 중량%인 리튬 이차 전지용 음극 활물질.The negative active material of claim 4, wherein the doping amount of B, P, Li, Ge, Al, V, or a mixture thereof is 10 to 30 wt% based on the total core material. 제1항에 있어서, 상기 탄소물질은 결정질 탄소 또는 비정질 탄소인 리튬 이차 전지용 음극 활물질.The negative active material of claim 1, wherein the carbon material is crystalline carbon or amorphous carbon. SiO2, Si 및 B-함유 화합물, P-함유 화합물, Li-함유 화합물, Ge-함유 화합물, Al-함유 화합물, V-함유 화합물 및 이들의 혼합물로 이루어진 군에서 선택되는 도핑원소-함유 화합물을 혼합하는 단계; A doping element-containing compound selected from the group consisting of SiO 2 , Si and B-containing compounds, P-containing compounds, Li-containing compounds, Ge-containing compounds, Al-containing compounds, V-containing compounds and mixtures thereof Mixing; 상기 혼합물을 열처리하여 B, P, Li, Ge, Al, V 또는 이들의 혼합물로 도핑된 실리콘 옥사이드의 코어물질을 제조하는 단계; Heat treating the mixture to prepare a core material of silicon oxide doped with B, P, Li, Ge, Al, V or a mixture thereof; 상기 열처리한 코어물질을 급냉시키는 단계; 및Quenching the heat-treated core material; And 상기 코어물질을 탄소물질로 코팅하여 실리콘 옥사이드-탄소의 복합체를 제조하는 단계를 포함하는 리튬 이차 전지용 음극 활물질의 제조방법.The method of manufacturing a negative active material for a lithium secondary battery comprising coating the core material with a carbon material to produce a silicon oxide-carbon composite. 제7항에 있어서, 상기 SiO2와 Si는 3:1 내지 1:1의 중량비로 혼합되는 것인 리튬 이차 전지용 음극 활물질의 제조방법.The method of claim 7, wherein the SiO 2 and Si are mixed in a weight ratio of 3: 1 to 1: 1. 제7항에 있어서, 상기 도핑원소-함유 화합물은 유리질 형성 산화물인 리튬 이차 전지용 음극 활물질의 제조 방법.The method of claim 7, wherein the doping element-containing compound is a glassy oxide. 제7항에 있어서, 상기 B-함유 화합물은 B2O3 및 B2O로 이루어진 군에서 선택되고, P-함유 화합물은 P2O5 및 P2O3로 이루어진 군에서 선택되고, Li-함유 화합물은 Li2O, Li2CO3, 및 LiOH 로 이루어진 군에서 선택되고, Ge-함유 화합물은 GeO2, Al-함유 화합물은 Al2O3, V-함유 화합물은 V2O5인 리튬 이차 전지용 음극 활물질의 제조 방법.The method of claim 7, wherein the B-containing compound is selected from the group consisting of B 2 O 3 and B 2 O, P-containing compound is selected from the group consisting of P 2 O 5 and P 2 O 3 , Li- The containing compound is selected from the group consisting of Li 2 O, Li 2 CO 3 , and LiOH, the Ge-containing compound is GeO 2 , the Al-containing compound is Al 2 O 3 , the V-containing compound is V 2 O 5 The manufacturing method of the negative electrode active material for secondary batteries. 제7항에 있어서, 상기 도핑원소-함유 화합물은 SiO2, Si 및 도핑원소-함유 화합물이 혼합된 혼합물 전체중량에 대하여 0 중량%를 초과하고 50 중량% 이하인 범위에서 첨가되는 것인 리튬 이차 전지용 음극 활물질의 제조 방법.The method of claim 7, wherein the doping element-containing compound is added in the range of more than 0% by weight and 50% by weight or less based on the total weight of the mixture of SiO 2 , Si and doping element-containing compounds Method for producing a negative electrode active material. 제7항에 있어서, 상기 도핑원소-함유 화합물은 SiO2, Si 및 도핑원소-함유 화합물이 혼합된 혼합물 전체중량에 대하여 10 내지 30 중량%로 첨가되는 것인 리튬 이차 전지용 음극 활물질의 제조 방법.The method of claim 7, wherein the doping element-containing compound is added in an amount of 10 to 30 wt% based on the total weight of the mixture of SiO 2 , Si, and the doping element-containing compound. 제7항에 있어서, 상기 열처리 온도는 600 내지 1000℃인 리튬 이차 전지용 음극 활물질의 제조 방법.The method of claim 7, wherein the heat treatment temperature is 600 to 1000 ° C. 9. 제13항에 있어서, 상기 열처리 온도는 800 내지 1000℃인 리튬 이차 전지용 음극 활물질의 제조 방법.The method of claim 13, wherein the heat treatment temperature is 800 to 1000 ° C. 15. 