KR100483169B1 - Method for the preparation of multielement-based metal oxide powders - Google Patents

Method for the preparation of multielement-based metal oxide powders Download PDF

Info

Publication number
KR100483169B1
KR100483169B1 KR10-2002-0028822A KR20020028822A KR100483169B1 KR 100483169 B1 KR100483169 B1 KR 100483169B1 KR 20020028822 A KR20020028822 A KR 20020028822A KR 100483169 B1 KR100483169 B1 KR 100483169B1
Authority
KR
South Korea
Prior art keywords
metal oxide
powder
oxide powder
diluent
component
Prior art date
Application number
KR10-2002-0028822A
Other languages
Korean (ko)
Other versions
KR20030090936A (en
Inventor
정경택
이인연
김명수
양정모
Original Assignee
삼성코닝 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성코닝 주식회사 filed Critical 삼성코닝 주식회사
Priority to KR10-2002-0028822A priority Critical patent/KR100483169B1/en
Publication of KR20030090936A publication Critical patent/KR20030090936A/en
Application granted granted Critical
Publication of KR100483169B1 publication Critical patent/KR100483169B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles

Abstract

본 발명은 다성분계 금속산화물 분말의 제조방법에 관한 것으로서, 금속 산화물을 구성하는 각 구성성분의 화합물을 포함하는 전구체 용액을 제조한 후 이로부터 침전 또는 졸겔반응에 의해 다성분계 금속화합물 전구체를 얻고, 이를 밀링(milling)하는 본 발명의 방법에 의하면, 입자응집이 없고 화학양론비가 균일한, 나노크기의 다성분계 금속산화물 분말을 간편하게 제조할 수 있다.The present invention relates to a method for producing a multi-component metal oxide powder, to prepare a precursor solution containing a compound of each component constituting the metal oxide, and to obtain a multi-component metal compound precursor by precipitation or sol-gel reaction therefrom, According to the method of the present invention for milling this, it is possible to easily prepare a nano-sized multi-component metal oxide powder having no particle aggregation and a uniform stoichiometric ratio.

Description

다성분계 금속산화물 분말의 제조방법{METHOD FOR THE PREPARATION OF MULTIELEMENT-BASED METAL OXIDE POWDERS} METHODS FOR THE PREPARATION OF MULTIELEMENT-BASED METAL OXIDE POWDERS}

본 발명은 다성분계 금속산화물 분말의 제조방법에 관한 것으로서, 구체적으로는 침전 또는 졸겔반응에 의해 다성분계 금속화합물 전구체를 제조한 후 이를 밀링함으로써, 나노크기의 다성분계 금속산화물 분말을 간단하게 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a multi-component metal oxide powder, and specifically, to prepare a multi-component metal compound precursor by precipitation or sol-gel reaction and milling it, thereby easily preparing a nano-sized multi-component metal oxide powder. It is about a method.

금속산화물 나노분말은 10억분의 1 미터(meter) 크기의 초미립자로서 기존 마이크로(㎛) 크기의 분말보다 전기적, 기계적, 열적 성질이 우수하여 전자부품, 에너지, 환경, 바이오, 진단/의료분야 등 차세대 첨단분야에 다양하게 활용되고 있다.Metal oxide nano powder is one billionth of a meter (micrometer) ultrafine particles, which has better electrical, mechanical and thermal properties than existing micro (μm) powders, and is the next generation in electronic parts, energy, environment, bio, diagnostics and medical fields. It is widely used in high-tech fields.

이러한 나노크기의 금속산화물 분말을 만들기 위해, 기존에는 침전법(precipitation method), 졸겔법(sol-gel method) 및 밀링법(milling method) 등이 주로 사용되었다.In order to make such nano-sized metal oxide powder, conventionally, a precipitation method, a sol-gel method, a milling method, and the like have been mainly used.

침전법은 용해도가 높은 출발물질을 용해시킨 후 pH 등을 조절하여 침전 및 소성시켜 금속산화물 분말을 얻는 방법으로, 공정이 간단한 반면에, 침전과정에서 입자들의 응집(agglomeration)이 일어나 균일한 크기의 입자를 얻기 어려운 단점을 갖는다.Precipitation method is a method of obtaining metal oxide powder by dissolving starting material having high solubility and adjusting pH and so on to obtain metal oxide powder. While the process is simple, agglomeration of particles occurs during precipitation, so that It has the disadvantage that it is difficult to obtain particles.

졸겔법은 출발물질을 가수분해 및 축중합반응시켜 졸(sol) 및 겔(gel)을 순차적으로 제조한 후 숙성 및 소성시켜 금속산화물 분말을 얻는 방법으로, 저온공정이 가능하고 응용분야가 다양한 반면에, 사용되는 출발물질이 비싸고 소성 후 입자들이 서로 엉켜 덩어리 형태로 얻어지는 단점을 갖는다.The sol-gel method is a method of sequentially preparing sol and gel by hydrolysis and polycondensation of starting materials, and then aging and firing to obtain metal oxide powder. The disadvantages are that the starting materials used are expensive and the particles are entangled with one another after firing to form agglomerates.

또한, 밀링법은 기계적 분쇄와 화학적 반응(기계적 화학적 공법(mechanical chemical process))에 의해 원하는 크기의 입자를 얻는 방법이지만, 출발물질을 단순히 밀링하면 서로 응집하여 나노크기의 균일한 입자를 얻을 수 없어, 출발물질에 희석제(diluent)(예: NaCl, CaCl2, MgCl2, Na2SO4, Na2 CO3, Ca(OH)2, CaO, MgO 등)를 첨가하여 밀링 및 소성함으로써 입자들이 서로 엉키는 현상을 방지하여 구형의 초미세 금속산화물 분말을 제조하는 방법이 소개되었다(국제특허공개 제WO 99/59754호(서호주대학(The University of Western Australia)) 참조). 이때 사용되는 희석제는 금속화합물과는 반응하지 않고, 단지 금속화합물의 입자와 입자 사이를 떨어뜨리는 역할을 하며, 용매에 쉽게 용해되므로 잔존하는 희석제의 제거 또한 용이하다.In addition, the milling method is a method of obtaining the particles of the desired size by mechanical grinding and chemical reaction (mechanical chemical process), but simply milling the starting material can not aggregate to each other to obtain nano-sized uniform particles The particles can be milled and calcined by adding diluents (eg, NaCl, CaCl 2 , MgCl 2 , Na 2 SO 4 , Na 2 CO 3 , Ca (OH) 2 , CaO, MgO, etc.) to the starting material. A method for producing spherical ultrafine metal oxide powders by preventing tangling has been introduced (see WO 99/59754 (The University of Western Australia)). In this case, the diluent used does not react with the metal compound, but only serves to drop the particles between the particles of the metal compound and easily dissolves in the solvent, thereby easily removing the remaining diluent.

