KR100522781B1 - Process for preparing dimethyl carbonate using K/MgO catalyst - Google Patents

Process for preparing dimethyl carbonate using K/MgO catalyst Download PDF

Info

Publication number
KR100522781B1
KR100522781B1 KR10-2002-0064268A KR20020064268A KR100522781B1 KR 100522781 B1 KR100522781 B1 KR 100522781B1 KR 20020064268 A KR20020064268 A KR 20020064268A KR 100522781 B1 KR100522781 B1 KR 100522781B1
Authority
KR
South Korea
Prior art keywords
catalyst
reaction
potassium
mgo
dimethyl carbonate
Prior art date
Application number
KR10-2002-0064268A
Other languages
Korean (ko)
Other versions
KR20040034183A (en
Inventor
안병성
이병권
한만석
오광석
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR10-2002-0064268A priority Critical patent/KR100522781B1/en
Publication of KR20040034183A publication Critical patent/KR20040034183A/en
Application granted granted Critical
Publication of KR100522781B1 publication Critical patent/KR100522781B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/10Magnesium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • C07C2523/04Alkali metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 칼륨 담지 촉매를 이용한 디메틸카보네이트의 제조방법에 관한 것으로서, 더욱 상세하게는 칼륨이 담지된 마그네슘옥사이드(K/MgO)의 불균일 촉매 존재하에서 에틸렌카보네이트를 메탄올으로 에스테르 교환반응시켜 온화한 반응 조건에서도 짧은 시간에 높은 수율로 디메틸카보네이트를 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing dimethyl carbonate using a potassium-supported catalyst, and more particularly, to transesterification of ethylene carbonate with methanol in the presence of a heterogeneous catalyst of potassium-supported magnesium oxide (K / MgO), even under mild reaction conditions. A method for preparing dimethyl carbonate in high yield in a short time.

본 발명에 따른 칼륨이 담지된 마그네슘옥사이드(K/MgO) 촉매는 칼륨(K) 담지량을 1.0 ∼ 10 중량%로 하고 소성온도를 550 ∼ 600 ℃로 하여 제조된 불균일계 촉매로, 에스테르 교환반응에 사용되어서는 100 ℃ 이하의 낮은 온도에서 높은 촉매 활성을 나타내며 1시간 이내에 50% 이상의 전환율을 나타내고, 반응 후에는 별도의 촉매분리 및 회수공정이 필요로 하지 않는 우수성이 있다.Potassium-supported magnesium oxide (K / MgO) catalyst according to the present invention has a potassium (K) loading amount of 1.0 to 10% by weight and a firing temperature of 550 to 600 It is a heterogeneous catalyst prepared at ℃, which is used for transesterification reaction, shows high catalytic activity at low temperature below 100 ℃ and shows conversion rate over 50% within 1 hour, and after the reaction, separate catalyst separation and recovery process There is excellence that is not needed.

Description

칼륨 담지 촉매를 이용한 디메틸카보네이트의 제조방법{Process for preparing dimethyl carbonate using K/MgO catalyst}Process for preparing dimethyl carbonate using K / MgO catalyst

본 발명은 칼륨 담지 촉매를 이용한 디메틸카보네이트의 제조방법에 관한 것으로서, 더욱 상세하게는 칼륨이 담지된 마그네슘옥사이드(K/MgO)의 불균일 촉매 존재하에서 에틸렌카보네이트를 메탄올으로 에스테르 교환반응시켜 온화한 반응 조건에서도 짧은 시간에 높은 수율로 다음 화학식 1로 표시되는 디메틸카보네이트를 제조하는 방법에 관한 것이다.The present invention relates to a method for preparing dimethyl carbonate using a potassium-supported catalyst, and more particularly, to transesterification of ethylene carbonate with methanol in the presence of a heterogeneous catalyst of potassium-supported magnesium oxide (K / MgO), even under mild reaction conditions. It relates to a method for preparing dimethyl carbonate represented by the following formula (1) in a high yield in a short time.

디메틸카보네이트는 독성이 강한 포스겐을 대체하여 사용할 수 있으며, 폴리카보네이트와 같은 고분자 합성이나 제약공정에서의 중간체로서는 물론 메틸화제, 카르보닐화제 등으로서의 그 응용범위가 매우 넓다. 현재까지 알려진 디메틸카보네이트의 제조방법은 매우 다양한 바, 예를 들면 메탄올과 독성이 강한 포스겐을 반응시키는 방법, 일산화탄소와 산소를 메탄올과 반응시키는 방법, 그리고 이산화탄소와 메탄올을 반응시키는 방법 등이 여러 특허나 문헌을 통하여 제안되고 있다. 최근에는 환경공해 물질로서 이산화탄소의 저감과 관련하여 이산화탄소를 원료로 사용하는 디메틸카보네이트의 제조 기술이 주목의 대상이 되고 있으며, 이에 대한 많은 연구들이 수행되고 있다.Dimethyl carbonate can be used as a substitute for toxic phosgene, and has a wide range of application as a methylating agent, a carbonylating agent, etc. as well as intermediates in polymer synthesis or pharmaceutical process such as polycarbonate. There are many known methods for producing dimethyl carbonate, for example, a method of reacting toxic phosgene with methanol, a method of reacting carbon monoxide and oxygen with methanol, and a method of reacting carbon dioxide with methanol. Proposed through the literature. Recently, a technology for producing dimethyl carbonate using carbon dioxide as a raw material has been attracting attention in connection with the reduction of carbon dioxide as an environmental pollutant, and many studies have been conducted.

이산화탄소를 원료로 사용하는 디메틸카보네이트의 제조방법은 다음에 나타낸 바와 같은 2 단계 반응으로 이루어진다. The method for producing dimethyl carbonate using carbon dioxide as a raw material consists of a two step reaction as shown below.

제 1반응은 에틸렌옥사이드와 이산화탄소를 반응시켜 에틸렌카보네이트를 제조하는 반응이고, 제 2반응은 에틸렌카보네이트와 메탄올을 에스테르 교환반응하여 디메틸카보네이트를 제조하는 반응이다. 통상적으로 상기 제 2반응인 에스테르 교환반응은 촉매 존재하에서 수행하며, 활성이 우수한 촉매 개발과 관련하여서도 많은 연구가 진행되어 왔다. 상기 에스테르 교환반응용 촉매로서는 현실적으로 유용한 반응속도와 수율 향상효과를 얻기 위해서 균일계 액상촉매가 제안될 수 있으나, 균일계 촉매를 사용하게 되면 반응종료 후에 반응 생성물로부터 촉매를 분리하기 위한 별도의 장치 및 설비가 요구된다. 이에 균일계 촉매를 대신할 수 있는 불균일계 촉매 개발이 절실히 요구되고 있으나, 현재까지 개발된 불균일계 촉매로서는 만족할만한 촉매활성을 얻을 수 없었다.The first reaction is a reaction for producing ethylene carbonate by reacting ethylene oxide and carbon dioxide, and the second reaction is a reaction for producing dimethyl carbonate by transesterifying ethylene carbonate and methanol. Typically, the second reaction, transesterification, is carried out in the presence of a catalyst, and many studies have been conducted regarding the development of a catalyst having excellent activity. As the transesterification catalyst, a homogeneous liquid catalyst may be proposed in order to obtain a practically useful reaction rate and yield improvement effect. However, when the homogeneous catalyst is used, a separate device for separating the catalyst from the reaction product after the reaction is finished; Equipment is required. Accordingly, there is an urgent need for development of heterogeneous catalysts that can replace homogeneous catalysts, but satisfactory catalytic activity has not been obtained as heterogeneous catalysts developed to date.

에스테르 교환반응용 불균일계 촉매로서 3급아민, 4급암모늄염, 술폰산, 카르복시산이 포함된 이온교환수지, 알칼리 금속, 알칼리토금속, 규산염이 담지된 실리카, 또는 암모늄 이온 교환된 제올라이트를 사용하는 방법이 알려져 있다[미국특허 제4,691,041호 및 일본공개특허 소64-31737호]. 상기 촉매를 사용하는 방법에서는 50 ∼ 140 ℃ 온도로 3 ∼ 20 시간 에스테르 교환반응을 수행하고 있으며, 이러한 반응 조건에서의 수율, 전환율 등에 대해서는 구체적으로 명시하지는 않았으나 제시된 가스크로마토그래피 분석결과로 보면 에틸렌카보네이트의 전환율이 약 39 ∼ 50% 이었다. 또한, 상기 방법에 의하면 높은 수율을 얻기 위해서는 높은 반응 온도(100 ℃ 이상)와 긴 반응시간(약 20 시간)을 필요로 하는 문제점을 안고 있다.As a heterogeneous catalyst for transesterification reaction, it is known to use a tertiary amine, quaternary ammonium salt, sulfonic acid, ion exchange resin containing carboxylic acid, alkali metal, alkaline earth metal, silica loaded silicate, or ammonium ion exchanged zeolite. [US Pat. No. 4,691,041 and Japanese Laid-Open Patent Publication No. 64-31737]. In the method using the catalyst, 50 to 140 The transesterification was carried out at a temperature of 3 ° C. for 20 hours, and the yield, conversion rate, and the like under these reaction conditions were not specified, but the gas chromatography analysis showed that the conversion of ethylene carbonate was about 39-50%. In addition, according to the above method, in order to obtain a high yield, there is a problem of requiring a high reaction temperature (100 ° C. or more) and a long reaction time (about 20 hours).

포스핀 고분자 계열의 촉매로서 트리페닐포스핀이 치환된 스타이렌-디비닐벤젠 공중합체를 이용하는 방법이 공지되어 있다[미국특허 제 5,214,182]. 상기 방법에서는 반응온도를 80 ∼ 140 ℃로 하여 수 시간동안 반응을 수행하는 것으로 명시되었으나, 약 11 ∼ 85 시간으로 추정되는 반응시간에서 통상적으로 약 3 ∼ 51%의 에틸렌카보네이트의 전환율을 보이고 있다. 특히, 상기 방법은 98% 이상의 디메틸카보네이트의 선택도를 보이는 것을 기술하고 있으나, 전체적으로 낮은 수율을 면치 못하고 있으며, 또한 높은 수율을 얻기 위해서는 100 ℃ 이상의 반응온도와 매우 긴 반응시간을 요구하는 단점이 있다.It is known to use a styrene-divinylbenzene copolymer substituted with triphenylphosphine as a catalyst of the phosphine polymer series [US Pat. No. 5,214,182]. In the above method, the reaction temperature is 80 to 140. Although it was specified that the reaction was carried out for several hours at ℃, the conversion time of ethylene carbonate of about 3 to 51% is generally shown at the reaction time estimated to be about 11 to 85 hours. In particular, the method described above shows a selectivity of dimethyl carbonate of 98% or more, but it has a disadvantage of requiring a low yield overall, and also requires a reaction temperature of 100 ° C. or more and a very long reaction time in order to obtain a high yield. .

그밖에도, Pb가 함유된 무기화합물을 불균일 촉매로서 사용한 예가 있다[일본공개특허 평4-9356]. 상기 방법에서는 PbO2, Pb(OH)2 등의 Pb 계열의 화합물을 촉매로 이용하여, 30 ∼ 300 ℃ 온도로 0.5 ∼ 40 시간 반응시켰을 때 디메틸카보네이트의 수율이 37 ∼ 39%가 얻어진다고 기술하고 있으나, 이 역시 낮은 촉매활성를 보여주고 있으며 높은 반응온도와 긴 반응시간을 요구하고 있다.In addition, there is an example in which an inorganic compound containing Pb is used as a heterogeneous catalyst (Japanese Patent Laid-Open No. 4-9356). In the above method, Pb-based compounds such as PbO 2 and Pb (OH) 2 are used as catalysts, and 30 to 300. It is described that the yield of dimethyl carbonate is 37-39% when the reaction is carried out at a temperature of 0.5 to 40 hours, but it also shows low catalytic activity and requires high reaction temperature and long reaction time.

최근에는 이트륨(Y), 란타늄(La), 세륨(Ce)의 희토류 계열의 옥사이드[미국특허 제5,430,170호], K, Na, Ca 등이 담지된 A형 제올라이트[미국특허 제5,436,362호] 등의 무기화합물을 촉매로 사용하는 방법이 알려져 있다. 미국특허 제5,430,170호 방법에서는 100 ∼ 160 ℃ 온도로 5 ∼ 100 시간 반응시켰을 때 58 ∼ 59%의 에틸렌카보네이트의 전환율과 32%의 디메틸카보네이트 수율이 얻어지는 것으로 발표하고 있으나, 부반응에 의해 디메틸카보네이트의 수율이 낮아지는 문제점을 안고 있다. 미국특허 제5,436,362호에서는 50 ∼ 160 ℃ 온도로 2 ∼ 50 시간 반응시켰을 때 통상적으로 1.6 ∼ 57%의 에틸렌카보네이트의 전환율이 얻어진다고 기술하고 있으나, 앞서 언급된 바와 같이 높은 수율을 얻기 위해서는 높은 온도와 특히, 긴 반응시간을 필요로 하는 문제점이 있다.Recently, rare earth oxides of yttrium (Y), lanthanum (La), and cerium (Ce) [US Pat. No. 5,430,170], A-type zeolites carrying K, Na, Ca and the like [US Pat. No. 5,436,362] It is known to use inorganic compounds as catalysts. In the method of U.S. Patent No. 5,430,170, 100 to 160 It is reported that the conversion of ethylene carbonate of 58 to 59% and the yield of dimethyl carbonate of 32% are obtained when the reaction is carried out at a temperature of 5 ° C. for 100 hours. However, the side reaction causes a problem of lowering the yield of dimethyl carbonate. US Patent No. 5,436,362, 50 to 160 It is described that the conversion of ethylene carbonate of 1.6 to 57% is generally obtained when the reaction is carried out at a temperature of 2 to 50 hours, but as mentioned above, in order to obtain a high yield, a high temperature and in particular, a long reaction time are required. There is a problem.

이상에서 서술한 바와 같이, 에틸렌카보네이트로부터 디메틸카보네이트를 제조하는 에스테르 교환반응용 촉매가 다양하게 개발되어 있고, 상기한 공지의 촉매를 사용하여 50 ∼ 160 ℃ 범위에서 수 십 시간 이상 반응시켰을 때, 50 ∼ 60%의 에틸렌카보네이트의 전환율과 약 30 ∼ 50% 정도의 수율을 나타내고 있는 바, 전환율은 대체로 높은 편이나 부반응에 따른 수율이 상당히 떨어지는 큰 문제점을 갖고 있다.As described above, various catalysts for transesterification reactions for producing dimethyl carbonate from ethylene carbonate have been developed, and 50 to 160 using the known catalysts described above. When reacted for several decades in the range of ℃, the conversion rate of 50 to 60% of ethylene carbonate and the yield of about 30 to 50% are shown. The conversion rate is generally high, but the yield of the side reaction is considerably decreased. Have

이상에서 살펴본 바와 같이, 에틸렌카보네이트를 에스테르 교환반응하여 디메틸카보네이트를 제조하는 종래 제조방법은 그 반응온도가 비교적 높고 선택성과 수율이 낮으며 반응시간이 오래 걸리는 문제점이 있는 것으로 지적되어 왔고, 본 발명에서는 상기한 종래 제조방법상의 문제를 해결하여 보다 온화한 반응조건에서 빠른 시간 내에 높은 수율로 디메틸카보네이트를 제조하는 방법을 개발한 것이다.As described above, it has been pointed out that the conventional production method for preparing dimethyl carbonate by transesterification of ethylene carbonate has a relatively high reaction temperature, low selectivity and low yield, and a long reaction time. Solving the problems in the conventional manufacturing method described above was to develop a method for producing dimethyl carbonate in high yield within a short time under milder reaction conditions.

따라서, 본 발명은 칼륨이 담지된 마그네슘옥사이드의 불균일 촉매를 사용하여 보다 온화한 반응 조건으로 에틸렌카보네이트의 에스테르 교환반응을 수행하여 높은 수율과 전환율로 디메틸카보네이트를 제조하는 방법을 제공하는데 그 목적이 있다. Accordingly, an object of the present invention is to provide a method for producing dimethyl carbonate with high yield and conversion rate by performing transesterification of ethylene carbonate under milder reaction conditions using a heterogeneous catalyst of potassium oxide supported magnesium oxide.

본 발명은 촉매 존재하에 에틸렌카보네이트와 메탄올을 에스테르 교환반응하여 디메틸카보네이트를 제조하는 방법에 있어서, 상기 촉매로는 칼륨이 함유된 마그네슘옥사이드(K/MgO)를 사용하는데 그 특징이 있다. The present invention is a method for producing dimethyl carbonate by transesterification of ethylene carbonate and methanol in the presence of a catalyst, the catalyst is characterized by using magnesium oxide (K / MgO) containing potassium.

이상에서 설명한 바와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.The present invention as described above is described in more detail as follows.

본 발명이 특징적으로 사용하고 있는 칼륨이 함유된 마그네슘옥사이드(K/MgO) 촉매는 높은 활성을 나타낼 뿐만 아니라 불균일계 촉매로서 반응 종료후에 반응생성물과의 분리가 용이하고 재생처리가 용이하여 경제성 있는 촉매라할 수 있다.Potassium-containing magnesium oxide (K / MgO) catalyst, which is characteristically used in the present invention, exhibits high activity and is a heterogeneous catalyst that is easy to separate from the reaction product after the reaction and is easy to be regenerated and economical. It can be called.

K/MgO 촉매는 분말 혹은 성형된 산화마그네슘(MgO)을 탄산칼륨(K2CO3) 등의 칼륨염 수용액에 함침시켜 적정량의 K를 MgO의 표면에 포함시킴으로써 제조된다. K/MgO 상에서 촉매로 작용하는 칼륨(K) 성분은 반응물에 녹지 않으면서도 반응표면이 염기성이 되도록 유지하여 에스테르 교환반응을 촉진하는 것이다. 특히 본 발명에 따른 에스테르 교환반응을 수행함에 있어 칼륨 전구체의 지지체로서 산화마그네슘(MgO)의 선택 사용에 특이성이 있는 바, 칼륨염을 담지하는 지지체 선택에 따라 촉매 활성은 크게 달라지며 이는 실험에 의하지 않고는 쉽게 확인할 수 없는 것이다.A K / MgO catalyst is prepared by impregnating powder or molded magnesium oxide (MgO) with an aqueous potassium salt solution such as potassium carbonate (K 2 CO 3 ) to include an appropriate amount of K on the surface of MgO. The potassium (K) component, which acts as a catalyst on the K / MgO, promotes transesterification by keeping the reaction surface basic while insoluble in the reactants. In particular, in performing the transesterification reaction according to the present invention, the specificity of the use of magnesium oxide (MgO) as a support for the potassium precursor is specific, and the catalytic activity varies greatly depending on the support for supporting the potassium salt. It is not easy to see without.

본 발명에 따른 K/MgO 촉매는 다음과 같이 제조된다. 촉매 전구체로서 K2CO3를 적정 담지에 필요한 양 만큼 정량하여 증류수에 녹여 K2CO3 용액을 제조하여 사용하였다. 지지체로 사용하는 MgO 분말을 약알카리 수용액으로 세척하고 수세하여 건조시킨다. 건조된 MgO 분말에 K2CO3 용액을 함침시킨 후, 상온에서 건조시킨 후, 100 ℃에서 1일 건조시킨다. K/MgO 촉매 전체 무게를 기준으로 칼륨(K)의 담지량은 1.0 ∼ 10 중량% 바람직하기로는 3 ∼ 7 중량% 범위로 유지하는 바, 칼륨(K)의 담지량이 1.0 중량% 미만이면 요구되는 촉매효과를 기대할 수 없고, 10 중량%를 초과하여 과다하게 함유되면 오히려 촉매 활성점 감소의 문제가 있다. 550 ∼ 600 ℃ 온도에서 3 ∼ 5 시간 소성시켜 촉매를 제조한다.K / MgO catalyst according to the present invention is prepared as follows. As a catalyst precursor, K 2 CO 3 was quantified in an amount necessary for proper loading, dissolved in distilled water to prepare a K 2 CO 3 solution. The MgO powder used as a support is washed with a weak alkaline aqueous solution, washed with water and dried. The dried MgO powder was impregnated with a K 2 CO 3 solution, dried at room temperature, and then dried at 100 ° C. for 1 day. The amount of potassium (K) supported on the basis of the total weight of the K / MgO catalyst is maintained in the range of 1.0 to 10% by weight, preferably 3 to 7% by weight, so that the amount of potassium (K) supported is less than 1.0% by weight. If the effect is not expected and is excessively contained in excess of 10% by weight, there is a problem of reducing the catalytically active site. 550-600 The catalyst is prepared by calcining at a temperature of 3 to 5 hours.

그리고, 상기 방법으로 제조한 K/MgO 촉매를 사용하여 80 ∼ 100 ℃의 온도 및 반응물 자체의 증기압 압력 분위기에서 메탄올과 에틸렌카보네이트 간의 에스테르 교환반응을 실시한다. 상기 에스테르 교환반응 결과 1 시간 이내에 50% 이상의 전환율을 나타내며, 반응은 2 시간이내 완결이 가능하다. 반응이 끝난 후 가스크로마토그래피를 이용하여 분석하고 수율을 계산하였다. 에틸렌카보네이트(EC)의 전환율, 디메틸카보네이트(DMC)의 선택도와 수율은 각각 다음 수학식 1 내지 3에 의해 계산하였다.Then, transesterification reaction between methanol and ethylene carbonate is carried out using a K / MgO catalyst prepared by the above method at a temperature of 80 to 100 ° C. and a vapor pressure pressure atmosphere of the reactant itself. The transesterification result shows a conversion rate of 50% or more within 1 hour, the reaction can be completed within 2 hours. After the reaction was analyzed using gas chromatography to calculate the yield. Conversion rate of ethylene carbonate (EC), selectivity and yield of dimethyl carbonate (DMC) were respectively calculated by the following equations (1) to (3).

상기한 바와 같은 본 발명은 다음의 실시예에 의거하여 더욱 상세히 설명하겠는 바, 본 발명이 이들 실시예에 의해 한정되는 것은 아니다.The present invention as described above will be described in more detail based on the following examples, but the present invention is not limited to these examples.

기초 실시예Basic Example

본 발명을 실시하기 전에 MgO 등의 지지체들이 에스테르 교환반응에 미치는 영향을 확인하기 위하여 다음과 같은 기초실험을 실시하였다. Before carrying out the present invention, the following basic experiments were conducted to confirm the effects of supports such as MgO on the transesterification reaction.

100 mL 고압 반응기에 에틸렌카보네이트(27.28 g, 0.31 mol), 메탄올(39.68 g, 1.24 mol) 및 다음 표 1에 나타낸 지지체를 반응물 무게의 1.5 중량% 넣은 다음, 질소가스를 이용하여 공기성분을 제거하였다. 온도를 100 ℃로 올린 후 반응압력을 자체 증기압으로 유지하였다. 100 ℃에서 1 시간동안 반응시킨 후 반응기를 실온으로 냉각하여 액상의 생성물을 가스 크로마토그래피로 분석하였다.In a 100 mL high pressure reactor, ethylene carbonate (27.28 g, 0.31 mol), methanol (39.68 g, 1.24 mol) and the support shown in Table 1 were added 1.5 wt% of the weight of the reactant, and then air components were removed using nitrogen gas. . Temperature up to 100 After raising to ℃, the reaction pressure was maintained at its own vapor pressure. 100 After reacting at 1 ° C. for 1 hour, the reactor was cooled to room temperature and the liquid product was analyzed by gas chromatography.

다음 표 1은 여러 금속산화물에 대한 반응 특성을 비교하기 위해 실시한 기초실험 수행 결과이다.Table 1 below shows the results of basic experiments conducted to compare the reaction characteristics of various metal oxides.

지지체Support 에틸렌카보네이트 전환율(%)Ethylene Carbonate Conversion (%) 디메틸카보네이트 선택도(%)Dimethylcarbonate Selectivity (%) 디메틸카보네이트 수율(%)Dimethylcarbonate yield (%) MgOMgO 6.25%6.25% 98.4098.40 6.156.15 TiO2 TiO 2 4.214.21 97.3997.39 4.104.10 SiO2-Al2O3 SiO 2 -Al 2 O 3 4.864.86 93.6293.62 4.554.55 SiO2 SiO 2 3.543.54 95.4895.48 3.383.38 γ- Al2O3 γ-Al 2 O 3 6.256.25 79.6879.68 4.984.98

상기 표 1에 의하면, 금속산화물만으로는 촉매성능이 매우 낮았으며, 여러 금속산화물 중에서도 MgO가 다소 활성이 높은 것을 확인할 수 있었으나 차이는 크지 않았다.According to Table 1, the catalytic performance was very low only with the metal oxide, MgO was found to be somewhat higher activity among the various metal oxides, but the difference was not large.

실시예 1Example 1

지지체로 사용하는 MgO 분말(시약용 98% 순도, Nakarai Chemicals Ltd. 제품)을 0.01% 수산화나트륨 수용액으로 세척하고 수세하여 건조시켰다. 건조된 MgO 분말에 K2CO3 용액을 전체 촉매 무게를 기준으로 칼륨의 담지량이 5.13 중량% 되도록 함침시킨 후, 상온에서 건조하고 100 ℃에서 1일 건조시켰다. 그리고, 550 ℃ 온도에서 3 시간 소성시켜 K/MgO 촉매를 제조하였다.MgO powder (98% purity for reagents, Nakarai Chemicals Ltd.) used as a support was washed with 0.01% aqueous sodium hydroxide solution, washed with water and dried. The dried MgO powder was impregnated with a K 2 CO 3 solution so that the supported amount of potassium was 5.13 wt% based on the total catalyst weight, and then dried at room temperature and dried at 100 ° C. for 1 day. Then, the mixture was calcined at 550 ° C. for 3 hours to prepare a K / MgO catalyst.

100 mL 고압 반응기에 에틸렌카보네이트(27.28 g, 0.31 mol), 메탄올(39.68 g, 1.24 mol) 및 반응물 무게의 1.5 중량%에 해당하는 양의 K/MgO(1.0 g)를 넣은 다음, 질소가스를 이용하여 공기성분을 제거하였다. 온도를 100 ℃로 올린 후 반응압력을 자체 증기압으로 유지하였다. 100 ℃에서 1 시간 동안 반응시킨 후 반응기를 실온으로 냉각하여 액상의 생성물을 가스 크로마토그래피로 분석하였다.In a 100 mL high-pressure reactor, ethylene carbonate (27.28 g, 0.31 mol), methanol (39.68 g, 1.24 mol) and K / MgO (1.0 g) in an amount corresponding to 1.5 wt% of the weight of the reactant were added, followed by using nitrogen gas. Air component was removed. Temperature up to 100 After raising to ℃, the reaction pressure was maintained at its own vapor pressure. 100 After reacting at 1 ° C. for 1 hour, the reactor was cooled to room temperature and the liquid product was analyzed by gas chromatography.

그 결과, 에틸렌카보네이트의 전환율은 52.91% 이었고, 디메틸카보네이트의 선택도는 99.34% 이었으며, 디메틸카보네이트의 수율은 52.56% 이었다. As a result, the conversion of ethylene carbonate was 52.91%, the selectivity of dimethyl carbonate was 99.34%, and the yield of dimethyl carbonate was 52.56%.

비교예 1 ∼ 4 : 산화물 지지체에 따른 칼륨 담지 촉매의 활성 변화Comparative Examples 1 to 4: Activity Change of Potassium Supported Catalyst According to Oxide Support

상기 실시예 1과 동일한 방법으로 에스테르 교환반응을 수행하되, 지지체를 각각 달리하여 제조한 촉매의 반응특성을 서로 비교하였다. 즉, 지지체로서 SiO2, TiO2, Al2O3, 활성탄(AC)을 각각 사용하여 제조한 칼륨 담지 촉매를 제조하여 사용하였다. 상기 실시예 1과 동일한 반응 실험을 행한 결과를 다음 표 2에 나타내었다.The transesterification was carried out in the same manner as in Example 1, but the reaction characteristics of the catalysts prepared by different supports were compared with each other. That is, a potassium supported catalyst prepared by using SiO 2 , TiO 2 , Al 2 O 3 , and activated carbon (AC) as a support was used. The results of the same reaction experiments as in Example 1 are shown in Table 2 below.

구 분division 촉매catalyst K 담지량(중량%)K loading amount (% by weight) 에틸렌카보네이트 전환율(%)Ethylene Carbonate Conversion (%) 디메틸카보네이트 선택도(%)Dimethylcarbonate Selectivity (%) 디메틸카보네이트 수율(%)Dimethylcarbonate yield (%) 실시예 1Example 1 K/MgOK / MgO 5.135.13 52.9152.91 99.3499.34 52.5652.56 비교예 1Comparative Example 1 K/SiO2 K / SiO 2 4.254.25 22.6322.63 99.1299.12 22.4322.43 비교예 2Comparative Example 2 K/TiO2 K / TiO 2 4.214.21 37.3837.38 99.4199.41 37.1637.16 비교예 3Comparative Example 3 K/γ-Al2O3 K / γ-Al 2 O 3 5.145.14 48.1248.12 99.5299.52 47.8947.89 비교예 4Comparative Example 4 K/ACK / AC 5.055.05 35.0935.09 99.4999.49 34.9134.91

상기 표 2에 의하면, 칼륨 담지 산화물 촉매는 디메틸카보네이트의 선택도가 모두 99% 이상으로 우수하나, 에틸렌카보네이트의 전환율 및 디메틸카보네이트의 수율면에서 K/MgO 촉매의 활성이 두드러지게 우수하였다.According to Table 2, the potassium-supported oxide catalyst was excellent in all of the selectivity of the dimethyl carbonate is more than 99%, but the K / MgO catalyst activity was remarkably excellent in terms of conversion of ethylene carbonate and yield of dimethyl carbonate.

실시예 2 : 반응시간에 따른 촉매 활성 변화Example 2 Change of Catalyst Activity According to Reaction Time

상기 실시예 1과 같이 동일한 K/MgO 촉매를 사용하고 동일한 반응조건(반응온도 100 ℃, 반응물 무게의 1.5 중량%에 해당하는 촉매 사용)에서 반응시간을 변화시키면서 실험을 행한 결과는 다음 표 3과 같다. 2 시간 이후, 반응 전환율의 변화는 1% 이내로 거의 나타나지 않았다.Using the same K / MgO catalyst as in Example 1 and the same reaction conditions (reaction temperature 100 The experiment was performed while varying the reaction time at ℃, 1.5 wt% of the weight of the reactant) is shown in Table 3. After 2 hours, the change in reaction conversion was hardly seen within 1%.

반응시간(hr)Response time (hr) 에틸렌카보네이트전환율(%)Ethylene Carbonate Conversion (%) 디메틸카보네이트 선택도(%)Dimethylcarbonate Selectivity (%) 디메틸카보네이트 수율(%)Dimethylcarbonate yield (%) 0.30.3 36.2136.21 99.699.6 36.0736.07 0.50.5 48.5148.51 99.599.5 48.2748.27 1.01.0 51.4851.48 99.499.4 51.1751.17 2.02.0 52.5652.56 99.399.3 52.1952.19

실시예 3 : 칼륨 담지량에 따른 촉매 활성 변화Example 3 Change of Catalyst Activity According to Potassium Loading Amount

전체 촉매 무게를 기준으로 칼륨(K) 담지량을 변화시켜 제조한 K/MgO 촉매를 사용하여 에스테르 교환반응을 실시하였다. 상기 실시예 1과 동일한 반응조건(반응온도, 반응시간, 촉매사용량)에서 K의 담지량에 따른 반응 결과는 다음 표 4와 같다. The transesterification was carried out using a K / MgO catalyst prepared by changing the amount of potassium (K) supported based on the total catalyst weight. The reaction results according to the amount of K supported under the same reaction conditions (reaction temperature, reaction time, catalyst usage) as in Example 1 are shown in Table 4 below.

K 담지량(중량%)K loading amount (% by weight) 에틸렌카보네이트전환율(%)Ethylene Carbonate Conversion (%) 디메틸카보네이트선택도(%)Dimethyl Carbonate Selectivity (%) 디메틸카보네이트수율(%)Dimethyl Carbonate Yield (%) 5.135.13 52.9152.91 99.3499.34 52.5652.56 0.920.92 45.9845.98 98.9798.97 45.5145.51 3.063.06 50.6750.67 99.1299.12 50.2250.22 7.167.16 51.2551.25 98.7998.79 50.6350.63 10.2410.24 52.3852.38 97.8597.85 51.2651.26

이상에서 설명한 바와 같이, 에틸렌카보네이트와 메탄올로부터 디메틸카보네이트를 제조하는데 있어서 본 발명에 따라 칼륨이 함유된 마그네슘옥사이드(K/MgO)의 불균일계 촉매를 사용하면 100 ℃ 이하의 낮은 온도에서도 1 시간 이내에 50% 이상의 높은 전환율과 선택도를 얻을 수 있다. 본 발명에 의한 촉매는 일반 반응기(회분반응기, 여러 형태의 연속흐름반응기)는 물론 반응증류 장치에도 적용이 가능하다. As described above, in the preparation of dimethyl carbonate from ethylene carbonate and methanol, if a heterogeneous catalyst of potassium oxide-containing magnesium oxide (K / MgO) is used in accordance with the present invention, it can be carried out within 50 hours in a low temperature of 100 ° C. or less. Higher conversion rates and selectivity above% can be achieved. The catalyst according to the present invention is applicable to general reactors (batch reactors, various types of continuous flow reactors) as well as reaction distillation apparatus.

Claims (5)

촉매 존재하에 에틸렌카보네이트와 메탄올을 에스테르 교환반응하여 디메틸카보네이트를 제조하는 방법에 있어서, In the process of transesterification of ethylene carbonate and methanol in the presence of a catalyst to produce dimethyl carbonate, 상기 촉매로는 산화마그네슘(MgO)을 칼륨염 수용액에 함침시킨 후에 550 ∼ 600 ℃에서 소성시켜 제조된, 칼륨이 담지된 마그네슘옥사이드(K/MgO)를 사용하는 것을 특징으로 하는 디메틸카보네이트의 제조방법.As the catalyst, after impregnating magnesium oxide (MgO) in an aqueous potassium salt solution, 550 to 600 A process for producing dimethyl carbonate, characterized by using potassium-supported magnesium oxide (K / MgO) prepared by calcining at ℃. 제 1 항에 있어서, 상기 K/MgO 촉매는 전체 촉매 무게에 대하여 칼륨(K)의 담지량이 1.0 ∼ 10 중량%인 것을 특징으로 하는 디메틸카보네이트의 제조방법.The method of claim 1, wherein the K / MgO catalyst has a supported amount of potassium (K) of 1.0 to 10% by weight based on the total weight of the catalyst. 제 2 항에 있어서, 상기 K/MgO 촉매는 전체 촉매 무게에 대하여 칼륨(K)의 담지량이 3 ∼ 7 중량%인 것을 특징으로 하는 디메틸카보네이트의 제조방법.The method of claim 2, wherein the K / MgO catalyst has a supported amount of potassium (K) of 3 to 7% by weight based on the total weight of the catalyst. 삭제delete 제 1 항에 있어서, 상기 에스테르 교환반응의 온도가 80 ∼ 100 ℃인 것을 특징으로 하는 디메틸카보네이트의 제조방법.The method of claim 1, wherein the temperature of the transesterification reaction is 80 to 100 ℃.
KR10-2002-0064268A 2002-10-21 2002-10-21 Process for preparing dimethyl carbonate using K/MgO catalyst KR100522781B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0064268A KR100522781B1 (en) 2002-10-21 2002-10-21 Process for preparing dimethyl carbonate using K/MgO catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0064268A KR100522781B1 (en) 2002-10-21 2002-10-21 Process for preparing dimethyl carbonate using K/MgO catalyst

Publications (2)

Publication Number Publication Date
KR20040034183A KR20040034183A (en) 2004-04-28
KR100522781B1 true KR100522781B1 (en) 2005-10-19

Family

ID=37333544

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0064268A KR100522781B1 (en) 2002-10-21 2002-10-21 Process for preparing dimethyl carbonate using K/MgO catalyst

Country Status (1)

Country Link
KR (1) KR100522781B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101477203B1 (en) * 2013-08-16 2014-12-29 서울대학교산학협력단 Mixed metal oxide supported alkali or alkaline-earth metal catalyst, syntheric method thereof and production method of dimethyl carbonate from methanol and ethylene carbonate using said catalyst
KR20160105665A (en) 2015-02-27 2016-09-07 롯데첨단소재(주) Method for preparing dialkylcarbonate
CN113563190A (en) * 2021-07-14 2021-10-29 广州金鑫泰化工有限公司 Preparation method of dimethyl carbonate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5430170A (en) * 1992-11-25 1995-07-04 Nippon Shokubai Co., Ltd. Process for preparing dialkyl carbonates
US5436362A (en) * 1992-11-20 1995-07-25 Chiyoda Corporation Method of producing dialkylcarbonate
KR950032028A (en) * 1994-05-19 1995-12-20 고다 시게노리 Method for Purifying α-olefin for Polymerization and Method for Preparing Poly-α-olefin
JPH09278689A (en) * 1996-04-09 1997-10-28 Teijin Ltd Continuous and simultaneous production of dimethyl carbonate and ethylene glycol
JPH1036322A (en) * 1996-07-19 1998-02-10 Chiyoda Corp Production of dimethyl carbonate
JPH1036297A (en) * 1996-07-19 1998-02-10 Chiyoda Corp Production of dimethyl carbonate and ethylene glycol

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436362A (en) * 1992-11-20 1995-07-25 Chiyoda Corporation Method of producing dialkylcarbonate
US5430170A (en) * 1992-11-25 1995-07-04 Nippon Shokubai Co., Ltd. Process for preparing dialkyl carbonates
KR950032028A (en) * 1994-05-19 1995-12-20 고다 시게노리 Method for Purifying α-olefin for Polymerization and Method for Preparing Poly-α-olefin
JPH09278689A (en) * 1996-04-09 1997-10-28 Teijin Ltd Continuous and simultaneous production of dimethyl carbonate and ethylene glycol
JPH1036322A (en) * 1996-07-19 1998-02-10 Chiyoda Corp Production of dimethyl carbonate
JPH1036297A (en) * 1996-07-19 1998-02-10 Chiyoda Corp Production of dimethyl carbonate and ethylene glycol

Also Published As

Publication number Publication date
KR20040034183A (en) 2004-04-28

Similar Documents

Publication Publication Date Title
US7271120B2 (en) Catalyst for the synthesis of dimethyl carbonate from urea and methanol, preparation and use thereof
US20060135823A1 (en) Process for preparing dimethylether from methanol
US7790908B2 (en) Process for preparing glyceryl carbonate
CN109821560A (en) A kind of catalyst of transesterification Synthesis of dimethyl carbonate and its application
US8450518B2 (en) Method for preparing a carbamate, a catalyst applied in the method, a method for preparing the catalyst and use thereof
WO2000073256A1 (en) Process for co-production of dialkyl carbonate and alkanediol
CN101160259B (en) Process for the production of hydrogen peroxide
US6166240A (en) Process for co-production of dialkyl carbonate and alkanediol
US5847223A (en) Process for the preparation of methyl mercaptan
TWI266765B (en) Method for the catalytic conversion of organic carbonate and the use of a lanthanum catalyst therefor
KR100522781B1 (en) Process for preparing dimethyl carbonate using K/MgO catalyst
CN1325162C (en) Catalyst for preparing p-cyclodexanone dioxide
KR100321116B1 (en) Process for the preparation of alkylenecarbonate using lead halides and/or indium halides as catalyst
US6342623B1 (en) Process for co-production of dialkyl carbonate and alkanediol
KR100693850B1 (en) Process for co-production of dialkyl carbonate and alkanediol
KR101316608B1 (en) Method for preparing glycerol carbonate using Zn catalysts and acid
KR20170116614A (en) Method for manufacturing formaldehyde from methanol and formaldehyde manufactured by the same
JP2000344718A (en) Production of asymmetric carbonic ester
CN112939804B (en) Preparation method of organic amine oxide
JP3363517B2 (en) Method for simultaneous production of dialkyl carbonate and glycol
JP4714924B2 (en) Method for producing carbonate ester
JP2000167400A (en) Preparation of carbonylation catalyst and acid ester
KR20110116600A (en) Preparation method for glycerol carbonate using calcium alkoxide complexes
JP3960504B2 (en) Method for producing asymmetric carbonate
KR100501834B1 (en) Method for preparing Diphenyl Carbonate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111007

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee