KR100489696B1 - Method for enhanced anaerobic digestion of waste activated sludge - Google Patents

Method for enhanced anaerobic digestion of waste activated sludge Download PDF

Info

Publication number
KR100489696B1
KR100489696B1 KR10-2003-0021848A KR20030021848A KR100489696B1 KR 100489696 B1 KR100489696 B1 KR 100489696B1 KR 20030021848 A KR20030021848 A KR 20030021848A KR 100489696 B1 KR100489696 B1 KR 100489696B1
Authority
KR
South Korea
Prior art keywords
pretreatment
activated sludge
waste activated
anaerobic digestion
sludge
Prior art date
Application number
KR10-2003-0021848A
Other languages
Korean (ko)
Other versions
KR20040087446A (en
Inventor
김상용
박철환
김정식
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR10-2003-0021848A priority Critical patent/KR100489696B1/en
Publication of KR20040087446A publication Critical patent/KR20040087446A/en
Application granted granted Critical
Publication of KR100489696B1 publication Critical patent/KR100489696B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/18Treatment of sludge; Devices therefor by thermal conditioning
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Treatment Of Sludge (AREA)

Abstract

본 발명은 폐활성슬러지를 혐기소화공정 적용전에 전처리를 통한 그 분해 및 발효효율을 향상시키고, 처리시간 또한 감소시킬 수 있는 진보된 생물학적 처리 및 재자원화 기술로서, 열적 전처리단계, 화학적 전처리단계, 초음파 전처리단계, 및 열화학적 전처리 단계 중에서 선택된 어느 하나의 전처리단계를 수행하는 것을 포함한다. 이러한 재자원화를 통해서, 당면한 유기성 폐기물을 효율적으로 처리하는 폐기물처리업 뿐만 아니라, 메탄과 같은 고부가가치 연료로서 재활용이 가능하며, 다양한 전처리공정을 통해 가스발생 향상, 처리시간 저감 및 오염부하의 효율적인 저감 등의 결과를 얻을 수 있다.The present invention is an advanced biological treatment and recycling technology that can improve the decomposition and fermentation efficiency of the waste activated sludge through pretreatment before application to the anaerobic digestion process, and also reduce the treatment time. Performing a pretreatment step selected from a pretreatment step and a thermochemical pretreatment step. Through such recycling, not only the waste treatment business that efficiently treats the organic wastes that are encountered, but also can be recycled as high value-added fuels such as methane.In addition, various pretreatment processes improve gas generation, reduce treatment time, and reduce pollution loads. Results in:

Description

폐활성슬러지의 혐기소화 처리효율을 향상시키기 위한 방법{METHOD FOR ENHANCED ANAEROBIC DIGESTION OF WASTE ACTIVATED SLUDGE}Method for improving anaerobic digestion efficiency of waste activated sludge {METHOD FOR ENHANCED ANAEROBIC DIGESTION OF WASTE ACTIVATED SLUDGE}

본 발명은 폐활성슬러지의 혐기소화 처리효율을 향상시키기 위한 방법에 관한 것으로, 보다 구체적으로는 미생물을 이용하여 폐활성슬러지를 분해하는 혐기소화공정 적용전에 전처리를 함으로써 그 분해 및 발효효율을 향상시키고, 처리시간을 크게 단축시킬 수 있는 폐활성슬러지의 혐기소화 처리효율을 향상시키기 위한 방법에 관한 것이다.The present invention relates to a method for improving the anaerobic digestion efficiency of waste activated sludge, and more specifically, to improve its decomposition and fermentation efficiency by pretreatment before the application of the anaerobic digestion process to decompose waste activated sludge using microorganisms. In addition, the present invention relates to a method for improving the anaerobic digestion efficiency of waste activated sludge which can greatly reduce the treatment time.

폐기물성 바이오매스 자원(축산폐수, 음식물쓰레기, 하수슬러지 등)은 재활용되거나 에너지로 재순환되지 않으면 폐기물로 환경문제를 일으키게 된다. 하지만, 이를 에너지로서 이용하게 되면 화석연료와는 달리 대기 중의 이산화탄소를 증가시키지 않고 순환된다. 바이오매스 이용기술이 에너지 자원으로 주목받는 이유는 지구온난화의 가장 큰 원인인 이산화탄소를 배출하지 않을 뿐만 아니라, 고갈된 화석연료의 대체에너지로서 활용가치가 크다는 것이다.Waste biomass resources (livestock waste, food waste, sewage sludge, etc.) cause environmental problems if they are not recycled or recycled to energy. However, when used as energy, unlike fossil fuels, it is circulated without increasing carbon dioxide in the atmosphere. The reason why biomass utilization technology is attracting attention as an energy resource is that it not only emits carbon dioxide, which is the biggest cause of global warming, but also has great utility as an alternative energy for depleted fossil fuels.