그러나, 희석제를 사용하는 상기 밀링법은 단일 금속산화물을 제조하는 경우에는 만족스러운 결과를 나타내나, 두 가지 이상의 출발물질을 이용하여 다성분계 금속산화물 분말을 합성하는 경우에는, 물리적, 화학적으로 균일하게 화합되어 있는 화학양론적인 다성분계 금속산화물 분말을 제조할 수 없다는 문제점을 갖는다. 이러한 기존 방법에 따른 다성분계 금속산화물 분말의 개략적인 제조공정도를 도 1에 나타내었다.However, the milling method using a diluent shows satisfactory results when producing a single metal oxide. However, when synthesizing a multi-component metal oxide powder using two or more starting materials, it is physically and chemically uniform. There is a problem in that it is not possible to produce a compounded stoichiometric multicomponent metal oxide powder. A schematic manufacturing process diagram of the multi-component metal oxide powder according to the conventional method is shown in FIG. 1.

화학양론비가 불균일한 다성분계 금속산화물 분말은 전기적, 열적, 기계적 특성이 저하되는데, 예를 들어, 바륨 티타네이트(BaTiO3)의 경우는 현저히 낮은 전기적 특성(예: 유전율)을 가지며, 세륨-지르코늄 산화물(Ce-Zr-O2)의 경우는 크게 저하된 열적 안정성을 나타낸다.Multi-component metal oxide powders with non-stoichiometric ratios are deteriorated in electrical, thermal, and mechanical properties. For example, barium titanate (BaTiO 3 ) has a significantly lower electrical properties (eg, dielectric constant) and cerium-zirconium. In the case of the oxide (Ce-Zr-O 2 ), the thermal stability is greatly reduced.

이에 본 발명자들은 이러한 기존 방법의 단점을 극복하고자 예의 연구한 결과, 2종 이상의 단일 금속화합물 출발물질을 동시에 침전법 또는 졸겔법에 적용하여 다성분계 금속화합물 전구체 입자를 제조한 후 이를 희석제와 함께 밀링 및 소성함으로써, 나노크기의 다성분계 금속산화물 분말을 제조할 수 있음을 발견하고 본 발명을 완성하게 되었다. Accordingly, the present inventors earnestly studied to overcome the disadvantages of the existing method, and as a result, by applying two or more single metal compound starting materials to the precipitation method or the sol-gel method simultaneously to prepare multi-component metal compound precursor particles and milling them with a diluent And by firing, it was found that the nano-sized multi-component metal oxide powder can be produced and completed the present invention.

본 발명의 목적은 화학양론비를 충족시키고 입자응집이 없는, 나노크기의 다성분계 금속산화물 분말을 간편하게 제조하는 방법을 제공하는 것이다. It is an object of the present invention to provide a method for conveniently preparing nano-sized multi-component metal oxide powders that meet stoichiometric ratios and are free of particle aggregation.

상기 목적에 따라 본 발명에서는, 금속 산화물을 구성하는 각 구성성분의 화합물을 포함하는 전구체 용액을 제조한 후 이로부터 침전 또는 졸겔반응에 의해 다성분계 금속화합물 전구체를 얻고, 이를 밀링(milling)하는 것을 포함하는, 다성분계 금속산화물 분말의 제조방법을 제공한다.In accordance with the above object, in the present invention, to prepare a precursor solution containing a compound of each component constituting the metal oxide and to obtain a multi-component metal compound precursor by precipitation or sol-gel reaction therefrom, and milling it It provides a method for producing a multi-component metal oxide powder comprising.

이하 본 발명을 더욱 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명에 따른 다성분계 금속산화물 분말의 개략적인 제조공정도를 도 2에 나타내었다.A schematic manufacturing process diagram of the multicomponent metal oxide powder according to the present invention is shown in FIG. 2.

본 발명의 방법에 따르면, 금속 산화물을 구성하는 각 구성성분의 화합물을 적정 용매에 용해시켜 전구체 용액을 제조한 후, 용액의 pH를 조절하거나 용액간의 반응을 통해 침전을 유도하거나, 또는 가수분해 및 축중합반응시켜 졸 및 겔을 순차적으로 제조한 다음 이를 숙성시킴으로써 다성분계 금속화합물 전구체를 제조할 수 있다. 이때, 상기 침전 또는 졸겔반응에 의해 얻어진 생성물을 건조시켜 다성분계 금속화합물 전구체를 분말상으로 얻을 수 있다. 필요에 따라, 상기 침전과 졸겔반응을 함께 사용할 수도 있다.According to the method of the present invention, a compound of each component constituting the metal oxide is dissolved in a suitable solvent to prepare a precursor solution, and then the pH of the solution is adjusted or the precipitation is induced through a reaction between the solutions, or hydrolysis and By condensation polymerization, sol and gel may be sequentially prepared and then aged to prepare a multi-component metal compound precursor. At this time, the product obtained by the precipitation or sol-gel reaction may be dried to obtain a multi-component metal compound precursor in powder form. If necessary, the precipitation and the sol-gel reaction may be used together.

본 발명에 따른 다성분계 금속화합물 전구체의 구체적인 예로는, Li, Na 및 K로 이루어진 군; Mg, Ca, Sr 및 Ba로 이루어진 군; Ti, Zr 및 Hf로 이루어진 군; Si, Ge, Sn, Pb 및 Ce로 이루어진 군; Zn; Cr; Co; Mn; Ni; B; Mo; Br; P; Al; Y; 및 Cu로부터 선택된 2종 이상의 원소의 수산화물, 질산물, 염화물, 초산물, 수화물, 알콕시화물, 황화물 및 이들의 혼합물 등을 들 수 있다.Specific examples of the multi-component metal compound precursor according to the present invention, the group consisting of Li, Na and K; The group consisting of Mg, Ca, Sr and Ba; The group consisting of Ti, Zr and Hf; Si, Ge, Sn, Pb and Ce; Zn; Cr; Co; Mn; Ni; B; Mo; Br; P; Al; Y; And hydroxides, nitric products, chlorides, acetates, hydrates, alkoxides, sulfides and mixtures thereof of two or more elements selected from Cu.

본 발명의 방법에 따르면, 얻어진 분말상의 다성분계 금속화합물 전구체를 단독으로 또는 적절한 희석제를 첨가하여 밀링할 수 있으며, 필요에 따라, 단독으로 밀링한 다음 희석제와 함께 밀링할 수도 있다. 본 발명에 사용가능한 희석제로는 K2CO3, NaCl, CaCl2, MgCl2, Na2SO4, Na2CO3 및 Ca(OH)2 등을 들 수 있으며, 금속화합물 전구체 양의 0.5 내지 10배의 양으로 사용할 수 있다.According to the method of the present invention, the obtained powdery multicomponent metal compound precursor may be milled alone or by adding an appropriate diluent, and if necessary, may be milled alone and then with a diluent. Diluents usable in the present invention include K 2 CO 3 , NaCl, CaCl 2 , MgCl 2 , Na 2 SO 4 , Na 2 CO 3 and Ca (OH) 2 , and the like. Can be used in pear quantities.

또한, 상기 밀링의 전 또는 후에 전구체를 500 내지 1,000℃의 온도로 소성시킬 수 있다. 희석제와 함께 밀링된 분말에는 다량의 희석제가 포함되어 있으므로, 용매에 녹여서 용매의 전기전도도가 10mV 이하가 될 때까지 잔존하는 희석제를 제거할 수 있다.In addition, the precursor may be calcined at a temperature of 500 to 1,000 ° C. before or after the milling. Since the powder milled with the diluent contains a large amount of the diluent, the remaining diluent may be removed until it is dissolved in the solvent and the solvent has an electrical conductivity of 10 mV or less.

이와 같이 제조되는 다성분계 금속산화물 분말의 예로는, Li, Na 및 K로 이루어진 군; Mg, Ca, Sr 및 Ba로 이루어진 군; Ti, Zr 및 Hf로 이루어진 군; Si, Ge, Sn, Pb 및 Ce로 이루어진 군; Zn; Cr; Co; Mn; Ni; B; Mo; Br; P; Al; Y; 및 Cu로부터 선택된 2종 이상의 원소의 산화물을 들 수 있으며, 더욱 구체적으로는, Ce-Zr-O2, Ba-Ti-O2, K-Ti-O2, Na-Ti-O2, Zn-Ti-O2, K-Cr-O2, Li-Co-O2, Li-Mn-O2, Li-Ni-O2, K-Mn-O2, Mn-B-O2, Na-Mo-O2, Na-Br-O2, Na-B-O2, Pb-B-O2, K-Br-O2, Ba-Br-O2, Ca-Br-O2, Ca-Cr-O2, Mg-Br-O2, Zn-Br-O2, Na-P-O2, K-P-O2, Sn-P-O2, Na-Cr-O2, Ca-Al-Si-O2, Ba-Al-Si-O2, Pb-Zr-Ti-O2, Li-Ni-Co-O2 및 Y-Ba-Cu-O2 등을 들 수 있다.Examples of the multicomponent metal oxide powder prepared in this way include Li, Na, and K; The group consisting of Mg, Ca, Sr and Ba; The group consisting of Ti, Zr and Hf; Si, Ge, Sn, Pb and Ce; Zn; Cr; Co; Mn; Ni; B; Mo; Br; P; Al; Y; And oxides of two or more elements selected from Cu, and more specifically Ce-Zr-O 2 , Ba-Ti-O 2 , K-Ti-O 2 , Na-Ti-O 2 , Zn- Ti-O 2 , K-Cr-O 2 , Li-Co-O 2 , Li-Mn-O 2 , Li-Ni-O 2 , K-Mn-O 2 , Mn-BO 2 , Na-Mo-O 2 , Na-Br-O 2 , Na-BO 2 , Pb-BO 2 , K-Br-O 2 , Ba-Br-O 2 , Ca-Br-O 2 , Ca-Cr-O 2 , Mg-Br -O 2 , Zn-Br-O 2 , Na-PO 2 , KPO 2 , Sn-PO 2 , Na-Cr-O 2 , Ca-Al-Si-O 2 , Ba-Al-Si-O 2 , Pb -Zr-Ti-O 2 , Li-Ni-Co-O 2 , Y-Ba-Cu-O 2 , and the like.

본 발명에 따른 다성분계 금속산화물 분말은 10 내지 200 nm의 입자 크기를 가지며 화학양론비를 충족시키므로, 본 발명의 방법에 따르면, 기존 방법에 비해 입자응집이 없고 화학양론비가 균일한, 나노크기의 다성분계 금속산화물 분말을 간편하게 제조할 수 있다(도 1 및 2 참조).Since the multi-component metal oxide powder according to the present invention has a particle size of 10 to 200 nm and satisfies the stoichiometric ratio, according to the method of the present invention, there is no particle aggregation and uniform stoichiometric ratio of the nano-sized, compared to the conventional method. Multicomponent metal oxide powders can be prepared simply (see FIGS. 1 and 2).

이하 본 발명을 하기 실시예에 의해 더욱 구체적으로 설명한다. 그러나 본 발명의 범위가 실시예에 의하여 국한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the scope of the present invention is not limited by the embodiment.

실시예 1 : 세륨-지르코늄 산화물(Ce-Zr-OExample 1 cerium-zirconium oxide (Ce-Zr-O 22 ) 분말의 합성) Synthesis of Powder

지르코늄 질산물 0.56몰을 증류수 2000g에, 세륨 질산물 0.69몰을 증류수 300g에 각각 용해시킨 후, 두 용액을 서로 혼합하였다. 혼합용액에 암모니아수를 천천히 가하여 용액의 pH를 8 내지 14의 범위로 유지시키면서 충분히 혼합하였다. 생성된 반응침전물을 원심분리한 후, 200℃ 건조기에서 건조시켜 세륨-지르코늄 수산화물(Ce-Zr-OH) 분말 150g을 합성하였다.0.56 mol of zirconium nitrate was dissolved in 2000 g of distilled water and 0.69 mol of cerium nitrate in 300 g of distilled water, respectively, and the two solutions were mixed with each other. Ammonia water was slowly added to the mixed solution, and the mixture was sufficiently mixed while maintaining the pH of the solution in the range of 8-14. The resultant reaction precipitate was centrifuged and dried in a 200 ° C. dryer to synthesize 150 g of cerium-zirconium hydroxide (Ce-Zr-OH) powder.

지름 10mm의 지르코니아 볼 10kg과 상기 합성된 수산화물 분말 115g을 어트리션 밀(Attrition Mill)에 투입하여, 30분 동안 500rpm으로 분쇄하였다. 이어, 분쇄물에 희석제로서 K2CO3 385g을 투입하여 1시간 30분 동안 500rpm으로 분쇄한 후, 800℃ 소결로에서 열처리하였다. 열처리된 분말을 증류수에 용해시켜 용매의 전기전도도가 10mV 이하가 될 때까지 희석제를 제거하였다. 희석제가 제거된 분말을 200℃ 건조기에서 건조시켜 세륨-지르코늄 산화물(Ce-Zr-O2) 분말을 얻었다.10 kg of zirconia balls having a diameter of 10 mm and 115 g of the synthesized hydroxide powder were added to an Attrition Mill, and ground at 500 rpm for 30 minutes. Subsequently, 385 g of K 2 CO 3 was added to the ground product as a diluent, and ground at 500 rpm for 1 hour 30 minutes, and then heat-treated at 800 ° C. in a sintering furnace. The thermally treated powder was dissolved in distilled water to remove the diluent until the solvent had an electrical conductivity of 10 mV or less. The diluent-free powder was dried in a 200 ° C. dryer to obtain a cerium-zirconium oxide (Ce-Zr-O 2 ) powder.

X선 회절(XRD) 분석법 및 주사현미경(SEM)을 이용하여 수득된 금속산화물 분말을 분석하고, XRD 결과 및 SEM 사진을 각각 도 3 및 5에 나타내었다. 도 3에 있어서, 미반응물의 피크가 관찰되지 않아 모든 반응원료들이 반응에 참여하여 순수한 결정성 Ce-Zr-O2가 생성되었음을 알 수 있다. 또한, 도 5로부터, 생성된 분말의 입자 크기가 50 내지 200nm이고 입도 분포가 좁음을 확인할 수 있다. 수득된 금속산화물 분말의 화학양론비를 X선 형광(XRF) 및 유도결합 플라즈마(ICP) 분석법으로 측정하여, 그 결과를 하기 표 1에 나타내었다.The obtained metal oxide powder was analyzed using X-ray diffraction (XRD) analysis and scanning microscope (SEM), and XRD results and SEM images are shown in FIGS. 3 and 5, respectively. In FIG. 3, no peak of the unreacted material was observed, indicating that all the reactants participated in the reaction, thereby producing pure crystalline Ce-Zr-O 2 . In addition, it can be seen from FIG. 5 that the particle size of the resulting powder is 50 to 200 nm and the particle size distribution is narrow. The stoichiometric ratio of the obtained metal oxide powder was measured by X-ray fluorescence (XRF) and inductively coupled plasma (ICP) analysis, and the results are shown in Table 1 below.

실시예 2 : 세륨-지르코늄 산화물(Ce-Zr-OExample 2 cerium-zirconium oxide (Ce-Zr-O 22 ) 분말의 합성) Synthesis of Powder

지르코늄 질산물 1.12몰을 증류수 4000g에, 세륨 질산물 0.35몰을 증류수 150g에 각각 용해시킨 것을 제외하고는, 상기 실시예 1과 동일한 방법을 수행하여 세륨-지르코늄 산화물(Ce-Zr-O2) 분말을 얻었다.A cerium-zirconium oxide (Ce-Zr-O 2 ) powder was prepared in the same manner as in Example 1, except that 1.12 mol of zirconium nitrate was dissolved in 4000 g of distilled water and 0.35 mol of cerium nitrate was dissolved in 150 g of distilled water. Got.

X선 회절(XRD) 분석법 및 주사현미경(SEM)을 이용하여 수득된 금속산화물 분말을 분석하였다. XRD 분석 결과, 미반응물의 피크가 관찰되지 않아 모든 반응원료들이 반응에 참여하여 순수한 결정성 Ce-Zr-O2가 생성되었음을 알 수 있다. 또한, 생성된 분말의 입자 크기 및 입도 분포는 상기 실시예 1과 유사하였다. 수득된 금속산화물 분말의 화학양론비를 X선 형광(XRF) 및 유도결합 플라즈마(ICP) 분석법으로 측정하여, 그 결과를 하기 표 1에 나타내었다.The obtained metal oxide powder was analyzed using X-ray diffraction (XRD) analysis and scanning microscopy (SEM). As a result of XRD analysis, no peak of unreacted material was observed, indicating that all the reaction raw materials participated in the reaction to produce pure crystalline Ce-Zr-O 2 . In addition, the particle size and particle size distribution of the resulting powder were similar to Example 1 above. The stoichiometric ratio of the obtained metal oxide powder was measured by X-ray fluorescence (XRF) and inductively coupled plasma (ICP) analysis, and the results are shown in Table 1 below.

실시예 3 : 바륨-티타늄 산화물(Ba-Ti-OExample 3 Barium-Titanium Oxide (Ba-Ti-O 22 ) 분말의 합성) Synthesis of Powder

바륨 수산화물 0.5몰을 증류수 350g에, 티타늄 알콕시드 0.5몰을 이소프로필알콜 250g에 각각 용해시킨 후, 두 용액을 서로 혼합하였다. 생성된 반응침전물을 원심분리한 후, 200℃ 건조기에서 건조시켜 바륨-티타늄 수산화물(Ba-Ti-OH) 분말 100g을 합성하였다.0.5 mol of barium hydroxide was dissolved in 350 g of distilled water, 0.5 mol of titanium alkoxide was dissolved in 250 g of isopropyl alcohol, and the two solutions were mixed with each other. The resulting reaction precipitate was centrifuged and dried in a 200 ° C. dryer to synthesize 100 g of barium-titanium hydroxide (Ba-Ti-OH) powder.

지름 10mm의 지르코니아 볼 10kg과 상기 합성된 수산화물 분말 80g을 어트리션 밀에 투입하여, 30분 동안 500rpm으로 분쇄하였다. 이어, 분쇄물에 희석제로서 K2CO3 385g을 투입하여 1시간 30분 동안 500rpm으로 분쇄한 후, 600℃ 소결로에서 열처리하였다. 열처리된 분말을 증류수에 용해시켜 용매의 전기전도도가 10mV 이하가 될 때까지 희석제를 제거하였다. 희석제가 제거된 분말을 200℃ 건조기에서 건조시켜 바륨-티타늄 산화물(Ba-Ti-O2) 분말을 얻었다.10 kg of zirconia balls having a diameter of 10 mm and 80 g of the synthesized hydroxide powder were added to an attrition mill and ground at 500 rpm for 30 minutes. Subsequently, 385 g of K 2 CO 3 was added to the ground product as a diluent, and ground at 500 rpm for 1 hour and 30 minutes, and then heat-treated at 600 ° C. in a sintering furnace. The thermally treated powder was dissolved in distilled water to remove the diluent until the solvent had an electrical conductivity of 10 mV or less. The diluent-free powder was dried in a 200 ° C. dryer to obtain a barium-titanium oxide (Ba-Ti-O 2 ) powder.

X선 회절(XRD) 분석법 및 주사현미경(SEM)을 이용하여 수득된 금속산화물 분말을 분석하였다. XRD 분석 결과, 미반응물의 피크가 관찰되지 않아 모든 반응원료들이 반응에 참여하여 순수한 결정성 Ba-Ti-O2가 생성되었음을 알 수 있다. 또한, 생성된 분말의 입자 크기 및 입도 분포는 상기 실시예 1과 유사하였다. 수득된 금속산화물 분말의 화학양론비를 X선 형광(XRF) 및 유도결합 플라즈마(ICP) 분석법으로 측정하여, 그 결과를 하기 표 1에 나타내었다.The obtained metal oxide powder was analyzed using X-ray diffraction (XRD) analysis and scanning microscopy (SEM). As a result of XRD analysis, no peak of unreacted material was observed, indicating that all reaction raw materials participated in the reaction to produce pure crystalline Ba-Ti-O 2 . In addition, the particle size and particle size distribution of the resulting powder were similar to Example 1 above. The stoichiometric ratio of the obtained metal oxide powder was measured by X-ray fluorescence (XRF) and inductively coupled plasma (ICP) analysis, and the results are shown in Table 1 below.

실시예 4 : 포타슘-티타늄 산화물(K-Ti-OExample 4 potassium-titanium oxide (K-Ti-O 22 ) 분말의 합성) Synthesis of Powder

포타슘 탄산화물 0.5몰을 증류수 80g에 용해시킨 후, 티타늄 황산화물 6.67몰의 30% 티타늄 수용액과 혼합하였다. 생성된 반응침전물을 원심분리한 후, 200℃ 건조기에서 건조시켜 포타슘-티타늄 수산화물(K-Ti-OH) 분말 150g을 합성하였다.0.5 mol of potassium carbonate was dissolved in 80 g of distilled water, followed by mixing with 6.67 mol of 30% aqueous titanium solution. The resulting reaction precipitate was centrifuged and dried in a 200 ° C. dryer to synthesize 150 g of potassium-titanium hydroxide (K-Ti-OH) powder.

지름 10mm의 지르코니아 볼 10kg과 상기 합성된 수산화물 분말 115g을 어트리션 밀에 투입하여, 30분 동안 500rpm으로 분쇄하였다. 이어, 분쇄물에 희석제로서 K2CO3 385g을 투입하여 1시간 30분 동안 500rpm으로 분쇄한 후, 800℃ 소결로에서 열처리하였다. 열처리된 분말을 증류수에 용해시켜 용매의 전기전도도가 10mV 이하가 될 때까지 희석제를 제거하였다. 희석제가 제거된 분말을 200℃ 건조기에서 건조시켜 포타슘-티타늄 산화물(K-Ti-O2) 분말을 얻었다.10 kg of zirconia balls having a diameter of 10 mm and 115 g of the synthesized hydroxide powder were added to an attribution mill, and ground at 500 rpm for 30 minutes. Subsequently, 385 g of K 2 CO 3 was added to the ground product as a diluent, and ground at 500 rpm for 1 hour 30 minutes, and then heat-treated at 800 ° C. in a sintering furnace. The thermally treated powder was dissolved in distilled water to remove the diluent until the solvent had an electrical conductivity of 10 mV or less. The diluent-free powder was dried in a 200 ° C. dryer to obtain potassium-titanium oxide (K-Ti-O 2 ) powder.

X선 회절(XRD) 분석법 및 주사현미경(SEM)을 이용하여 수득된 금속산화물 분말을 분석하였다. XRD 분석 결과, 미반응물의 피크가 관찰되지 않아 모든 반응원료들이 반응에 참여하여 순수한 결정성 K-Ti-O2가 생성되었음을 알 수 있다. 또한, 생성된 분말의 입자 크기 및 입도 분포는 상기 실시예 1과 유사하였다. 수득된 금속산화물 분말의 화학양론비를 X선 형광(XRF) 및 유도결합 플라즈마(ICP) 분석법으로 측정하여, 그 결과를 하기 표 1에 나타내었다.The obtained metal oxide powder was analyzed using X-ray diffraction (XRD) analysis and scanning microscopy (SEM). As a result of XRD analysis, no peak of unreacted material was observed, indicating that all reaction raw materials participated in the reaction to produce pure crystalline K-Ti-O 2 . In addition, the particle size and particle size distribution of the resulting powder were similar to Example 1 above. The stoichiometric ratio of the obtained metal oxide powder was measured by X-ray fluorescence (XRF) and inductively coupled plasma (ICP) analysis, and the results are shown in Table 1 below.

실시예 5 : 소디움-티타늄 산화물(Na-Ti-OExample 5 Sodium-Titanium Oxide (Na-Ti-O 22 ) 분말의 합성) Synthesis of Powder

소디움 탄산화물 0.5몰을 증류수 360g에 용해시킨 후, 티타늄 황산화물 5몰의 30% 티타늄 수용액과 혼합하였다. 생성된 반응침전물을 원심분리한 후, 200℃ 건조기에서 건조시켜 소디움-티타늄 수산화물(Na-Ti-OH) 분말 60g을 합성하였다.0.5 mole of sodium carbonate was dissolved in 360 g of distilled water, and then mixed with 30% aqueous titanium solution of 5 moles of titanium sulfur oxide. The resultant reaction precipitate was centrifuged and dried in a 200 ° C. dryer to synthesize 60 g of sodium-titanium hydroxide (Na-Ti-OH) powder.

지름 10mm의 지르코니아 볼 10kg과 상기 합성된 수산화물 분말 50g을 어트리션 밀에 투입하여, 30분 동안 500rpm으로 분쇄하였다. 이어, 분쇄물에 희석제로서 K2CO3 385g을 투입하여 1시간 30분 동안 500rpm으로 분쇄한 후, 800℃ 소결로에서 열처리하였다. 열처리된 분말을 증류수에 용해시켜 용매의 전기전도도가 10mV 이하가 될 때까지 희석제를 제거하였다. 희석제가 제거된 분말을 200℃ 건조기에서 건조시켜 소디움-티타늄 산화물(Na-Ti-O2) 분말을 얻었다.10 kg of zirconia balls having a diameter of 10 mm and 50 g of the synthesized hydroxide powder were added to an attribution mill, and ground at 500 rpm for 30 minutes. Subsequently, 385 g of K 2 CO 3 was added to the ground product as a diluent, and ground at 500 rpm for 1 hour 30 minutes, and then heat-treated at 800 ° C. in a sintering furnace. The thermally treated powder was dissolved in distilled water to remove the diluent until the solvent had an electrical conductivity of 10 mV or less. The diluent-free powder was dried in a 200 ° C. dryer to obtain sodium-titanium oxide (Na-Ti-O 2 ) powder.

X선 회절(XRD) 분석법 및 주사현미경(SEM)을 이용하여 수득된 금속산화물 분말을 분석하였다. XRD 분석 결과, 미반응물의 피크가 관찰되지 않아 모든 반응원료들이 반응에 참여하여 순수한 결정성 Na-Ti-O2가 생성되었음을 알 수 있다. 또한, 생성된 분말의 입자 크기 및 입도 분포는 상기 실시예 1과 유사하였다. 수득된 금속산화물 분말의 화학양론비를 X선 형광(XRF) 및 유도결합 플라즈마(ICP) 분석법으로 측정하여, 그 결과를 하기 표 1에 나타내었다.The obtained metal oxide powder was analyzed using X-ray diffraction (XRD) analysis and scanning microscopy (SEM). As a result of XRD analysis, no peak of unreacted material was observed, indicating that all reaction raw materials participated in the reaction to produce pure crystalline Na-Ti-O 2 . In addition, the particle size and particle size distribution of the resulting powder were similar to Example 1 above. The stoichiometric ratio of the obtained metal oxide powder was measured by X-ray fluorescence (XRF) and inductively coupled plasma (ICP) analysis, and the results are shown in Table 1 below.

실시예 6 : 징크-티타늄 산화물(Zn-Ti-OExample 6 Zinc-Titanium Oxide (Zn-Ti-O 22 ) 분말의 합성) Synthesis of Powder

징크 탄산화물 0.5몰을 증류수 360g에 용해시킨 후, 티타늄 황산화물 5몰의 30% 티타늄 수용액과 혼합하였다. 생성된 반응침전물을 원심분리한 후, 200℃ 건조기에서 건조시켜 징크-티타늄 수산화물(Zn-Ti-OH) 분말 60g을 합성하였다.0.5 mol of zinc carbonate was dissolved in 360 g of distilled water, and then mixed with 30 mol of titanium aqueous solution of 5 mol of titanium sulfur oxide. The resultant reaction precipitate was centrifuged and dried in a 200 ° C. dryer to synthesize 60 g of zinc-titanium hydroxide (Zn-Ti-OH) powder.

지름 10mm의 지르코니아 볼 10kg과 상기 합성된 수산화물 분말 50g을 어트리션 밀에 투입하여, 30분 동안 500rpm으로 분쇄하였다. 이어, 분쇄물에 희석제로서 K2CO3 385g을 투입하여 1시간 30분 동안 500rpm으로 분쇄한 후, 800℃ 소결로에서 열처리하였다. 열처리된 분말을 증류수에 용해시켜 용매의 전기전도도가 10mV 이하가 될 때까지 희석제를 제거하였다. 희석제가 제거된 분말을 200℃ 건조기에서 건조시켜 징크-티타늄 산화물(Zn-Ti-O2) 분말을 얻었다.10 kg of zirconia balls having a diameter of 10 mm and 50 g of the synthesized hydroxide powder were added to an attribution mill, and ground at 500 rpm for 30 minutes. Subsequently, 385 g of K 2 CO 3 was added to the ground product as a diluent, and ground at 500 rpm for 1 hour 30 minutes, and then heat-treated at 800 ° C. in a sintering furnace. The thermally treated powder was dissolved in distilled water to remove the diluent until the solvent had an electrical conductivity of 10 mV or less. The diluent-free powder was dried in a 200 ° C. dryer to obtain a zinc-titanium oxide (Zn-Ti-O 2 ) powder.

X선 회절(XRD) 분석법 및 주사현미경(SEM)을 이용하여 수득된 금속산화물 분말을 분석하였다. XRD 분석 결과, 미반응물의 피크가 관찰되지 않아 모든 반응원료들이 반응에 참여하여 순수한 결정성 Zn-Ti-O2가 생성되었음을 알 수 있다. 또한, 생성된 분말의 입자 크기 및 입도 분포는 상기 실시예 1과 유사하였다. 수득된 금속산화물 분말의 화학양론비를 X선 형광(XRF) 및 유도결합 플라즈마(ICP) 분석법으로 측정하여, 그 결과를 하기 표 1에 나타내었다.The obtained metal oxide powder was analyzed using X-ray diffraction (XRD) analysis and scanning microscopy (SEM). As a result of XRD analysis, no peak of unreacted material was observed, indicating that all reaction raw materials participated in the reaction to produce pure crystalline Zn-Ti-O 2 . In addition, the particle size and particle size distribution of the resulting powder were similar to Example 1 above. The stoichiometric ratio of the obtained metal oxide powder was measured by X-ray fluorescence (XRF) and inductively coupled plasma (ICP) analysis, and the results are shown in Table 1 below.

비교예 : 세륨-지르코늄 산화물(Ce-Zr-OComparative Example: Cerium Zirconium Oxide (Ce-Zr-O 22 ) 분말의 합성) Synthesis of Powder

세륨 수산화물 1몰 및 지르코늄 수산화물 1몰을 지름 10mm의 지르코니아 볼 10kg과 함께 어트리션 밀에 투입하여, 30분 동안 500rpm으로 분쇄하였다. 이어, 분쇄물에 희석제로서 K2CO3 385g을 투입하여 1시간 30분 동안 500rpm으로 분쇄한 후, 800℃ 소결로에서 열처리하였다. 열처리된 분말을 증류수에 용해시켜 용매의 전기전도도가 10mV 이하가 될 때까지 희석제를 제거하였다. 희석제가 제거된 분말을 200℃ 건조기에서 건조시켜 세륨-지르코늄 산화물(Ce-Zr-O2) 분말을 얻었다.One mole of cerium hydroxide and one mole of zirconium hydroxide were added to an attribution mill with 10 kg of zirconia balls having a diameter of 10 mm, and ground at 500 rpm for 30 minutes. Subsequently, 385 g of K 2 CO 3 was added to the ground product as a diluent, and ground at 500 rpm for 1 hour 30 minutes, and then heat-treated at 800 ° C. in a sintering furnace. The thermally treated powder was dissolved in distilled water to remove the diluent until the solvent had an electrical conductivity of 10 mV or less. The diluent-free powder was dried in a 200 ° C. dryer to obtain a cerium-zirconium oxide (Ce-Zr-O 2 ) powder.

X선 회절(XRD) 분석법 및 주사현미경(SEM)을 이용하여 수득된 금속산화물 분말을 분석하고, XRD 결과 및 SEM 사진을 각각 도 4 및 6에 나타내었다. 도 4에 있어서, Ce-Zr-O2 피크 이외에 지르코니아(ZrO2) 피크가 개별적으로 관찰되어 미반응물이 존재함을 알 수 있으며, 결과적으로 모든 반응원료들이 반응에 참여하지는 않았음을 알 수 있다. 또한, 도 6으로부터, 생성된 분말이 덩어리져 있음을 확인할 수 있다. 수득된 금속산화물 분말의 화학양론비를 X선 형광(XRF) 및 유도결합 플라즈마(ICP) 분석법으로 측정하여, 그 결과를 하기 표 1에 나타내었다.The obtained metal oxide powder was analyzed using X-ray diffraction (XRD) analysis and scanning microscope (SEM), and XRD results and SEM images are shown in FIGS. 4 and 6, respectively. In FIG. 4, zirconia (ZrO 2 ) peaks are separately observed in addition to the Ce-Zr-O 2 peak, indicating that an unreacted substance exists, and as a result, all the reaction raw materials did not participate in the reaction. . In addition, it can be seen from FIG. 6 that the produced powder is agglomerated. The stoichiometric ratio of the obtained metal oxide powder was measured by X-ray fluorescence (XRF) and inductively coupled plasma (ICP) analysis, and the results are shown in Table 1 below.

구 분division 몰 비Mole rain 결정상Crystal phase 화학양론비Stoichiometric ratio 실시예 1Example 1 Ce:Zr = 1:0.8Ce: Zr = 1: 0.8 Ce-Zr-O2 Ce-Zr-O 2 1:0.791: 0.79 실시예 2Example 2 Ce:Zr = 1:3.2Ce: Zr = 1: 3.2 Ce-Zr-O2 Ce-Zr-O 2 1:3.181: 3.18 실시예 3Example 3 Ba:Ti = 1:1Ba: Ti = 1: 1 BaTiO3 BaTiO 3 1:0.981: 0.98 실시예 4Example 4 K:Ti = 1:2K: Ti = 1: 2 K2Ti4O9 K 2 Ti 4 O 9 1:1.981: 1.98 실시예 5Example 5 Na:Ti = 1:1.5Na: Ti = 1: 1.5 Na2Ti3O7 Na 2 Ti 3 O 7 1:1.481: 1.48 실시예 6Example 6 Zn:Ti = 1:1Zn: Ti = 1: 1 ZnTiO3 ZnTiO 3 1:0.971: 0.97 비교예Comparative example Ce:Zr = 1:1Ce: Zr = 1: 1 ZrO2>CeO2 ZrO 2 > CeO 2 1:0.711: 0.71

상기 표 1로부터, 본 발명의 방법(실시예)에 따라 제조된 다성분계 금속산화물 분말은 화학양론비를 만족시키는 반면, 기존 방법(비교예)에 따라 제조된 다성분계 금속산화물 분말은 지르코니아와 같은 미반응물과 함께 생성됨으로써 지르코늄 양이 부족한, 불균일한 화학양론비를 가짐을 알 수 있다.From Table 1, the multi-component metal oxide powder prepared according to the method (example) of the present invention satisfies the stoichiometric ratio, while the multi-component metal oxide powder prepared according to the conventional method (comparative example) is the same as zirconia It can be seen that it is produced with the unreacted material and has a non-uniform stoichiometric ratio which is insufficient in the amount of zirconium.

참고로, 화학양론비 측면에서 본, 기존 방법인 밀링법 및 본 발명의 방법에 따라 제조된 다성분계 금속산화물 분말의 비교도를 도 7a에, 입자응집 측면에서 본, 기존 방법인 침전법 또는 졸겔법 및 본 발명의 방법에 따라 제조된 다성분계 금속산화물 분말의 비교도를 도 7b에 나타내었다.For reference, in comparison with the stoichiometric ratio, the conventional method milling method and the multi-component metal oxide powder prepared according to the method of the present invention in Fig. A comparative diagram of the multicomponent metal oxide powder prepared according to the gel method and the method of the present invention is shown in FIG. 7B.

본 발명의 방법에 따르면, 기존 방법에 비해 입자응집이 없고 화학양론비가 균일한, 나노크기의 다성분계 금속산화물 분말을 간편하게 제조할 수 있다.According to the method of the present invention, it is possible to easily prepare a nano-sized multi-component metal oxide powder having no particle aggregation and a uniform stoichiometric ratio compared to the existing method.

도 1은 기존 방법에 따른 다성분계 금속산화물 분말의 개략적인 제조공정도이고,1 is a schematic manufacturing process diagram of a multi-component metal oxide powder according to a conventional method,

도 2는 본 발명에 따른 다성분계 금속산화물 분말의 개략적인 제조공정도이며,2 is a schematic manufacturing process diagram of a multi-component metal oxide powder according to the present invention,

도 3 및 4는 각각 실시예 1 및 비교예에 의해 제조된 세륨-지르코늄 산화물 분말의 X선 회절(XRD: X-ray Diffraction) 스펙트럼 결과이고,3 and 4 are X-ray diffraction (XRD) spectrum results of cerium-zirconium oxide powders prepared by Examples 1 and Comparative Examples, respectively.

도 5 및 6은 각각 실시예 1 및 비교예에 의해 제조된 세륨-지르코늄 산화물 분말의 주사현미경(SEM: Scanning Electron Microscope) 사진이고,5 and 6 are scanning electron microscope (SEM) photographs of cerium-zirconium oxide powders prepared in Example 1 and Comparative Example, respectively.

도 7a 및 7b는 각각 화학양론비 및 입자응집 측면에서 본, 기존 방법 및 본 발명의 방법에 따라 제조된 다성분계 금속산화물 분말을 나타낸다.7A and 7B show a multi-component metal oxide powder prepared according to the existing method and the method of the present invention, respectively, in terms of stoichiometric ratio and particle aggregation.

Claims (9)

금속 산화물을 구성하는 각 구성성분의 화합물을 포함하는 전구체 용액을 제조한 후 이로부터 침전 또는 졸겔반응에 의해 다성분계 금속화합물 전구체를 얻고, 이를 밀링(milling)하는 것을 포함하는, 다성분계 금속산화물 분말의 제조방법.A multicomponent metal oxide powder comprising preparing a precursor solution comprising a compound of each component constituting a metal oxide, and then obtaining a multicomponent metal compound precursor by precipitation or sol-gel reaction, and milling it. Manufacturing method. 제 1 항에 있어서,The method of claim 1, 다성분계 금속화합물 전구체가 Li, Na 및 K로 이루어진 군; Mg, Ca, Sr 및 Ba로 이루어진 군; Ti, Zr 및 Hf로 이루어진 군; Si, Ge, Sn, Pb 및 Ce로 이루어진 군; Zn; Cr; Co; Mn; Ni; B; Mo; Br; P; Al; Y; 및 Cu로부터 선택된 2종 이상의 원소의 수산화물, 질산물, 염화물, 초산물, 수화물, 알콕시화물, 황화물 및 이들의 혼합물로부터 선택된 것임을 특징으로 하는 방법.A multicomponent metal compound precursor consisting of Li, Na, and K; The group consisting of Mg, Ca, Sr and Ba; The group consisting of Ti, Zr and Hf; Si, Ge, Sn, Pb and Ce; Zn; Cr; Co; Mn; Ni; B; Mo; Br; P; Al; Y; And hydroxides, nitrates, chlorides, acetates, hydrates, alkoxides, sulfides and mixtures thereof of two or more elements selected from Cu. 제 1 항에 있어서,The method of claim 1, 다성분계 금속화합물 전구체를 희석제와 함께 밀링하는 것을 특징으로 하는 방법.Milling the multi-component metal compound precursor with a diluent. 제 3 항에 있어서,The method of claim 3, wherein 희석제가 K2CO3, NaCl, CaCl2, MgCl2, Na2SO4 , Na2CO3, Ca(OH)2 및 이들의 혼합물로부터 선택된 것임을 특징으로 하는 방법.The diluent is selected from K 2 CO 3 , NaCl, CaCl 2 , MgCl 2 , Na 2 SO 4 , Na 2 CO 3 , Ca (OH) 2 and mixtures thereof. 제 3 항에 있어서,The method of claim 3, wherein 밀링된 분말을 용매에 녹여 잔존하는 희석제를 제거하는 것을 추가로 포함하는 것을 특징으로 하는 방법.Dissolving the milled powder in a solvent to remove remaining diluent. 제 1 항에 있어서,The method of claim 1, 밀링 전 또는 후에 전구체를 500 내지 1,000℃의 온도로 소성시키는 것을 특징으로 하는 방법.Calcining the precursor to a temperature of 500 to 1,000 ° C. before or after milling. 제 1 항 내지 제 6 항 중 어느 한 항의 방법에 따라 제조된 다성분계 금속산화물 분말.Multi-component metal oxide powder prepared according to the method of any one of claims 1 to 6. 제 7 항에 있어서,The method of claim 7, wherein Ce-Zr-O2, Ba-Ti-O2, K-Ti-O2, Na-Ti-O2, Zn-Ti-O2, K-Cr-O2, Li-Co-O2, Li-Mn-O2, Li-Ni-O2, K-Mn-O2, Mn-B-O2, Na-Mo-O2, Na-Br-O2, Na-B-O2, Pb-B-O2, K-Br-O2, Ba-Br-O2, Ca-Br-O2, Ca-Cr-O2, Mg-Br-O2, Zn-Br-O2, Na-P-O2, K-P-O2, Sn-P-O2, Na-Cr-O2, Ca-Al-Si-O2, Ba-Al-Si-O2, Pb-Zr-Ti-O2, Li-Ni-Co-O2 및 Y-Ba-Cu-O2로 이루어진 군으로부터 선택된 것을 특징으로 하는, 다성분계 금속산화물 분말.Ce-Zr-O 2 , Ba-Ti-O 2 , K-Ti-O 2 , Na-Ti-O 2 , Zn-Ti-O 2 , K-Cr-O 2 , Li-Co-O 2 , Li -Mn-O 2 , Li-Ni-O 2 , K-Mn-O 2 , Mn-BO 2 , Na-Mo-O 2 , Na-Br-O 2 , Na-BO 2 , Pb-BO 2 , K -Br-O 2 , Ba-Br-O 2 , Ca-Br-O 2 , Ca-Cr-O 2 , Mg-Br-O 2 , Zn-Br-O 2 , Na-PO 2 , KPO 2 , Sn -PO 2 , Na-Cr-O 2 , Ca-Al-Si-O 2 , Ba-Al-Si-O 2 , Pb-Zr-Ti-O 2 , Li-Ni-Co-O 2 and Y-Ba Multi-component metal oxide powder, characterized in that selected from the group consisting of -Cu-O 2 . 제 7 항에 있어서,The method of claim 7, wherein 입자의 크기가 10 내지 200 nm인 것을 특징으로 하는, 다성분계 금속산화물 분말.Multi-component metal oxide powder, characterized in that the particle size of 10 to 200 nm.
KR10-2002-0028822A 2002-05-24 2002-05-24 Method for the preparation of multielement-based metal oxide powders KR100483169B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0028822A KR100483169B1 (en) 2002-05-24 2002-05-24 Method for the preparation of multielement-based metal oxide powders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0028822A KR100483169B1 (en) 2002-05-24 2002-05-24 Method for the preparation of multielement-based metal oxide powders

Publications (2)

Publication Number Publication Date
KR20030090936A KR20030090936A (en) 2003-12-01
KR100483169B1 true KR100483169B1 (en) 2005-04-14

Family

ID=32384208

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0028822A KR100483169B1 (en) 2002-05-24 2002-05-24 Method for the preparation of multielement-based metal oxide powders

Country Status (1)

Country Link
KR (1) KR100483169B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105436512A (en) * 2014-08-13 2016-03-30 南京理工大学 Preparation method of nano-copper catalysts

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4485442B2 (en) * 2004-10-01 2010-06-23 コリア インスティテュート オブ サイエンス アンド テクノロジー Hydrophilic metal oxide nanoparticles having uniform particle size and method for producing the same
CN105834443B (en) * 2016-04-11 2019-10-29 北京工商大学 A method of preparing CoNi nano particle
RU2714452C1 (en) * 2019-09-28 2020-02-17 ООО "Т-Сфера" Method of producing powders of zirconium dioxide with a spheroidal shape of particles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235214A (en) * 1986-04-03 1987-10-15 Hitachi Metals Ltd Production of semiconductive srtio3 particle and high-dielectric constant ceramic
KR940000191A (en) * 1992-06-03 1994-01-03 정명식 Method for producing lead titanate sintered body
KR950008002A (en) * 1993-09-17 1995-04-15 우덕창 Manufacturing Method of Ba₁-xPBxTIO₃ Based PTC Powder
KR19990037964A (en) * 1996-09-25 1999-06-05 에이이치 아사다 Metal Powder Manufacturing Method
KR20000046248A (en) * 1998-12-31 2000-07-25 배창환 Alloy powder of copper-cobalt-iron and preparing method thereof
KR20010071267A (en) * 1998-05-15 2001-07-28 추후제출 Process for the production of ultrafine powders

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62235214A (en) * 1986-04-03 1987-10-15 Hitachi Metals Ltd Production of semiconductive srtio3 particle and high-dielectric constant ceramic
KR940000191A (en) * 1992-06-03 1994-01-03 정명식 Method for producing lead titanate sintered body
KR950008002A (en) * 1993-09-17 1995-04-15 우덕창 Manufacturing Method of Ba₁-xPBxTIO₃ Based PTC Powder
KR19990037964A (en) * 1996-09-25 1999-06-05 에이이치 아사다 Metal Powder Manufacturing Method
KR20010071267A (en) * 1998-05-15 2001-07-28 추후제출 Process for the production of ultrafine powders
KR20000046248A (en) * 1998-12-31 2000-07-25 배창환 Alloy powder of copper-cobalt-iron and preparing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105436512A (en) * 2014-08-13 2016-03-30 南京理工大学 Preparation method of nano-copper catalysts

Also Published As

Publication number Publication date
KR20030090936A (en) 2003-12-01

Similar Documents

Publication Publication Date Title
US7556792B2 (en) Method for preparing perovskite complex oxide powder of formula ABO3
KR101442835B1 (en) Fine-particled alkaline-earth titanates and method for the production thereof using titan oxide particles
US5096642A (en) Process for producing a high density ceramic of perovskite
US20060078492A1 (en) Perovskite titanium-containing composite oxide particle, production process and uses thereof
Hwang et al. Low‐temperature synthesis of fully crystallized spherical BaTiO3 particles by the gel–sol method
KR100753773B1 (en) Method for preparing perovskite oxide nanopowders
KR20150084021A (en) Coated barium titanate particulate and production method for same
US7871595B2 (en) Fine barium titanate particles
US8431109B2 (en) Process for production of composition
Rai et al. An overview on recent developments in the synthesis, characterization and properties of high dielectric constant calcium copper titanate nano-particles
US7001585B2 (en) Method of making barium titanate
JP4657621B2 (en) Perovskite-type titanium-containing composite oxide particles, production method and use thereof
JP2005075700A (en) Method for manufacturing composition
KR100483169B1 (en) Method for the preparation of multielement-based metal oxide powders
Malekabadi et al. Low-temperature synthesis of micro/nano Lithium Fluoride added magnesium aluminate spinel
JPS6153113A (en) Production of powdery raw material of easily sintering perovskite and its solid solution by wet process
Srisombat et al. Chemical synthesis of magnesium niobate powders
Srdic et al. Nanocrystalline titanate powders: synthesis and mechanisms of perovskite particles formation
Nikzad et al. Synthesis of MgTiO3 Powder Via Co-Precipitation Method and Investigation of Sintering Behavior
JP4671946B2 (en) Barium calcium titanate powder and production method thereof
JPH08119745A (en) Production of ceramic powder
KR100489403B1 (en) METHOD OF PREPARING BaTiO3 POWDER
Kutty et al. A method for the preparation of high purity lead titanate zirconate solid solutions by carbonate–gel composite powder precipitation
KR100527060B1 (en) Preparation of Single and Multi-Component Oxide by Pyrophoric Synthesis Method
JP2716197B2 (en) Method for producing barium titanate powder

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080215

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee