KR100552000B1 - Preparation method of the polyelectrolytes-impregnated mesoporous ceramic adsorbents for waste water treatment - Google Patents

Preparation method of the polyelectrolytes-impregnated mesoporous ceramic adsorbents for waste water treatment Download PDF

Info

Publication number
KR100552000B1
KR100552000B1 KR1020030091727A KR20030091727A KR100552000B1 KR 100552000 B1 KR100552000 B1 KR 100552000B1 KR 1020030091727 A KR1020030091727 A KR 1020030091727A KR 20030091727 A KR20030091727 A KR 20030091727A KR 100552000 B1 KR100552000 B1 KR 100552000B1
Authority
KR
South Korea
Prior art keywords
adsorbent
pdda
medium
anionic
polymer electrolyte
Prior art date
Application number
KR1020030091727A
Other languages
Korean (ko)
Other versions
KR20050060185A (en
Inventor
이종협
박종철
주지봉
김상용
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020030091727A priority Critical patent/KR100552000B1/en
Publication of KR20050060185A publication Critical patent/KR20050060185A/en
Application granted granted Critical
Publication of KR100552000B1 publication Critical patent/KR100552000B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

본 발명은 폐수처리용 흡착제의 제조방법에 관한 것으로, 기존의 흡착제로는 효율적으로 흡착시킬 수 없었던 고분자나 분자 크기가 큰 음이온성 오염 물질을 효과적으로 흡착시킬 수 있고, 흡착속도도 빠른 흡착제의 제조방법을 제공하는 것이 목적이다.The present invention relates to a method for producing an adsorbent for wastewater treatment, wherein a method for preparing an adsorbent which can effectively adsorb a polymer or an anionic contaminant having a large molecular size that could not be adsorbed efficiently with a conventional adsorbent and has a fast adsorption rate The purpose is to provide.

본 발명은 구조유도체와 전구체를 사용하여 중형기공성 세라믹을 제조하는 중형기공성 세라믹의 제조 단계(A)와; 중형기공성 세라믹의 기공 내부에 양이온성 고분자 전해질을 담지시키는 단계(B)를 포함한다. 중형기공성 세라믹은 공지의 방법에 의하여 제조하고, 양이온성 고분자 전해질은 이를테면, 폴리(디알릴디메틸 암모니움 클로라이드)(PDDA)를 담지시킨다.The present invention comprises the step (A) of producing a medium-porous ceramic to produce a medium-porous ceramic using a structural derivative and a precursor; (B) supporting the cationic polymer electrolyte in the pores of the mesoporous ceramic. The mesoporous ceramics are prepared by known methods, and the cationic polyelectrolyte supports poly (diallyldimethyl ammonium chloride) (PDDA), for example.

본 발명에 의하면 염색 공정에서 발생하는 폐수에서 음이온성 염료를 흡착시켜 제거할 수 있음은 물론 하천이나 호소의 부영양화를 유발하는 음이온성 물질인 PO4 3-, 천연유기물질 (NOM)을 흡착시켜 제거할 수 있어 하수의 고도처리가 가능할 것으로 기대된다.According to the present invention, the anionic dye may be adsorbed and removed from the wastewater generated in the dyeing process, as well as PO 4 3- , an organic substance (NOM), which is an anionic substance causing eutrophication of rivers or lakes. It is expected that the treatment of sewage will be possible.

폐수 처리, 염색 폐수, 흡착제, 중형기공성 세라믹, 고분자 전해질, 음이온성 오염물질Wastewater Treatment, Dyeing Wastewater, Adsorbent, Medium Porosity Ceramics, Polymer Electrolyte, Anionic Contaminants

Description

폐수처리용 고분자 전해질 담지 중형기공성 세라믹 흡착제의 제조방법{Preparation method of the polyelectrolytes-impregnated mesoporous ceramic adsorbents for waste water treatment}Preparation method of the polyelectrolytes-impregnated mesoporous ceramic adsorbents for waste water treatment

도 1은 중형기공성 실리카 SBA-15, 상용 실리카(CS), 양이온성 고분자 전해질 PDDA가 담지된 중형기공성 실리카 SBA-15 (이하, PDDA/SBA-15 흡착제라 함), 및 PDDA가 담지된 상용 실리카 (이하, PDDA/CS 흡착제라 함)의 기공크기분포이다.1 shows a medium porous silica SBA-15, a commercial silica (CS), a medium porous silica SBA-15 carrying a cationic polymer electrolyte PDDA (hereinafter referred to as PDDA / SBA-15 adsorbent), and a PDDA carrying Pore size distribution of commercial silica (hereinafter referred to as PDDA / CS adsorbent).

도 2는 중형기공성 실리카 SBA-15, 상용 실리카(CS), 양이온성 고분자 전해질 PDDA가 담지된 중형기공성 실리카 SBA-15(PDDA/SBA-15), 및 PDDA가 담지된 상용 실리카(PDDA/CS)의 제타 전위이다.FIG. 2 shows mesoporous silica SBA-15, commerical silica (CS), mesoporous polymer electrolyte PDDA loaded with mesoporous silica SBA-15 (PDDA / SBA-15), and PDDA loaded commercial silica (PDDA / CS) zeta potential.

도 3은 염료 Acid Red 44의 수용액에 PDDA/SBA-15 흡착제를 투입하고 염료의 농도를 경시적으로 측정한 결과이다.Figure 3 is a result of adding the PDDA / SBA-15 adsorbent to the aqueous solution of the dye Acid Red 44 and measuring the concentration of the dye over time.

도 4는 염료 Acid Blue 45의 수용액을 PDDA/SBA-15 흡착제를 충전시킨 컬럼을 통과시킨 후의 염료의 농도를 측정한 파과 곡선(Breakthrough Curve)이다.4 is a breakthrough curve measuring the concentration of the dye after passing an aqueous solution of the dye Acid Blue 45 through a column packed with a PDDA / SBA-15 adsorbent.

도 5는 PDDA/SBA-15 흡착제와 PDDA/CS 흡착제에 대한 음이온성, 양이온성, 비이온성 염료의 흡착량이다.5 is an adsorption amount of anionic, cationic and nonionic dyes for the PDDA / SBA-15 adsorbent and the PDDA / CS adsorbent.

도 6은 PDDA/SBA-15 흡착제와 PDDA/CS 흡착제에 대한 DST의 농도에 따른 흡착량이다.6 is an adsorption amount according to the concentration of DST for the PDDA / SBA-15 adsorbent and the PDDA / CS adsorbent.

도 7은 PDDA/SBA-15 흡착제에 대한 PO4 3-의 농도에 따른 흡착량이다.7 is an adsorption amount according to the concentration of PO 4 3 − to the PDDA / SBA-15 adsorbent.

본 발명은 폐수처리용 흡착제의 제조방법에 관한 것으로, 보다 상세하게는 물에서 염료 등의 음이온성 오염물을 제거하기 위한 고분자 전해질이 담지된 폐수처리용 중형기공성 세라믹 흡착제의 제조방법에 관한 것이다.The present invention relates to a method for producing an adsorbent for wastewater treatment, and more particularly, to a method for preparing a medium-sized porous ceramic adsorbent for wastewater treatment, in which a polymer electrolyte for removing anionic contaminants such as dyes from water is supported.

염색 폐수에는 다량의 염료가 포함되어 배출되는데 염료는 음이온성 염료가 가장 많이 사용되고 있고, 염색공정에 사용되는 첨가제도 DST (terephthalic acid disodium salt)와 같이 음이온성을 나타내는 물질이 많으며, 하천이나 호소의 부영양화의 원인 물질인 인이나 천연유기물질(NOM, natural organic matter)도 음이온성 물질이 많다. Dyeing wastewater contains a large amount of dyes and is discharged. Anionic dyes are the most used dyes, and the additives used in the dyeing process also contain many anionic substances such as terephthalic acid disodium salt (DST). Phosphorus and natural organic matter (NOM), which are the causes of eutrophication, are also high in anionic substances.

이러한 음이온성 오염 물질은 일반적으로 활성탄, 이온교환수지 등의 흡착제에 흡착시켜 제거하는데 이들 흡착제들은 기공의 대부분이 오염물질의 분자크기보다 작은 2nm 이하의 미세기공 영역에 분포되어 있기 때문에 비표면적이 큼에도 불구하고 흡착 용량이 작을 수밖에 없고, 흡착 속도 또한 느리다는 단점이 있다. These anionic contaminants are generally removed by adsorbing on adsorbents such as activated carbon and ion exchange resins. These adsorbents have a large specific surface area because most of the pores are distributed in the micropore region of 2 nm or less smaller than the molecular size of the contaminant. Despite this, the adsorption capacity is inevitably small, and the adsorption rate is also slow.

본 발명의 목적은 기존의 흡착제로는 효율적으로 흡착시킬 수 없었던 고분자나 분자 크기가 큰 음이온성 오염 물질을 효과적으로 흡착시킬 수 있고, 흡착속도 도 빠른 흡착제의 제조방법을 제공하는 것이다.An object of the present invention is to provide a method for preparing an adsorbent that can effectively adsorb a polymer or an anionic contaminant having a large molecular size, which has not been efficiently adsorbed with a conventional adsorbent, and has a fast adsorption rate.

본 발명은 중형기공성 세라믹의 뛰어난 기공 특성과 양이온성 고분자 전해질의 전기적인 상호 작용을 이용하면 흡착 용량이 크고 흡착 속도도 빠른 흡착제를 만들 수 있을 것이라는 가정 하에 각고의 노력 끝에 완성한 것으로, The present invention has been completed under the utmost efforts under the assumption that it is possible to make an adsorbent having a high adsorption capacity and a high adsorption rate by using the excellent pore characteristics of the medium-porous ceramic and the electrical interaction of the cationic polymer electrolyte.

구조유도체와 전구체를 사용하여 중형기공성 세라믹을 제조하는 중형기공성 세라믹의 제조 단계(A)와; A step (A) of manufacturing a medium porosity ceramic to produce a medium porosity ceramic using a structural derivative and a precursor;

중형기공성 세라믹의 기공 내부에 양이온성 고분자 전해질을 담지시키는 단계(B)를 포함한다.(B) supporting the cationic polymer electrolyte in the pores of the mesoporous ceramic.

이하, 각각의 단계를 보다 상세하게 설명한다.Hereinafter, each step will be described in more detail.

(A) 단계는 본 발명 흡착제의 담체가 되는 중형기공성 세라믹을 구조유도체와 중형기공성 세라믹 전구체 물질인 테트라알콕시실란을 사용하여 제조하는 단계로, 중형기공성 세락믹은 기공 구조가 규칙적이고 기공크기가 균일한 것이 특징이다. 이러한 중형기공성 세라믹은 흡착 용량이 크고, 흡착질이 기공 내에서 잘 확산되어 흡착 속도도 빠르다.Step (A) is a step of preparing a mesoporous ceramic, which is a carrier of the adsorbent of the present invention, using a structural derivative and a tetraalkoxysilane, which is a mesoporous ceramic precursor material, and the mesoporous ceramic has a regular pore structure and a pore structure. It is characterized by a uniform size. Such medium-porous ceramics have a large adsorption capacity, and the adsorbate diffuses well in the pores, so that the adsorption rate is also high.

중형기공성 세라믹은 이를테면, 구조 유도체를 이용하여 실리카, 알루미나, 지르코니아, 산화마그네슘, 산화티타늄, 실리카-알루미나 등의 금속 산화물로 제조하는데 기존의 알려진 중형기공성 세라믹으로는 SBA (Santa Barbara Amorphous), HMS (Hexagonal Mesoporous Silica), MCF (Mesostructured Cellular Foams) 등이 있다. 중형기공성 세라믹의 제조과정을 중형기공성 실리카의 하나인 SBA-15의 제조과정을 예로 들어 보다 상세히 설명한다.The mesoporous ceramics are made of metal oxides such as silica, alumina, zirconia, magnesium oxide, titanium oxide, silica-alumina, and the like using structural derivatives. Conventional known mesoporous ceramics include SBA (Santa Barbara Amorphous), Hexagonal Mesoporous Silica (HMS) and Mesostructured Cellular Foams (MCF). The manufacturing process of the mesoporous ceramic will be described in more detail by taking the manufacturing process of SBA-15, which is one of the mesoporous silica.

SBA-15는 중성 계면활성제인 폴리에틸렌옥사이드/폴리프로필렌옥사이드/폴리에틸렌옥사이드(PEO/PPO/PEO) 블록 공중합체를 구조유도체로 사용하고, 테트라메톡시실란, 테트라에톡시실란 등의 테트라알콕시실란을 실리카 전구체로 사용하여 제조하는데, 이를테면, 구조유도체인 PEO/PPO/PEO 블록 공중합체, 실리카 전구체인 테트라알콕시실란, 염산, 증류수를 일정 조성비로 반응시키고 숙성(aging)시킨 후, 구조유도체인 중성 계면활성제를 제거함으로써 제조된다. SBA-15의 제조과정은 후술하는 실시예에 보다 상세히 기재되어 있다.SBA-15 uses a polyethylene oxide / polypropylene oxide / polyethylene oxide (PEO / PPO / PEO) block copolymer which is a neutral surfactant as a structural derivative, and tetraalkoxysilanes such as tetramethoxysilane and tetraethoxysilane are silica. It is used as a precursor, for example, PEO / PPO / PEO block copolymer, which is a structural derivative, tetraalkoxysilane, which is a silica precursor, hydrochloric acid, and distilled water, are reacted at a predetermined composition ratio, and aged. It is prepared by removing. The manufacturing process of SBA-15 is described in more detail in the Examples below.

중형기공성 세라믹의 제조 단계에서는 사용하는 구조 유도체나 반응 조건을 달리함으로써 제조되는 중형기공성 세라믹의 기공특성 즉, 비표면적, 기공 크기, 기공 부피 등을 조절할 수 있다.In the manufacturing step of the mesoporous ceramic, it is possible to adjust the pore characteristics, ie, the specific surface area, the pore size, the pore volume, and the like of the mesoporous ceramic prepared by changing the structural derivatives and reaction conditions used.

(B) 단계는 오염 물질에 대한 흡착능을 부여하기 위하여 중형기공성 세라믹의 기공 내부에 양이온성 고분자 전해질을 담지시키는 단계이다. Step (B) is a step of supporting the cationic polymer electrolyte in the pores of the medium-porous ceramic in order to give the adsorption capacity to the contaminants.

고분자 전해질은 음이온 또는 양이온성을 나타내는 단량체를 중합하여 얻어지는 고분자로, 중합된 단량체의 수만큼의 이온성 기능기를 가지는데 본 발명에서는 양이온성 고분자 전해질을 담지시켜 중형기공성 세라믹의 기공 내부의 -OH 기에 전기적으로 결합시키는 동시에 수용액 속의 음이온을 흡착하게 하는 것이다. 고분자 전해질을 담지시키는 방법은 다음과 같다. The polymer electrolyte is a polymer obtained by polymerizing an anion or a cationic monomer, and has as many ionic functional groups as the number of polymerized monomers. In the present invention, the cationic polymer electrolyte is supported to support -OH in the pores of the medium-porous ceramic. It is electrically bonded to the group and at the same time adsorbs the anions in the aqueous solution. The method of supporting the polymer electrolyte is as follows.

용매에 고분자 전해질을 녹인 후, 중형기공성 세라믹을 용액에 넣고 충분한 시간 동안 교반하고 여과하여 고분자 전해질이 담지된 중형기공성 세라믹을 분리해낸 후, 과량으로 담지된 고분자 전해질을 용매로 세척하고 건조하면 최종적으로 고 분자 전해질이 담지된 중형기공성 세라믹 흡착제가 제조된다.After dissolving the polymer electrolyte in the solvent, the medium-porous ceramics are put in a solution, stirred for a sufficient time and filtered to separate the medium-porous ceramics loaded with the polymer electrolyte, and then the excess polymer electrolyte washed with a solvent and dried Finally, a mesoporous ceramic adsorbent carrying a high molecular electrolyte is prepared.

고분자 전해질이 담지됨으로써 중형기공성 세라믹에 양이온성 기능기가 도입되는데 이로써 본 발명에 의해 제조된 흡착제는 음이온성 흡착질에 대하여 흡착 용량이 커지고 흡착 속도가 빨라지는 것이다.By supporting the polymer electrolyte, cationic functional groups are introduced into the mesoporous ceramics. Thus, the adsorbent prepared according to the present invention increases the adsorption capacity and speeds up the adsorption for the anionic adsorbate.

음이온성 오염물질을 흡착시키기 위한 양이온성 고분자 전해질로는 이를테면, 폴리(디알릴디메틸 암모니움 클로라이드)[Poly(diallyldimethyl ammonium chloride), PDDA]를 담지시킨다.Cationic polyelectrolytes for adsorbing anionic contaminants are supported, for example, poly (diallyldimethyl ammonium chloride) (PDDA).

본 발명의 구성은 후술하는 실시예에 의하여 더욱 명확해질 것이다.The configuration of the present invention will be further clarified by the following examples.

<실시예 1><Example 1>

중형기공성 실리카 SBA-15를 제조하고, 제조된 중형기공성 실리카 SBA-15에 양이온성 고분자 전해질 폴리(디알릴디메틸 암모니움 클로라이드)(PDDA)를 담지시켜 흡착제를 제조하였다.The mesoporous silica SBA-15 was prepared, and the adsorbent was prepared by supporting the cationic polymer electrolyte poly (diallyldimethyl ammonium chloride) (PDDA) on the prepared mesoporous silica SBA-15.

1. 중형기공성 실리카 SBA-15의 제조1. Preparation of Medium Porosity Silica SBA-15

구조유도체로 플루로닉 P123 삼원 블록공중합체 (Pluronic P123, PEO20PPO70PEO20, BASF Co. 제품)를, 실리카 전구체로 테트라에톡시오르도 실리케이트 (TEOS, tetraethoxyortho silicate)를 각각 사용하였다.Pluronic P123 terpolymers (Pluronic P123, PEO 20 PPO 70 PEO 20 , manufactured by BASF Co.) were used as the structural derivatives, and tetraethoxyortho silicate (TEOS) was used as the silica precursor, respectively.

35 중량%의 염산 (비중 1.17) 186ml에 물 1,350ml를 섞은 다음 플루로닉 P123 36.0g을 용해시킨 후, TEOS 85ml를 넣고 35℃에서 24시간 동안 교반하여 TEOS의 수화 반응과 축합 반응이 일어나도록 하였다. 이어서 100℃로 승온시키고, 24시간 동안 교반하는 숙성과정을 거친 후, 여과하여 공기가 연속적으로 주입되는 가열로에서 상온에서 500℃까지 5℃/min의 속도로 승온시키고, 3시간 동안 소성하여 플루로닉 P123을 제거하였다.1,350 ml of water was added to 186 ml of 35 wt% hydrochloric acid (specific gravity 1.17), and then 36.0 g of Pluronic P123 was dissolved. Then, 85 ml of TEOS was added and stirred at 35 ° C. for 24 hours to cause hydration and condensation reaction of TEOS. It was. Subsequently, the temperature was raised to 100 ° C., and after aging for 24 hours, the mixture was filtered and heated at a rate of 5 ° C./min from room temperature to 500 ° C. in a heating furnace where air was continuously injected, and calcined for 3 hours to influenza Ronic P123 was removed.

2. 고분자 전해질의 담지2. Support of polymer electrolyte

2.0중량%의 PDDA 수용액 100ml에 SBA-15 5.0g을 넣고 24시간 동안 교반하면서 중형기공성 실리카의 기공 내부에 PDDA를 담지시킨 후, PDDA가 담지된 중형기공성 실리카를 여과하여 분리한 다음, 100ml 증류수로 3회 세척하여 과량으로 담지된 PDDA를 제거하고 상온에서 건조시켰다. 5.0 g of SBA-15 was added to 100 ml of 2.0 wt% PDDA aqueous solution, and after stirring for 24 hours, PDDA was loaded into the pores of the mesoporous silica, followed by filtration and separation of the mesoporous silica carrying the PDDA, followed by 100ml Washed three times with distilled water to remove the excess PDDA and dried at room temperature.

(비교) 상용 실리카를 담체로 한 흡착제의 제조(Comparative) Preparation of Adsorbent Based on Commercial Silica

본 발명의 PDDA/SBA-15 흡착제와 비교하기 위하여 담체로 상용 실리카 (CS, conventional silica)를 사용하여 실시예 1과 동일한 방법으로 PDDA/CS 흡착제를 제조하였다.In comparison with the PDDA / SBA-15 adsorbent of the present invention, PDDA / CS adsorbent was prepared in the same manner as in Example 1 using commercial silica (CS) as a carrier.

PDDA가 담지되지 않은 중형기공성 실리카 SBA-15, PDDA가 담지되지 않은 상용 실리카(CS), 양이온성 고분자 전해질 PDDA가 담지된 중형기공성 실리카 SBA-15(이하, PDDA/SBA-15라 함), 및 PDDA가 담지된 상용 실리카(이하, PDDA/CS라 함)의 기공크기분포를 도 1에, 제타 전위를 도 2에 도시하였다.Medium porosity silica SBA-15 without PDDA, commercial silica (CS) without PDDA, medium porosity silica SBA-15 with cationic polyelectrolyte PDDA (hereinafter referred to as PDDA / SBA-15) And pore size distribution of commercial silica (hereinafter referred to as PDDA / CS) carrying PDDA are shown in FIG. 1 and zeta potential in FIG. 2.

도 1에서 중형기공성 실리카 SBA-15와 상용 실리카 CS를 비교하면, 중형기공성 실리카 SBA-15는 기공크기가 대략 6 nm 정도로 작지만 기공크기가 비교적 균일하고, 상용 실리카 CS는 6~ 18 nm 이상의 큰 기공이 존재하지만 그 크기 분포가 넓은 것을 알 수 있다. 또한, 기공의 부피와 비표면적은 중형기공성 실리카 SBA-15가 각각 0.784cm3/g, 763m2/g인 반면에, 상용 실리카 CS는 각각 1.109cm3/g, 305m2/g으로 SBA-15의 비표면적이 CS의 두 배 이상인 것을 알 수 있다.Comparing the mesoporous silica SBA-15 with commercial silica CS in FIG. 1, the mesoporous silica SBA-15 has a pore size of about 6 nm, but the pore size is relatively uniform, and the commercial silica CS is 6-18 nm or more. Large pores exist but the size distribution is wide. In addition, the pore volume and specific surface area were 0.784 cm 3 / g and 763 m 2 / g for medium-porous silica SBA-15, respectively, while commercial silica CS was 1.109 cm 3 / g and 305m 2 / g, respectively. It can be seen that the specific surface area of 15 is more than twice the CS.

제타 전위는, 도 2에서 보는 바와 같이, 중형기공성 실리카 SBA-15와 상용 실리카 CS가 모두 음전위를 띄는데 양이온성 고분자 전해질인 PDDA가 담지되면 음에서 양으로 바뀐다. 이와 같은 표면 특성의 변화로 인하여 PDDA가 담지된 실리카는 음이온성 흡착질에 대한 강한 흡착능을 갖게 된다.Zeta potential, as shown in Figure 2, both the medium-porous silica SBA-15 and the commercial silica CS has a negative potential, but changes from negative to positive when supported by the cationic polymer electrolyte PDDA. Due to such a change in surface properties, the PDDA-supported silica has a strong adsorption capacity for the anionic adsorbate.

또, PDDA/SBA-15와 PDDA/CS를 비교하면 PDDA/SBA-15가 PDDA/CS보다 큰 양(plus)값을 갖는다. In addition, when comparing PDDA / SBA-15 and PDDA / CS, PDDA / SBA-15 has a larger plus value than PDDA / CS.

<실시예 2><Example 2>

실시예 1에서 제조된 흡착제 PDDA/SBA-15에 의한 음이온성 염료의 제거특성을 조사하였다. Removal characteristics of the anionic dye by the adsorbent PDDA / SBA-15 prepared in Example 1 were investigated.

1. 음이온성 염료에 대한 흡착 속도1. Adsorption rate for anionic dyes

염료 시료는 Acid Red 44 (C.I. 16250, Fluka Co.)를 사용하고, 흡착제는 0.1g을 사용하였다. 흡착질인 Acid Red 44를 물에 녹여 50 ppm 농도의 염료 용액 100ml를 제조한 후, 흡착제를 넣고 교반하면서 시간에 따른 염료의 농도 변화를 측정함으로써 흡착 속도를 측정하였다. The dye sample used Acid Red 44 (C.I. 16250, Fluka Co.) and 0.1g of the adsorbent. After dissolving acid red 44 as an adsorbent in water to prepare a 100 ml dye solution of 50 ppm, the adsorption rate was measured by measuring the concentration change of the dye with time while adding an adsorbent and stirring.

결과를 도 3에 도시하였다. 염료 용액에 흡착제를 투입하고 약 10분 만에 용액 속의 모든 염료가 흡착됨을 알 수 있다.The results are shown in FIG. In about 10 minutes after the adsorbent is added to the dye solution it can be seen that all the dye in the solution is adsorbed.

2. PDDA가 담지된 SBA-15 흡착제 칼럼에서의 파과 곡선2. Breakthrough Curves in SBA-15 Adsorbent Columns with PDDA

컬럼에 흡착제 PDDA/SBA-15 0.2g를 충전시키고 [1층 부피(Bed Volume)= 1.3ml] 100ppm의 Acid Blue 45(C.I. 63010, Aldrich Co.) 용액 500ml를 정량펌프를 이용하여 4 ml/min의 유량으로 통과시키면서 칼럼을 통과한 용액에서의 염료 농도를 측정하였다. 0.2 g of adsorbent PDDA / SBA-15 was charged to the column, [Bed Volume = 1.3 ml], and 500 ml of 100 ppm of Acid Blue 45 (CI 63010, Aldrich Co.) solution was used for 4 ml / min. The dye concentration in the solution passed through the column was measured while passing at a flow rate of.

결과를 도 4에 도시하였다. 도 4의 파과곡선에서 200층 부피까지는 유출수에서의 염료 농도를 0 ppm으로 유지시킬 수 있음을 알 수 있다.The results are shown in FIG. It can be seen from the breakthrough curve of FIG. 4 that the dye concentration in the effluent can be maintained at 0 ppm up to the 200 bed volume.

한편, 중형기공성 세라믹 자체만으로 흡착 실험을 한 결과, 음이온성 오염 물질들에 대한 흡착능이 거의 없는 것으로 나타났다. On the other hand, the adsorption experiments using only the medium-porous ceramics themselves showed that the adsorption capacity for the anionic contaminants is little.

<실시예 3><Example 3>

1. PDDA가 담지된 SBA-15 흡착제의 여러 가지 염료에 대한 흡착 특성1. Adsorption Characteristics for Various Dyes of SBA-15 Sorbents Supported by PDDA

본 발명의 PDDA가 담지된 SBA-15 흡착제(PDDA/SBA-15 흡착제)와 PDDA가 담지 된 상용 실리카 흡착제(PDDA/CS 흡착제)의 성능을 비교하기 위하여 음이온성 염료(A1~ A3)와, 양이온성 염료(C1~ C3)와, 비이온성 염료(N1~ N3)의 흡착량을 조사하였다. In order to compare the performance of the PDDA-supported SBA-15 adsorbent (PDDA / SBA-15 adsorbent) and the commercial silica adsorbent (PDDA / CS adsorbent) with PDDA, anionic dyes (A1 to A3) and cations The adsorption amounts of the soluble dyes (C1 to C3) and the nonionic dyes (N1 to N3) were examined.

결과를 도 5에 도시하였다. PDDA/SBA-15 흡착제와 PDDA/CS 흡착제 모두 음이온성을 나타내는 염료들(A1, A2, A3)에 대하여 높은 흡착능을 나타냈으며 양이온성 염료(C1~ C3)와, 비이온성 염료(N1~ N3)의 흡착량은 그다지 많지 않았다. 모든 경우에 있어서 PDDA/SBA-15 흡착제가 PDDA/CS 흡착제보다 흡착량이 많았다.The results are shown in FIG. Both PDDA / SBA-15 adsorbent and PDDA / CS adsorbent showed high adsorption capacity for anionic dyes (A1, A2, A3), cationic dyes (C1 to C3) and nonionic dyes (N1 to N3). The amount of adsorption of was not very high. In all cases, the amount of adsorption of PDDA / SBA-15 was higher than that of PDDA / CS.

2. PDDA가 담지된 SBA-15 흡착제의 염료 이외의 흡착질에 대한 흡착능2. Adsorption capacity of adsorbents other than dyes of SDA-15 adsorbent with PDDA

PDDA가 담지된 SBA-15와 CS 흡착제의 경우 표면 특성의 변화로 인해 음이온성 염료들에 대하여 전기적인 상호 작용에 의한 흡착능을 갖는 것으로 생각되었으며 이는 앞서의 도 2에 나타낸 제타 전위 측정 결과에 의하여 뒷받침된다.In the case of PDDA-supported SBA-15 and CS adsorbents, it was thought to have adsorption capacity by electrical interaction with anionic dyes due to the change of surface properties, which is supported by the zeta potential measurement results shown in FIG. do.

따라서 염료 이외의 다른 음이온성 물질에 대해서도 우수한 흡착능을 나타낼 것으로 생각되었으며 이를 조사하기 위하여 DST(terephthalic acid disodium salt)와 PO4 3-에 대한 흡착 특성을 조사하였다. Therefore, it was thought to show good adsorption capacity for other anionic materials other than dyes. In order to investigate this, adsorption characteristics of terephthalic acid disodium salt (DST) and PO 4 3- were investigated.

그 결과, 도 6과 도 7에서 보는 바와 같이, 본 발명의 PDDA가 담지된 SBA-15 흡착제는 DST와 PO4 3-에 대해서도 높은 흡착 용량을 갖는 것으로 나타났다.As a result, as shown in Figure 6 and Figure 7, PDDA-supported SBA-15 adsorbent was found to have a high adsorption capacity for DST and PO 4 3- .

본 발명에 의하면 많은 양의 음이온성 오염물질을 빠른 시간 내에 흡착시킬 수 있는 PDDA가 담지된 중형기공성 세라믹 흡착제를 제조할 수 있다.  According to the present invention, a medium porosity ceramic adsorbent loaded with PDDA capable of quickly adsorbing a large amount of anionic contaminants can be prepared.

본 발명에 의하여 제조된 흡착제는 염색 공정에서 발생하는 폐수에서 음이온성 염료를 흡착시켜 제거할 수 있음은 물론 하천이나 호소의 부영양화를 유발하는 음이온성 물질인 PO4 3-, 천연유기물질 (NOM)을 흡착시켜 제거할 수 있어 하수의 고도처리가 가능할 것으로 기대된다.The adsorbent prepared according to the present invention can be removed by adsorbing anionic dyes from the wastewater generated in the dyeing process, as well as PO 4 3- , an organic substance (NOM) which causes eutrophication of rivers or lakes. It is expected that the treatment of sewage will be possible because it can be removed by adsorption.

또한, 본 발명의 실시예와는 반대로 표면의 제타 전위가 플러스인 세라믹 담체에 음이온성 고분자 전해질을 담지시키면 양이온성 염료나 중금속 이온과 같은 양이온성 오염물질을 흡착시켜 제거하는 흡착제를 제조할 수도 있을 것이다.In addition, in contrast to the embodiment of the present invention, when the anionic polymer electrolyte is supported on a ceramic carrier having a positive zeta potential on its surface, an adsorbent for adsorbing and removing cationic contaminants such as cationic dyes or heavy metal ions may be prepared. will be.

Claims (3)

구조유도체와 전구체를 사용하여 중형기공성 세라믹을 제조하는 중형기공성 세라믹의 제조 단계(A)와; A step (A) of manufacturing a medium porosity ceramic to produce a medium porosity ceramic using a structural derivative and a precursor; 중형기공성 세라믹의 기공 내부에 양이온성 고분자 전해질을 담지시키는 단계(B)를 포함하는 고분자 전해질이 담지된 중형기공성 세라믹 흡착제의 제조방법.A method for producing a medium-porous ceramic adsorbent loaded with a polymer electrolyte comprising the step (B) of supporting a cationic polymer electrolyte in the pores of the medium-porous ceramic. 제1항에 있어서, 중형기공성 세라믹이 구조유도체로 폴리에틸렌옥사이드/폴리프로필렌옥사이드/폴리에틸렌옥사이드(PEO/PPO/PEO) 블록 공중합체를 구조유도체로 사용하고, 테트라알콕시실란 또는 테트라에톡시오르도 실리케이트를 실리카 전구체로 사용하여 제조되는 것을 특징으로 하는 고분자 전해질이 담지된 중형기공성 세라믹 흡착제의 제조방법.The method of claim 1, wherein the mesoporous ceramic is a structural derivative using polyethylene oxide / polypropylene oxide / polyethylene oxide (PEO / PPO / PEO) block copolymer as the structural derivative, and tetraalkoxysilane or tetraethoxyordo silicate is used. A method for producing a medium-porous ceramic adsorbent loaded with a polymer electrolyte, characterized in that it is prepared using a silica precursor. 제1항에 있어서, 양이온성 고분자 전해질로 폴리(디알릴디메틸 암모니움 클로라이드)(PDDA)를 담지시키는 것을 특징으로 하는 고분자 전해질이 담지된 중형기공성 세라믹 흡착제의 제조방법.The method according to claim 1, wherein the polyelectrolyte carries poly (diallyldimethyl ammonium chloride) (PDDA) as a cationic polymer electrolyte.
KR1020030091727A 2003-12-16 2003-12-16 Preparation method of the polyelectrolytes-impregnated mesoporous ceramic adsorbents for waste water treatment KR100552000B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030091727A KR100552000B1 (en) 2003-12-16 2003-12-16 Preparation method of the polyelectrolytes-impregnated mesoporous ceramic adsorbents for waste water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030091727A KR100552000B1 (en) 2003-12-16 2003-12-16 Preparation method of the polyelectrolytes-impregnated mesoporous ceramic adsorbents for waste water treatment

Publications (2)

Publication Number Publication Date
KR20050060185A KR20050060185A (en) 2005-06-22
KR100552000B1 true KR100552000B1 (en) 2006-02-20

Family

ID=37252923

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030091727A KR100552000B1 (en) 2003-12-16 2003-12-16 Preparation method of the polyelectrolytes-impregnated mesoporous ceramic adsorbents for waste water treatment

Country Status (1)

Country Link
KR (1) KR100552000B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101334864B1 (en) 2011-06-03 2013-11-29 한국지질자원연구원 Activated cabon including cationic polymer for removing anionic contaminant and Method for water treatment using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100608482B1 (en) * 2005-06-10 2006-08-02 한양대학교 산학협력단 Proton exchange membrane comprising compatibilizer and fuel cell comprising the same
KR100803938B1 (en) * 2006-12-13 2008-02-18 한국화학연구원 Mesoporous silica material for adsorbent of water in low temperature
CN114849677B (en) * 2022-06-10 2024-01-26 重庆大学 Phosphate adsorption material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101334864B1 (en) 2011-06-03 2013-11-29 한국지질자원연구원 Activated cabon including cationic polymer for removing anionic contaminant and Method for water treatment using the same

Also Published As

Publication number Publication date
KR20050060185A (en) 2005-06-22

Similar Documents

Publication Publication Date Title
Hamoudi et al. Adsorption of nitrate and phosphate ions from aqueous solutions using organically-functionalized silica materials: Kinetic modeling
KR101960340B1 (en) Composite adsorbent media for removing the nitrogen and phosphorus compounds and preparing method for the same
CN112058235B (en) Copper organic framework-silicon oxide porous composite material and preparation method and application thereof
CN108579684B (en) Method for removing heavy metal sewage and organic pollutants thereof by using modified spherical porous silica
KR101404484B1 (en) Preparation method of n-doped activated carbons for carbon dioxide capture
CN112844301B (en) Dimer carboxyl adsorbent and preparation method and application thereof
US6673246B2 (en) Reusable polysilsesquioxane adsorbents for pollutants
KR100390321B1 (en) The selective adsorption of heavy metal ions using molecular-imprinted adsorbents synthesized with low cost silica sources
CN107207255B (en) Porous carbon body, method for producing same, ammonia adsorbent, carbon canister, and method for producing same
KR20010086230A (en) Chemically surface modified gel (csmg) and method of making and of using same in metal removal from liquid system
CN111686693A (en) Hierarchical porous MOFs material and preparation method and application thereof
CN114853113B (en) Method for degrading antibiotics in water body by using trithiophene covalent organic framework photocatalyst
KR100552000B1 (en) Preparation method of the polyelectrolytes-impregnated mesoporous ceramic adsorbents for waste water treatment
Martel et al. Sorption of aromatic compounds in water using polymer sorbents containing amino groups
JP6042922B2 (en) Porous carbon, production method thereof, and ammonia adsorbent
Krishnan et al. Sulfonated mesoporous polystyrene-1D multiwall carbon nanotube nanocomposite as potential adsorbent for efficient removal of xylene isomers from aqueous solution
CN112661968B (en) Method for preparing MOF adsorption material
CN115090269B (en) Application of super-crosslinked polyaniline with good chemical stability in wastewater treatment
JP5059428B2 (en) Method for producing dual pore silica
JPH08173797A (en) Adsorbent
CN112791709B (en) Sulfonic conjugated microporous polymer, preparation method and application thereof
JP4315337B2 (en) Non-particulate organic porous material having optical resolution and method for producing the same
CN114014966A (en) Amide group modified ultrahigh cross-linked adsorption resin and preparation method and application thereof
CN112934169A (en) Silicon-based mesoporous microsphere for rapidly adsorbing and removing inorganic phosphorus and preparation method thereof
CN110498473A (en) A method of removal organic pollutants

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140206

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141001

Year of fee payment: 18