외국에서는 가스화에 의한 폐활성슬러지(바이오매스) 이용기술을 환경과 에너지 문제를 동시에 해결할 수 있는 핵심분야의 하나로 간주하여, 정부 및 국공립 연구소의 주도하에 활발하게 연구되고 있으며, 미국, 영국, 덴마크, 스웨덴 등지에서는 바이오매스 가스를 이용한 발전분야에 대한 연구가 진행 중이며, 독일에서는 매립지 가스 발전 분야의 연구가 활발하다. 반면에 국내에서는 일부 연구소에 의하여 생물발효에 의한 전환기술에 초점이 맞추어져 왔지만 대체에너지로서의 관점에서는 기초적인 연구에 머무르고 있는 실정이고, 대체 에너지 기술 개발 사업으로 연구가 진행 중이나 경제성과 매립지 자체의 문제와 수분이 많은 특성 때문에 아직은 실용화되지 못하고 있다.Overseas, the technology of using waste activated sludge (biomass) by gasification is regarded as one of the core fields that can simultaneously solve environmental and energy problems, and is being actively researched under the leadership of government and public research institutes. In Sweden and elsewhere, research on power generation using biomass gas is underway, and research in landfill gas power generation is active in Germany. On the other hand, in Korea, some research institutes have been focusing on conversion technology by biological fermentation, but from the standpoint of alternative energy, it is still in basic research, and research is underway as an alternative energy technology development project. Due to its high water content, it has not been put to practical use yet.

상술한 바와 같이 혐기소화가 환경문제와 대체에너지생산이라는 장점외에 반응(발효)시간이 길다는 단점이 있다. As described above, anaerobic digestion has a disadvantage in that the reaction (fermentation) time is long in addition to the advantages of environmental problems and alternative energy production.

상기와 같은 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 폐활성슬러지를 혐기발효공정에 투입하기 전에 전처리를 함으로써 처리시간의 감소와 동시에 메탄가스발생 향상 및 오염부하의 효율적인 저감을 얻을 수 있도록 한 폐활성슬러지의 혐기소화 처리효율을 향상시키기 위한 방법을 제공하는 데 있다. In order to solve the above problems, the object of the present invention is to pretreat the waste activated sludge before entering the anaerobic fermentation process to reduce the treatment time and to improve the generation of methane gas and to effectively reduce the pollution load. The present invention provides a method for improving the anaerobic digestion efficiency of waste activated sludge.

상기의 목적을 달성하기 위한 본 발명에 따른 폐활성슬러지의 혐기소화처리효율을 향상시키기 위한 방법은 혐기 상태에서 미생물을 이용하여 폐활성슬러지를 처리하는 혐기소화 공정에 있어서, 폐활성슬러지를 혐기소화 공정에 투입하기 전에 열적 전처리단계, 화학적 전처리단계, 초음파 전처리단계, 및 열화학적 전처리 단계 중에서 선택된 어느 하나의 전처리단계를 수행하는 것을 포함한다.The method for improving the anaerobic digestion efficiency of waste activated sludge according to the present invention for achieving the above object is anaerobic digestion of waste activated sludge in the anaerobic digestion process of treating waste activated sludge using microorganisms in the anaerobic state Performing any one of a thermal pretreatment step selected from a thermal pretreatment step, a chemical pretreatment step, an ultrasonic pretreatment step, and a thermochemical pretreatment step before entering the process.

이때, 상기 열적 전처리단계는 121℃, 1.5기압하에서 30분간 열을 가하는 것이고, 상기 화학적 전처리단계는 NaOH를 폐활성슬러지 1 ℓ 당 7g 의 양으로 첨가한 다음, 상온에서 20 내지 30분간 방치하는 것이고, 상기 초음파 전처리단계는 42 kHz의 주파수로 120분간 수행하는 것이며, 상기 열화학적 전처리단계는 NaOH를 폐활성슬러지 1 ℓ 당 7g 의 양으로 첨가한 다음, 상온에서 20 내지 30분간 방치한 후, 121℃, 1.5기압하에서 30분간 열을 가한 다음, 2 시간 냉각하는 것이다.At this time, the thermal pretreatment step is to heat 30 minutes at 121 ℃, 1.5 atm, the chemical pretreatment step is to add NaOH in the amount of 7g per 1 liter of waste activated sludge, and then left at room temperature for 20 to 30 minutes The ultrasonic pretreatment step is performed at a frequency of 42 kHz for 120 minutes, and the thermochemical pretreatment step is performed by adding NaOH in an amount of 7 g per 1 L of waste activated sludge, and then leaving it at room temperature for 20 to 30 minutes, and then 121 It heats 30 minutes at 1.5 degreeC and then cools for 2 hours.

이하, 첨부 도면에 의거하여 본 발명에 따른 폐활성슬러지의 혐기소화 처리효율을 향상시키기 위한 방법을 상세히 설명한다.Hereinafter, a method for improving the anaerobic digestion efficiency of waste activated sludge according to the present invention will be described in detail with reference to the accompanying drawings.

먼저 혐기성 소화(anaerobic digestion)공정에 대해 살펴보면, 혐기 상태에서 미생물을 이용하여 폐활성슬러지를 처리하는 방법으로서, 혐기성 분해라고도 한다. 혐기성 세균이 슬러지 중의 유기물을 섭취하여 환원 분해하고, 무용한 무기화합물을 방출하는 것을 말한다. 이 분해과정에는 산성 발효기, 산성 감량기, 알칼리성 발효기의 3단계가 있다. 산성 발효기에서는 혐기성 세균의 작용에 의해 주로 탄화수소가 분해되고, 산성 감량기에서는 유기산이나 질소화합물 등이 분해된다. 최종적으로 알칼리성 발효기에서는 남아 있는 대부분의 유기물이 분해되어 탄산가스나 메탄가스가 발생하고 슬러지는 안정된다. 이상의 과정은 신선한 슬러지가 분해되는 경우인데 실제로는 우량종에 의해서 산성 감량기를 거치지 않고 금속적인 소화를 행하여 분해시간을 단축시키고 있다.First of all, the anaerobic digestion process is a method of treating waste activated sludge using microorganisms in the anaerobic state, also called anaerobic digestion. Anaerobic bacteria ingest sludge organic matter, reduce decomposition, and release useless inorganic compounds. There are three stages to this decomposition: acidic fermenter, acidic reducer and alkaline fermenter. In acidic fermenters, hydrocarbons are mainly decomposed by the action of anaerobic bacteria, and in organic acid reducers, organic acids and nitrogen compounds are decomposed. Finally, in alkaline fermenters, most of the remaining organic matter is decomposed to generate carbon dioxide gas or methane gas and the sludge is stabilized. The above process is a case where fresh sludge is decomposed, and in reality, the digestion time is reduced by performing a metallic digestion without passing the acid reducer by the superior species.

본 발명은 폐활성슬러지를 상기와 같은 혐기성소화 공정에 투입하기 전에 전처리를 행함으로써 분해처리시간을 감소시킬 수 있고, 동시에 메탄 가스의 발생량을 크게 향상시킬 수 있으며, 오염부하를 효율적으로 저감시킬 수 있는 것이다.The present invention can reduce the decomposition treatment time by performing pretreatment before introducing the waste activated sludge into the anaerobic digestion process as described above, and at the same time, it is possible to greatly improve the amount of methane gas generated and reduce the pollution load efficiently. It is.

이와 같은 전처리방법에는 열적 전처리, 화학적 전처리, 초음파 전처리, 또는 열화학적 전처리 등이 사용될 수 있으며, 상황에 따라 최적의 전처리 방법들이 사용될 수 있다.Such a pretreatment method may be thermal pretreatment, chemical pretreatment, ultrasonic pretreatment, or thermochemical pretreatment, and the like. Optimal pretreatment methods may be used according to circumstances.

바람직하게 이용될 수 있는 전처리방법들은 구체적으로 다음과 같다.Pretreatment methods that can be preferably used are as follows.

(1) 열적 전처리방법은 고온/고압의 멸균기에서 121℃, 1.5기압하에서 30분간 열을 가한 후에 2시간 냉각시키는 것을 포함하고,(1) The thermal pretreatment method includes cooling for 2 hours after applying heat for 30 minutes at 121 ° C. and 1.5 atm in a high temperature / high pressure sterilizer,

(2) 화학적 전처리방법은 NaOH를 폐활성슬러지 1 ℓ 당 7g 의 양으로 첨가한 다음, 상온에서 20 내지 30분간 방치하는 것을 포함하고,(2) The chemical pretreatment method includes adding NaOH in an amount of 7 g per 1 liter of waste activated sludge, and then leaving it for 20 to 30 minutes at room temperature,

(3) 초음파 전처리방법은 42 kHz의 주파수로 120분간 실행하는 것을 포함하고,(3) The ultrasonic pretreatment method includes performing 120 minutes at a frequency of 42 kHz,

(4) 열화학적 전처리방법은 NaOH를 폐활성슬러지 1 ℓ 당 7g 의 양으로 첨가한 다음, 상온에서 20 내지 30분간 방치한 후, 고온/고압 멸균기에서, 바람직하게는 폐활성슬러지의 수분을 유지시킬 수 있는 고온/고압 반응기, 가장 바람직하게는 오토클레이드(autoclave)에서 121℃, 1.5기압하에서 30분간 열을 가한 후에 2시간 냉각하는 것을 포함한다.(4) In the thermochemical pretreatment method, NaOH is added in an amount of 7 g per 1 L of waste activated sludge, and then left at room temperature for 20 to 30 minutes, and then maintained in a high temperature / high pressure sterilizer, preferably the waste activated sludge moisture. A high temperature / high pressure reactor, most preferably an autoclave, which includes cooling for 2 hours after applying heat for 30 minutes at 121 ° C. and 1.5 atm.

이하, 실시예를 통해 전처리에 의한 슬러지의 성상변화, 바이오가스(메탄)의 생산 및 시료의 변화를 실험하였다.Hereinafter, the change in the properties of the sludge, the production of biogas (methane) and the change of the sample by the pretreatment through the examples.

<실시예 1><Example 1>

열적, 화학적, 초음파, 열화학적 전처리에 대하여 효율향상 정도를 파악하였고, 전처리하지 않은 슬러지와 비교분석하였다. 각각 전처리의 최적 조건은 다음과 같았다. 열적 전처리는 고온/고압 멸균기에서 121℃, 1.5기압하에서 30분간 열을 가한 후에 2시간 냉각하여 수행하고; 화학적 전처리는 NaOH를 폐활성슬러지 1 ℓ 당 7g 의 양으로 첨가한 다음, 상온에서 20 내지 30분간 방치하여 수행하고; 초음파 전처리는 42 kHz의 주파수로 120분간 전처리하여 수행하였다. 열화학적 전처리는 NaOH를 폐활성슬러지 1 ℓ 당 7g 의 양으로 첨가한 다음, 상온에서 20 내지 30분간 방치한 후, 고온/고압 멸균기에서 121℃, 1.5기압하에서 30분간 열을 가한 후에 2시간 냉각하여 수행하였다. The degree of efficiency improvement was investigated for thermal, chemical, ultrasonic and thermochemical pretreatment and compared with the sludge that was not pretreated. The optimum conditions for each pretreatment were as follows. Thermal pretreatment was carried out in a high temperature / high pressure sterilizer by heating at 121 ° C. under 1.5 atm for 30 minutes and then cooling for 2 hours; Chemical pretreatment was carried out by adding NaOH in an amount of 7 g per liter of waste activated sludge, and then standing at room temperature for 20 to 30 minutes; Ultrasonic pretreatment was performed by pretreatment for 120 minutes at a frequency of 42 kHz. For thermochemical pretreatment, NaOH was added in an amount of 7 g per 1 liter of waste activated sludge, and then allowed to stand at room temperature for 20 to 30 minutes, then heated at 121 ° C. and 1.5 atm in a high temperature / high pressure sterilizer, followed by cooling for 2 hours. It was performed by.

상기 실시예 1을 통해 비교 분석한 결과, 전처리를 실행함으로써 슬러지가 소화될 수 있는 상태로 전환되었고, 입자의 크기가 크게 감소하였으며, 가용성 단백질의 양도 크게 향상되었다.As a result of comparative analysis through Example 1, the sludge was converted into a digestible state by performing pretreatment, the particle size was greatly reduced, and the amount of soluble protein was greatly improved.

도 1을 참조하면, 전처리를 하지 않은 상태에서 혐기소화를 할 경우에 입자크기가 약 450㎛ 이하에 분포된 반면에, 열적 전처리를 한 경우에는 입자의 크기가 약 150㎛ 이하로 감소하였고, 화학적 전처리를 한 경우에는 약 180㎛ 이하로 감소하였고, 초음파 전처리를 한 경우에는 약 240㎛ 이하로 감소하였으며, 열화학적 전처리를 한 경우에는 약 140㎛ 이하로 감소하였다. 즉, 전처리를 하지 않았을 때보다도 입자의 크기가 약 45∼65% 정도 감소하였으며, 가용성 단백질(soluble protein)의 양도 2.8∼65.7배 향상되었다.Referring to FIG. 1, when anaerobic digestion is performed without pretreatment, the particle size is distributed at about 450 μm or less, whereas when thermal pretreatment is performed, the particle size is reduced to about 150 μm or less. The pretreatment decreased to about 180 μm or less, the ultrasonic pretreatment to about 240 μm or less, and the thermochemical pretreatment to about 140 μm or less. That is, the particle size was reduced by about 45 to 65% and the amount of soluble protein was increased by 2.8 to 65.7 times compared with the case without the pretreatment.

<실시예 2><Example 2>

바이오가스 생산 및 슬러지 처리를 위한 실시는 회분식 반응(1ℓ)을 통하여 파악되었다. 실제 슬러지의 양은 혐기순응슬러지 300㎖, 대상슬러지(폐활성슬러지) 300㎖로 하였다. 이때, 전처리 방법은 실시예 1의 방법과 동일하게 실행하였다.The practice for biogas production and sludge treatment was identified through a batch reaction (1 L). The actual amount of sludge was 300 ml of anaerobic compliant sludge and 300 ml of the target sludge (waste activated sludge). At this time, the pretreatment method was performed similarly to the method of Example 1.

상기 실시예 2를 통해 비교 분석한 결과, 전처리를 실행함으로써 바이오가스의 발생량이 크게 향상되었고, 휘발성고형물과 가용성 화학적산소요구량(SCOD: soluble chemical oxygen demand)도 그 감소량이 현저하게 향상되었다.As a result of comparative analysis through Example 2, the generation of biogas was greatly improved by performing the pretreatment, and the reduction of volatile solids and soluble chemical oxygen demand (SCOD) was also significantly improved.

도 2는 바이오가스 및 메탄가스의 발생량을 나타낸 것으로, 전처리를 하지 않았을 경우보다 열적전처리, 화학적전처리, 초음파전처리 및 열화학적전처리를 한 경우에 바이오가스 및 메탄가스의 발생량이 크게 증가함을 알 수 있다. 특히, 전처리를 하지 않은 슬러지의 경우에 바이오가스가 3,657 L/m3 WAS(폐활성슬러지: Waste Activated Sludge), 메탄가스가 2,507 L/m3 WAS 만큼 발생되었지만, 열화학적 전처리를 하였을 때에는 바이오가스 5,037 L/m3 WAS, 메탄가스 3,367 L/m3 WAS가 발생하여, 전체적으로 약 34.3% 정도 증가함을 알 수 있다. 이때, 바이오가스중에 메탄가스의 함유량은 어느 전처리 방법을 실행하던지 대략 70% 정도를 나타냄으로써, 모두가 최적의 함유량을 가짐을 알 수 있다.Figure 2 shows the generation of biogas and methane gas, it can be seen that the generation of biogas and methane gas increases significantly when the thermal pre-treatment, chemical pre-treatment, ultrasonic pre-treatment and thermochemical pretreatment than when not pre-treatment have. Especially, in the case of sludge without pretreatment, biogas was generated as much as 3,657 L / m 3 WAS (Waste Activated Sludge) and methane gas as much as 2,507 L / m 3 WAS. It can be seen that 5,037 L / m 3 WAS and methane gas 3,367 L / m 3 WAS are generated, which increases by about 34.3%. At this time, the content of methane gas in the biogas represents approximately 70% of which pretreatment method is performed, indicating that all have optimum contents.

또한, 도 3은 휘발성고형물의 감소량을 보여주는 그래프로서, 휘발성고형물은 슬러지를 500℃이상 가열할 경우에 휘발되는 유기물을 말한다.In addition, Figure 3 is a graph showing the amount of reduction of volatile solids, volatile solids refers to the organic material is volatilized when the sludge is heated to 500 ℃ or more.

그래프에서 보여지듯이, 휘발성 고형물의 감소량은 전처리를 하지 않았을 때보다 전처리를 함으로써 약 37∼105% 정도 증가함을 알 수 있다.As shown in the graph, it can be seen that the amount of reduction of volatile solids is increased by about 37 to 105% by pretreatment than without pretreatment.

도 4는 가용성 화학적산소요구량의 감소된 양을 나타낸 그래프로서, 특히 화학적 전처리 및 열화학적 전처리를 실행하였을 경우에 감소량이 47∼130%에 이른다는 것을 볼 수 있다.FIG. 4 is a graph showing the reduced amount of soluble chemical oxygen demand, and it can be seen that the reduction amount reaches 47-130%, especially when chemical pretreatment and thermochemical pretreatment are performed.

상기에 언급한 바와 같이, 환경오염문제 해결과 대체에너지 생산이라는 과제를 동시에 해결할 수 있는 한가지 방법으로서 혐기소화라는 방법이 있다. 따라서 본 발명에서는 상기 종래 기술의 문제점을 고려하여 안출한 것으로, 다양한 전처리 방법으로 인하여 폐활성슬러지의 처리효율을 증대시키고자 하였으며, 다양한 전처리 방법 중 가장 효율이 좋은 전처리 방법을 확립하였다. As mentioned above, there is a method called anaerobic digestion that can simultaneously solve the problem of environmental pollution and alternative energy production. Therefore, the present invention has been made in consideration of the problems of the prior art, to increase the treatment efficiency of waste activated sludge due to various pretreatment methods, and established the most efficient pretreatment method among various pretreatment methods.

이상의 결과와 같이 본 발명은 혐기소화를 하기 전에 전처리라는 공정을 추가하는데 있어서 몇 가지 방법 중에 최고의 효율을 보인 최적화된 전처리방법을 도출하였고, 이는 전체 공정의 관점에서도 효율적인 처리를 위하여 활용이 가능할 것으로 사료된다.As described above, the present invention derived an optimized pretreatment method which showed the best efficiency among several methods in adding the pretreatment process before anaerobic digestion, which may be utilized for efficient treatment in terms of the overall process. do.

한편, 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술분야에서 통상의 지식을 가진 자라면 하기의 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.On the other hand, while the above has been described with reference to the preferred embodiments of the present invention, those skilled in the art to which the present invention pertains without departing from the spirit and scope of the present invention described in the claims below It will be understood that modifications and changes can be made.

도 1은 본 발명에 따른 다양한 전처리에 의한 슬러지의 입자크기를 비교한 그래프.1 is a graph comparing the particle size of the sludge by various pretreatment according to the present invention.

도 2는 본 발명에 따른 전처리 후의 혐기소화시에 발생한 바이오가스 및 메탄가스의 양을 비교한 그래프.Figure 2 is a graph comparing the amount of biogas and methane gas generated during anaerobic digestion after pretreatment according to the present invention.

도 3은 본 발명에 따른 혐기소화 전후의 휘발성유기물의 감소된 양을 비교한 그래프.Figure 3 is a graph comparing the reduced amount of volatile organic matter before and after anaerobic digestion according to the present invention.

도 4는 본 발명에 따른 혐기소화 전후의 SCOD의 감소된 양을 비교한 그래프.Figure 4 is a graph comparing the reduced amount of SCOD before and after anaerobic digestion according to the present invention.

Claims (5)

삭제delete 혐기 상태에서 미생물을 이용하여 폐활성슬러지를 처리하는 혐기소화 공정에서, 폐활성슬러지의 혐기소화효율을 향상시키기 위한 방법에 있어서, In the anaerobic digestion process of treating waste activated sludge using microorganisms in the anaerobic state, a method for improving the anaerobic digestion efficiency of waste activated sludge, 폐활성슬러지를 혐기소화 공정에 투입하기 전에, 폐활성슬러지를 121℃에서 1.5 기압하에 30분간 가열한 후, 2 시간 냉각하는 것을 포함하는 열적 전처리 단계를 수행하는 것을 특징으로 하는 방법.Before the waste activated sludge is introduced into the anaerobic digestion process, the waste activated sludge is heated at 121 ° C. under 1.5 atm for 30 minutes, and then subjected to a thermal pretreatment step comprising cooling for 2 hours. 삭제delete 삭제delete 제 2 항에 있어서, 폐활성슬러지를 혐기소화 공정에 투입하기 전에, 폐활성슬러지에 NaOH 를 폐활성슬러지 1ℓ당 7g 의 양으로 첨가한 다음, 상온에서 20 내지 30 분간 방치한 후, 121℃에서 1.5 기압하에 30분간 가열한 후, 2시간 냉각하는 것을 포함하는 열화학적 전처리 단계를 수행하는 것을 특징으로 하는 방법. The method of claim 2, wherein before adding the waste activated sludge to the anaerobic digestion process, NaOH is added to the waste activated sludge in an amount of 7 g per 1 liter of the waste activated sludge, and then left at room temperature for 20 to 30 minutes, and then at 121 ° C. Heating at 1.5 atmospheres for 30 minutes and then performing a thermochemical pretreatment step comprising cooling for 2 hours.
KR10-2003-0021848A 2003-04-08 2003-04-08 Method for enhanced anaerobic digestion of waste activated sludge KR100489696B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0021848A KR100489696B1 (en) 2003-04-08 2003-04-08 Method for enhanced anaerobic digestion of waste activated sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0021848A KR100489696B1 (en) 2003-04-08 2003-04-08 Method for enhanced anaerobic digestion of waste activated sludge