삭제delete 제7항에 있어서, 상기 실리콘 옥사이드는 SiOx로 표시되며, 상기 x는 0.5 내지 1.5인 리튬 이차 전지용 음극 활물질의 제조 방법.The method of claim 7, wherein the silicon oxide is represented by SiO x and x is 0.5 to 1.5. 제7항에 있어서, 상기 B, P, Li, Ge, Al, V 또는 이들의 혼합물의 도핑양은 전체 코어물질에 대하여 0 중량%를 초과하고 50 중량% 이하인 리튬 이차 전지용 음극 활물질의 제조방법.The method of claim 7, wherein the doping amount of B, P, Li, Ge, Al, V, or a mixture thereof is greater than 0 wt% and less than or equal to 50 wt% with respect to the total core material. 제17항에 있어서, 상기 B, P, Li, Ge, Al, V 또는 이들의 혼합물의 도핑양은 전체 코어물질에 대하여 10 내지 30 중량%인 리튬 이차 전지용 음극 활물질의 제조방법.The method of claim 17, wherein the doping amount of B, P, Li, Ge, Al, V or a mixture thereof is 10 to 30% by weight based on the total core material. 제7항에 있어서, 상기 탄소물질은 결정질 탄소 또는 비정질 탄소인 리튬 이차 전지용 음극 활물질의 제조방법.The method of claim 7, wherein the carbon material is crystalline carbon or amorphous carbon. 제1항 내지 제6항 중 어느 하나의 항에 따른 음극 활물질을 포함하는 음극; 리튬의 가역적인 인터칼레이션/디인터칼레이션이 가능한 양극 활물질을 포함하는 양극; 및 전해액을 포함하는 리튬 이차 전지.A negative electrode comprising the negative electrode active material according to any one of claims 1 to 6; A positive electrode including a positive electrode active material capable of reversible intercalation / deintercalation of lithium; And a lithium secondary battery comprising an electrolyte solution. 제7항에 있어서, 상기 도핑원소-함유 화합물은 SiO2, Si 및 도핑원소-함유 화합물이 혼합된 혼합물 전체중량에 대하여 10 내지 50 중량%의 범위에서 첨가되는 것인 리튬 이차 전지용 음극 활물질의 제조 방법.The method of claim 7, wherein the doping element-containing compound is prepared in the range of 10 to 50% by weight based on the total weight of the mixture of SiO 2 , Si and the doping element-containing compound to prepare a negative electrode active material for a lithium secondary battery Way. 제7항에 있어서, 상기 B, P, Li, Ge, Al, V 또는 이들의 혼합물의 도핑양은 전체 코어물질에 대하여 10 내지 50 중량%인 리튬 이차 전지용 음극 활물질의 제조방법.The method of claim 7, wherein the doping amount of the B, P, Li, Ge, Al, V or a mixture thereof is 10 to 50% by weight based on the total core material. 제1항에 있어서, 상기 B, P, Li, Ge, Al, V 또는 이들의 혼합물의 도핑양은 전체 코어물질에 대하여 10 내지 50 중량% 이하인 리튬 이차 전지용 음극 활물질.The negative active material of claim 1, wherein the doping amount of B, P, Li, Ge, Al, V, or a mixture thereof is 10 to 50 wt% or less based on the total core material.
KR1020040015478A 2004-03-08 2004-03-08 Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same KR100578870B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020040015478A KR100578870B1 (en) 2004-03-08 2004-03-08 Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
JP2005063655A JP4401984B2 (en) 2004-03-08 2005-03-08 Negative electrode active material for lithium secondary battery, negative electrode active material for lithium secondary battery, and lithium secondary battery
US11/077,377 US8709653B2 (en) 2004-03-08 2005-03-08 Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
CNB2005100640935A CN100547830C (en) 2004-03-08 2005-03-08 The negative electrode active material of chargeable lithium cell and method for making thereof and the chargeable lithium cell that comprises it
US14/261,059 US9012082B2 (en) 2004-03-08 2014-04-24 Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040015478A KR100578870B1 (en) 2004-03-08 2004-03-08 Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same

Publications (2)

Publication Number Publication Date
KR20050090218A KR20050090218A (en) 2005-09-13
KR100578870B1 true KR100578870B1 (en) 2006-05-11

Family

ID=37272334

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040015478A KR100578870B1 (en) 2004-03-08 2004-03-08 Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same

Country Status (1)

Country Link
KR (1) KR100578870B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084610A1 (en) * 2012-11-30 2014-06-05 주식회사 엘지화학 Composite for cathode active material and method for manufacturing same
US9590238B2 (en) 2012-11-30 2017-03-07 Lg Chem, Ltd. Composite for anode active material and method of preparing the same
US9806335B2 (en) 2012-11-30 2017-10-31 Lg Chem, Ltd. Composite including conductive material and binder on surface of (semi) metal oxide and method of preparing anode slurry including the same

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE555513T1 (en) * 2005-10-13 2012-05-15 3M Innovative Properties Co METHOD OF USING AN ELECTROCHEMICAL CELL
KR100759556B1 (en) 2005-10-17 2007-09-18 삼성에스디아이 주식회사 Anode active material, method of preparing the same, and anode and lithium battery containing the material
GB0601319D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
GB0709165D0 (en) 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
GB0713898D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
KR101429763B1 (en) * 2007-08-28 2014-08-19 삼성에스디아이 주식회사 Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
KR101502897B1 (en) * 2007-12-28 2015-03-17 삼성에스디아이 주식회사 Composite for anode active material, anode materials and lithium battery using the same
GB2464158B (en) 2008-10-10 2011-04-20 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB2464157B (en) 2008-10-10 2010-09-01 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material
GB2470056B (en) 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
GB2470190B (en) 2009-05-11 2011-07-13 Nexeon Ltd A binder for lithium ion rechargeable battery cells
GB201005979D0 (en) 2010-04-09 2010-05-26 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB201009519D0 (en) 2010-06-07 2010-07-21 Nexeon Ltd An additive for lithium ion rechargeable battery cells
GB201014707D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Electroactive material
GB201014706D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Porous electroactive material
KR101452027B1 (en) * 2011-06-17 2014-10-21 주식회사 엘지화학 Negative electrode active material for lithium secondary battery and lithium secondary battery comprising the same
KR101342601B1 (en) 2011-06-30 2013-12-19 삼성에스디아이 주식회사 Negative active material, manufacturing method thereof, and lithium battery containing the material
KR101201807B1 (en) 2011-08-31 2012-11-15 삼성에스디아이 주식회사 Lithium secondary battery
KR101872208B1 (en) * 2011-09-27 2018-06-29 주식회사 예일전자 Silicon oxide coated with carbon complex and method for manufacturing the same
JP6068655B2 (en) * 2013-06-19 2017-01-25 エルジー・ケム・リミテッド Negative electrode active material for lithium secondary battery, lithium secondary battery containing the same, and method for producing negative electrode active material
JP6508870B2 (en) 2013-08-14 2019-05-08 東ソー株式会社 Composite active material for lithium secondary battery and method of manufacturing the same
KR102237829B1 (en) * 2013-12-30 2021-04-08 삼성전자주식회사 Anode material for rechargeable lithium battery, manufacturing method thereof, and rechargeable lithium battery comprising the same
KR20170048184A (en) 2015-10-23 2017-05-08 주식회사 엘지화학 Negative electrode material for secondary battery, method for preparing the same and secondary battery having the same
KR102104492B1 (en) 2016-06-02 2020-04-24 주식회사 엘지화학 Anode active material, method for fabricating the same, anode comprising the same and lithium secondarty battery comprising the same
EP3343677B1 (en) 2016-06-02 2023-08-02 LG Energy Solution, Ltd. Cathode active material, cathode comprising same, and lithium secondary battery comprising same
EP3696893A4 (en) * 2017-11-24 2020-12-16 LG Chem, Ltd. Anode active material for lithium secondary battery, and preparation method therefor
KR102025150B1 (en) 2018-01-18 2019-09-25 한국과학기술연구원 Anode active material for lithium secondary battery and methods of fabricating the same
EP3817100A4 (en) * 2018-08-23 2021-10-20 Lg Chem, Ltd. Anode active material, anode comprising same, and lithium secondary battery
US20210167362A1 (en) * 2018-08-23 2021-06-03 Lg Chem, Ltd. Silicon-based composite, negative electrode comprising the same, and lithium secondary battery
CN111293284B (en) * 2018-12-07 2023-02-28 贝特瑞新材料集团股份有限公司 Negative electrode material, preparation method and application thereof
US20220069280A1 (en) * 2020-08-28 2022-03-03 GM Global Technology Operations LLC Composite electrode materials and methods of making the same
KR102546163B1 (en) * 2020-09-02 2023-06-21 한국에너지기술연구원 LITHIUM-PRE DOPING METHOD OF SiOx POWDER FOR ANODE MATERIAL OF LITHIUM SECONDARY BATTERY
WO2022097832A1 (en) * 2020-11-03 2022-05-12 (주)뉴테크엘아이비 Anode active material for lithium secondary battery, preparation method therefor, and lithium secondary battery including same
KR102601864B1 (en) * 2020-11-03 2023-11-15 (주)뉴테크엘아이비 Anode active material for lithium secondary battery, method for producing the same and lithium secondary batteries including the same
CN114497470B (en) * 2020-11-13 2024-03-29 湖南中科星城石墨有限公司 Composite material and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014084610A1 (en) * 2012-11-30 2014-06-05 주식회사 엘지화학 Composite for cathode active material and method for manufacturing same
US9590238B2 (en) 2012-11-30 2017-03-07 Lg Chem, Ltd. Composite for anode active material and method of preparing the same
US9806335B2 (en) 2012-11-30 2017-10-31 Lg Chem, Ltd. Composite including conductive material and binder on surface of (semi) metal oxide and method of preparing anode slurry including the same
US10290860B2 (en) 2012-11-30 2019-05-14 Lg Chem, Ltd. Composite for anode active material and method of preparing the same

Also Published As

Publication number Publication date
KR20050090218A (en) 2005-09-13

Similar Documents

Publication Publication Date Title
KR100578870B1 (en) Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
JP4477522B2 (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the negative electrode active material
US9012082B2 (en) Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
US10693135B2 (en) Method for producing composite, and negative electrode material for lithium ion battery
KR100738054B1 (en) Anode active material, method of preparing the same, and anode and lithium battery containing the material
KR101361567B1 (en) Composite graphite particles and use of same
KR100589309B1 (en) Negative active material for lithium secondary battery, lithium secondary battery comprising the same, and preparing method of negative active material for lithium secondary battery
JP7192499B2 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
KR100589308B1 (en) Negative active material for lithium secondary battery and lithium secondary battery comprising the same
KR20190093177A (en) Anode active material, anode and lithium secondary battery comprising the same
KR102321502B1 (en) Anode active material for lithium secondary battery, Method of making the same and Lithium secondary battery comprising the same
JP2001102049A (en) Non-aqueous electrolyte secondary battery
JP2003346907A (en) Nonaqueous electrolyte secondary battery
KR100570617B1 (en) Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
JP7334735B2 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
KR100578871B1 (en) Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
JPH06318459A (en) Lithium secondary battery
KR100570651B1 (en) Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
KR20050099697A (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same
JP4354723B2 (en) Method for producing graphite particles
JPH0927344A (en) Nonaqueous electrolyte secondary battery
KR100318378B1 (en) Lithium secondary battery
KR20060026203A (en) Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
JP3863514B2 (en) Lithium secondary battery
KR100836515B1 (en) Lithium secondary battery comprising an electrolyte for high voltage

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130422

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140423

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150421

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160419

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170424

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180503

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190502

Year of fee payment: 14