Publications (2)

Publication Number Publication Date
KR20040087446A KR20040087446A (en) 2004-10-14
KR100489696B1 true KR100489696B1 (en) 2005-05-17

Family

ID=37369583

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0021848A KR100489696B1 (en) 2003-04-08 2003-04-08 Method for enhanced anaerobic digestion of waste activated sludge

Country Status (1)

Country Link
KR (1) KR100489696B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102863134A (en) * 2012-09-14 2013-01-09 清华大学深圳研究生院 Anaerobic sludge digestion improving method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583914A (en) * 2012-01-16 2012-07-18 同济大学 Method for improving municipal sludge dry fermentation performance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102863134A (en) * 2012-09-14 2013-01-09 清华大学深圳研究生院 Anaerobic sludge digestion improving method
CN102863134B (en) * 2012-09-14 2014-01-15 清华大学深圳研究生院 Anaerobic sludge digestion improving method

Also Published As

Publication number Publication date
KR20040087446A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
Monfet et al. Nutrient removal and recovery from digestate: a review of the technology
Pham et al. Food waste-to-energy conversion technologies: Current status and future directions
Ahring Perspectives for anaerobic digestion
Awasthi et al. Biotechnological strategies for bio-transforming biosolid into resources toward circular bio-economy: a review
CN107971324B (en) Method and device for reducing and recycling kitchen waste anaerobic fermentation biogas residues
Muhammad Nasir et al. Pretreatment of lignocellulosic biomass from animal manure as a means of enhancing biogas production
CN106276900A (en) The method that a kind of pyrohydrolysis coupling anaerobic fermentation processes organic waste
CN114107406A (en) Method for strengthening acid production by co-digestion of kitchen waste and activated sludge through ultrasonic/temperature pretreatment
Zaidi et al. Nanoparticles synergistic effect with various substrate pretreatment and their comparison on biogas production from algae waste
Singh et al. Evaluation of pretreatment potential and hydrogen recovery from lignocellulosic biomass in an anoxic double-staged bioelectrochemical system
Badawi et al. Value proposition of bio-hydrogen production from different biomass sources
KR100489696B1 (en) Method for enhanced anaerobic digestion of waste activated sludge
JP2006110540A (en) Efficient biogas recovery system using microorganism
CN111470744A (en) Method for producing volatile organic acid by anaerobic fermentation of sludge
Kalyuzhnyi Energy potential of anaerobic digestion of wastes produced in Russia via biogas and microbial fuel cell technologies
Senturk et al. Biohydrogen production by anaerobic fermentation of sewage sludge-Effect of initial pH
JP2006082075A (en) System for treating biomass
Priyadarshini et al. Kinetic studies on anaerobic co-digestion of ultrasonic disintegrated feed and biomass and its effect substantiated by microcalorimetry
JP2006212467A (en) Organic waste treatment method
JP2004024929A (en) Methane fermentation method and system for the same
KR100553231B1 (en) Continuous anaerobic hydrogen-fermenting process for treating organic waste and method of producing hydrogen gas
JP2006082074A (en) System for treating biomass
JP2000140621A (en) Treatment of biomass pyrolysis gas and device therefor
Kovalev et al. Optimization of the organic waste anaerobic digestion in biogas plants through the use of a vortex layer apparatus
Loh et al. Production of organic acids from kitchen wastes

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120507

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee