KR100479688B1 - Dielectric ceramic composition and method for preparing dielectric ceramic for low temperature co-fired ceramic - Google Patents

Dielectric ceramic composition and method for preparing dielectric ceramic for low temperature co-fired ceramic Download PDF

Info

Publication number
KR100479688B1
KR100479688B1 KR10-2002-0032062A KR20020032062A KR100479688B1 KR 100479688 B1 KR100479688 B1 KR 100479688B1 KR 20020032062 A KR20020032062 A KR 20020032062A KR 100479688 B1 KR100479688 B1 KR 100479688B1
Authority
KR
South Korea
Prior art keywords
glass
silicon boride
dielectric
low temperature
filler
Prior art date
Application number
KR10-2002-0032062A
Other languages
Korean (ko)
Other versions
KR20030094774A (en
Inventor
김병국
박재환
제해준
박재관
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR10-2002-0032062A priority Critical patent/KR100479688B1/en
Publication of KR20030094774A publication Critical patent/KR20030094774A/en
Application granted granted Critical
Publication of KR100479688B1 publication Critical patent/KR100479688B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F2013/15008Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterized by the use
    • A61F2013/15048Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterized by the use for protection against contamination, or protection in using body disinfecting wipes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F2013/15008Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterized by the use
    • A61F2013/15048Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterized by the use for protection against contamination, or protection in using body disinfecting wipes
    • A61F2013/15056Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterized by the use for protection against contamination, or protection in using body disinfecting wipes for the protection for furniture, e.g. car seats, chairs, beds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F2013/15008Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterized by the use
    • A61F2013/15186Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterized by the use for animals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vascular Medicine (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

본 발명은 마이크로파 유전 특성이 우수하고 950℃ 부근의 낮은 온도 범위에서 소성이 가능한 저유전율의 붕화규소계 세라믹 조성물 및 그 제조방법에 관한 것이다. 본 발명의 조성물은 40 ~ 60%의 비정질 붕화규소 유리와 40 ~ 60%의 충진제로 구성되어지며, 가격이 저렴한 Ag 전극과 함께 저온소성 다층기판의 저유전율층에 사용될 수 있다.The present invention relates to a low dielectric constant silicon boride-based ceramic composition having excellent microwave dielectric properties and capable of firing in a low temperature range around 950 ° C and a method of manufacturing the same. The composition of the present invention is composed of 40 to 60% of amorphous silicon boride glass and 40 to 60% of a filler, and can be used in a low dielectric constant layer of a low-temperature fired multilayer substrate together with an inexpensive Ag electrode.

Description

유전체 세라믹 조성물 및 이를 이용한 저온 소성 유전체 세라믹의 제조방법{DIELECTRIC CERAMIC COMPOSITION AND METHOD FOR PREPARING DIELECTRIC CERAMIC FOR LOW TEMPERATURE CO-FIRED CERAMIC}Dielectric ceramic composition and method for manufacturing low-temperature calcined dielectric ceramic using same TECHNICAL FIELD

본 발명은 유전체 세라믹 조성물 및 그 제조방법에 관한 것으로, 보다 구체적으로는 950℃ 정도의 낮은 온도 범위에서 소성이 가능한 붕화규소(borosilicate)계 저온 소성 다층기판용 저유전율 유전체 세라믹 조성물에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition and a method of manufacturing the same, and more particularly, to a low dielectric constant dielectric ceramic composition for borosilicate low temperature calcined multilayer substrates capable of firing at a low temperature range of about 950 ° C.

LTCC(Low Temperature Co-fired Ceramic) 기판의 조성을 보면 대체적으로 유리, 결정화 유리, 또는 유리와 세라믹 충진제의 복합체 형태 중 한가지로 구성이 되는데, 유리가 주성분으로 사용됨에 따라 유전율 범위는 대략 4-9 정도의 범위에 있게 된다. 지금까지 개발된 LTCC 재료는 유리와 세라믹 충진제의 복합체 형태 (예를 들면, borosilicate glass + Al2O3, lead borosilicate glass + Al2O 3, borosilicate glass + quartz 등)가 가장 많이 연구되고 있다.The composition of the Low Temperature Co-fired Ceramic (LTCC) substrate is generally composed of one of glass, crystallized glass, or a composite of glass and ceramic filler, and the dielectric constant range is about 4-9 depending on the glass used as the main component. It is in the range of. The LTCC materials developed so far are the most studied composites of glass and ceramic fillers (eg borosilicate glass + Al 2 O 3 , lead borosilicate glass + Al 2 O 3 , borosilicate glass + quartz, etc.).

LTCC 재료에서 저유전율이라는 기준은 일반적으로 세라믹 기판으로 많이 사용되는 알루미나 기판 (εr=10)에 비하여 작은 유전율을 갖는 것을 의미한다. 이러한 저유전율을 갖는 기판재료가 관심의 대상이 되는 것은 기판 위에 형성되어 있는 전송 선을 따라 신호가 전달될 때 신호의 지연정도가 기판의 유전율의 제곱근에 비례하기 때문이다. 세라믹 기판 위의 금속도선을 통하여 신호가 전달될 때 신호 전달의 지연 속도의 지연시간은 다음과 같이 표시할 수 있다.The low dielectric constant in LTCC materials means that the dielectric constant is small compared to the alumina substrate (ε r = 10), which is generally used as a ceramic substrate. The substrate material having such a low dielectric constant is of interest because the degree of delay of the signal is proportional to the square root of the dielectric constant of the substrate when the signal is transmitted along the transmission line formed on the substrate. When the signal is transmitted through the metal wire on the ceramic substrate, the delay time of the delay rate of signal transmission may be expressed as follows.

Td ∝√(εr /C)T d ∝√ (ε r / C)

Td : 신호 전달 지연시간, εr : 유전상수, C : 광속T d : Signal propagation delay time, ε r : Dielectric constant, C: Luminous flux

따라서 유전상수의 값이 작을수록 신호지연시간이 단축되므로 기존의 알루미나(유전상수 9-10) 보다 낮은 유전상수를 갖고 있는 유리질 세라믹(glass-ceramic)을 사용하는 경우 신호 지연이 적게 된다. 또한 인접한 도체패턴 간에 발생하는 원하지 않는 부유용량 값을 줄이기 위해서도 저유전율 기판을 사용해야 할 필요가 있다.Therefore, the smaller the value of the dielectric constant, the shorter the signal delay time. Therefore, when using glass-ceramic having a lower dielectric constant than the conventional alumina (dielectric constant 9-10), the signal delay is small. It is also necessary to use low dielectric constant substrates to reduce unwanted stray capacitance values that occur between adjacent conductor patterns.

저유전율을 갖는 조성의 경우를 살펴보면, 주로 SiO2 등의 저유전율을 갖는 세라믹 충진제와 붕화규소계 유리를 혼합하는 경우가 일반적이다. 저유전율화를 도모하면서 특별히 저열팽창성이 요구될 경우에는 결정화유리를 함유하는 조성이 효과적이다. 또 다른 예로는 유리질을 함유하지 않은 세라믹 단상을 이용하는 경우이다. 이 경우는 당연히 다른 유리질 세라믹 계와 비교해 볼 때 결정성이 높기 때문에 고온다습 상태에서도 Ag의 이동(migration)이 일어나기 어렵고 열적변화에도 안정성이 높다는 장점을 가지고 있으나, 소성과정에서 수축 거동을 제어하기가 어렵다는 단점이 있다.In the case of a composition having a low dielectric constant, it is common to mix a ceramic filler having a low dielectric constant such as SiO 2 and silicon boride-based glass. The composition containing crystallized glass is effective when low dielectric constant is especially required and low thermal expansion property is aimed at. Another example is the use of a ceramic single phase that does not contain glass. In this case, of course, since the crystallinity is higher than that of other glassy ceramic systems, Ag migration is difficult to occur even at high temperature and high humidity, and stability is high even in thermal changes. The disadvantage is that it is difficult.

따라서, 본 발명의 목적은 마이크로파 특성이 우수하고, 소성 온도가 낮아야어야 하는 LTCC용 유전체 세라믹 조건에 부합할 수 있도록 950℃ 정도의 낮은 온도 범위에서 소성이 가능하면서 저유전율을 갖는 유전체 세라믹 조성물 및 그 제조방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a dielectric ceramic composition having a low dielectric constant and capable of firing at a low temperature range of about 950 ° C. so as to meet the LTCC dielectric ceramic conditions that should be excellent in microwave characteristics and low firing temperature. It is to provide a manufacturing method.

본 발명은 비정질 붕화규소계 유리 40 ~ 60 중량%와 40 ~ 60%의 충진제로 구성되며, 상기 붕화규소계 유리는 SiO2와 B2O3를 주원료로 하고, 여기에 소결조제로서 Na2O, MgO, Li2O, Al2O3 중에서 선택되는 어느 하나 이상의 알칼리 산화물이 포함되며, 상기 충진제는 석영 또는 용융실리카 중에서 선택되는 어느 하나 이상인 것을 특징으로 하는 저온 소성 유전체 세라믹 조성물을 제공한다.The present invention is composed of 40 to 60% by weight of amorphous silicon boride-based glass and 40 to 60% filler, wherein the silicon boride-based glass is mainly composed of SiO 2 and B 2 O 3 , and Na 2 O as a sintering aid. At least one alkali oxide selected from MgO, Li 2 O, Al 2 O 3 is included, and the filler provides a low temperature calcined dielectric ceramic composition, characterized in that any one or more selected from quartz or fused silica.

또한, 본 발명은, (1) 다음의 단계에 의하여 붕화규소유리를 제조하고; 붕화규소유리 원료로 SiO2및 B2O3와, 소결조제로서 Al2O3, Na2O, K2O, Li2O 중에서 선택되는 어느 하나 이상의 알칼리 산화물을 건식혼합하고, 혼합된 분말을 1700℃까지 열처리한 후 급냉하여 붕화규소 유리를 제조하고, 급냉시킨 붕화규소 유리를 건조시킨 후 분쇄하고,In addition, the present invention, (1) to produce a silicon boride glass by the following steps; Dry mixing of SiO 2 and B 2 O 3 as a silicon boride glass raw material and at least one alkali oxide selected from Al 2 O 3 , Na 2 O, K 2 O and Li 2 O as a sintering aid, and mixing the mixed powder Heat treatment to 1700 ℃ and then quenched to produce silicon boride glass, the quenched silicon boride glass is dried and pulverized,

(2) 다음의 단계에 의하여 붕화규소와 충진제를 혼합물을 얻고; 상기 (1)의 단계에서 얻어진 붕화규소 유리 40 ~ 60%와 충진제로서 석영 또는 용융실리카 중에서 선택되는 어느 하나의 물질 40 ~ 60%를 습식혼합하여 슬러리를 준비하고, 혼합된 슬러리를 건조시키고, 건조된 혼합물을을 분쇄하여 미립의 분말을 얻고, (2) obtaining a mixture of silicon boride and a filler by the following steps; 40 to 60% of the silicon boride glass obtained in the step (1) and 40 to 60% of any material selected from quartz or molten silica as a filler are wet mixed to prepare a slurry, and the mixed slurry is dried and dried. The ground mixture is pulverized to obtain a fine powder,

(3) 상기 미립의 분말을 성형하고;(3) shaping the fine powder;

(4) 성형체를 800℃ ~ 950℃의 온도 범위에서 2시간 동안 소결하는 것을 포함하여 이루어지는 저온소성 세라믹 유전체의 제조방법을 제공한다.(4) Provided is a method for producing a low-temperature fired ceramic dielectric comprising sintering a molded body in a temperature range of 800 ° C to 950 ° C for 2 hours.

본 발명자들은 유전율이 5 이하로 낮으면서 유전손실 값이 낮은 유리를 제조하기 위해 석영(quartz), 용융실리카(fused silica), 알루미나(alumina) 등 충진제의 종류와 혼합비를 변화시키면서 기판재료로서 요구되는 유전율 (dielectric constants) 및 유전손실 (dielectric loss), 밀도 (density), 수축율 (shrinkage)등을 조사하였다.The inventors of the present invention are required as a substrate material while varying the type and mixing ratio of fillers such as quartz, fused silica, and alumina in order to manufacture glass having a low dielectric constant of 5 or less and low dielectric loss. Dielectric constants, dielectric loss, density and shrinkage were investigated.

본 발명의 유전체 세라믹은 붕화규소계를 주 원료로 하고, 석영, 용융실리카, 알루미나 등을 충진제로 하여, 900 ~ 950℃ 정도의 낮은 온도 범위에서 소성이 가능하며, 유전율이 3 ~ 5 정도로 낮으면서 유전손실 값이 0.1 ~ 0.2 정도로 낮다.The dielectric ceramic of the present invention is a silicon boride-based raw material, quartz, fused silica, alumina and the like as a filler, it is possible to bake in a low temperature range of about 900 ~ 950 ℃, while having a low dielectric constant of about 3 to 5 Dielectric loss value is as low as 0.1 ~ 0.2.

본 발명에 따른 유전체 세라믹 조성물의 특징 및 제조방법을 실시예를 통하여 구체적으로 설명하면 다음과 같다. The characteristics and manufacturing method of the dielectric ceramic composition according to the present invention will be described in detail with reference to the following Examples.

출발원료로는 SiO2, B2O3, Al2O3, Na2O, K2O, Li2O (>99%, Junsei Chem. Co. Ltd., Japan) 등을 사용하였다. 원료를 유효숫자 소숫점 4자리까지 정량비로 칭량하여 teflon 볼과 함께 24시간 건식 혼합한 후, 혼합된 분말은 Pt-Rh 도가니를 사용하여 분당 5℃로 승온시킨 뒤 1700℃에서 20분간 유지 한 후 물 속에서 급냉하였다. 급냉시킨 붕화규소 유리는 130℃ 건조오븐(dry oven)에서 6시간 동안 충분히 건조시킨 다음, 모르타르(mortar)에서 1차 분쇄 후 미립자로 만들기 위해 다시 안정화 지르코니아볼 (YSZ)과 에탄올을 사용하여 48시간동안 2차 분쇄했다. 분쇄한 유리는 80℃ 건조오븐에서 12시간동안 건조시킨 뒤 다시 모르타르를 사용하여 미립의 비정질 붕화규소 유리를 얻었다.As starting materials, SiO 2 , B 2 O 3 , Al 2 O 3 , Na 2 O, K 2 O, Li 2 O (> 99%, Junsei Chem. Co. Ltd., Japan) and the like were used. The raw materials were weighed to 4 significant figures and then mixed dry with a teflon ball for 24 hours.The mixed powder was heated to 5 ° C per minute using a Pt-Rh crucible and then maintained at 1700 ° C for 20 minutes. It was quenched in the inside. The quenched silicon boride glass was sufficiently dried for 6 hours in a 130 ° C. dry oven, and then 48 hours using stabilized zirconia ball (YSZ) and ethanol again to make fine particles after primary grinding in mortar. During the second milling. The pulverized glass was dried in a drying oven at 80 ° C. for 12 hours, and again, mortar was used to obtain particulate amorphous silicon boride glass.

다음의 표 1에는 본 발명의 실시예에서 사용한 븅화규소계 유리의 조성예를 보여준다.Table 1 below shows an example of the composition of the silicon carbide-based glass used in the examples of the present invention.

유리의 조성은 붕화규소계 유리를 중심으로 하였으며, SiO2의 비율은 유리화 및 전기적특성을 고려하여 66 ~ 72 중량%의 범위가 적절하지만, 상기 실시예에서는 SiO2와 B2O3의 비율을 68:28로 일정하게 고정하였다.The composition of the glass is based on silicon boride glass, and the ratio of SiO 2 is suitably in the range of 66 to 72% by weight in consideration of vitrification and electrical properties, but in the above embodiment, the ratio of SiO 2 and B 2 O 3 Fixed constant at 68:28.

순수한 붕화규소계 유리는 1600℃의 온도에서도 거의 용융되지 않으므로 실용적인 면에서 문제점이 있다. 유리 용융을 위해서는 Pt 등 귀금속 도가니를 이용하게 되는데 1600℃ 이상의 온도에서는 도가니의 열화가 급속히 진행되므로 가능하면 1600℃ 이하의 온도에서 유리가 제조되는 것이 바람직하다. 따라서 본 발명에서는 소결조제로서 Na2O, MgO, Li2O, Al2O3 등의 알칼리 산화물의 첨가에 의해 1600℃ 이하의 온도에서 붕화규소의 유리 용융을 가능케 하고자 하였다Pure silicon boride-based glass hardly melts even at a temperature of 1600 ° C., which causes problems in practical terms. For melting the glass, a noble metal crucible such as Pt is used, but since the deterioration of the crucible proceeds rapidly at a temperature of 1600 ° C. or higher, it is preferable that the glass be produced at a temperature of 1600 ° C. or lower. Therefore, in the present invention, it is intended to enable glass melting of silicon boride at a temperature of 1600 ° C. or lower by addition of alkali oxides such as Na 2 O, MgO, Li 2 O, and Al 2 O 3 as sintering aids.

표 1에서 유리용융 정도를 표시하였는데, O 표시는 1600℃ 이하에서 유리 용융이 되며 용융액의 점도가 높지만 부어지는(액체와 같이 흐를 수 있는) 상태, OO 표시는 1600℃ 이하에서유리 용융이 되며 용융액의 점도가 낮아 쉽게 부어지는 상태, ×표시는 1600℃ 이하에서 유리용융이 되지 않고 부어지지도 아니하는 것을 표시한다. 유리를 만드는 온도가 1600도를 넘어가면 도가니나 로가 많이 손상을 입게 되므로 1600도 이하의 온도에서 유리가 흘러서 부어지는 것이 매우 중요하다.In Table 1, the degree of glass melting is indicated. The O mark is glass melted at 1600 ° C. or lower, and the viscosity of the melt is high, but is poured (can flow like a liquid). The O mark is glass melted at 1600 ° C. or lower, Low viscosity, easy to pour state, × indicates that the glass is not melted or poured at 1600 ℃ or less. If the temperature to make the glass exceeds 1600 degrees, the crucible or furnace will be damaged a lot, so it is very important that the glass flows and pours at a temperature below 1600 degrees.

표 1의 결과로부터 Na2O와 Li2O의 함량이 2wt% 이상 첨가되고, 특히 Li2O의 첨가량이 많은 경우가 유리 용융에 있어서 바람직함을 알 수 있다.From the results in Table 1, it can be seen that Na 2 O and Li 2 O are added in an amount of 2 wt% or more, and in particular, a case where a large amount of Li 2 O is added is preferable in melting the glass.

또한, 이와 같이 제조되는 유리프리트의 전기적 특성은 충진제를 포함하는 최종적인 기판 조성의 전기적 특성을 좌우하므로 유리프리트의 유전손실 값이 낮은 것이 중요하다. 유리프리트 조성에 따른 유전손실 값을 볼 때 Li2O가 1.0 - 2.0wt& 가량 첨가되는 것이 유리용융과 전기적특성을 동시에 만족시키는 적정한 범위인 것을 알 수 있다. Li2O가 2.0wt% 이상 첨가되면 유전손실값이 급격히 증가되는 것을 볼 수 있다.In addition, since the electrical properties of the glass frit manufactured as described above influence the electrical properties of the final substrate composition including the filler, it is important that the dielectric loss value of the glass frit is low. In view of the dielectric loss value according to the glass frit composition, it can be seen that the addition of 1.0 to 2.0 wt < of Li 2 O satisfies both the glass melting and the electrical properties simultaneously. If Li 2 O is added more than 2.0wt% dielectric loss value can be seen to increase rapidly.

이상과 같이 유리 조성이 얻어진 이후 충진제를 혼합하는 두 번째 단계의 방법을 설명하면 다음과 같다. The second step of mixing the filler after the glass composition is obtained as described above is as follows.

충진제로는 알루미나, 석영 (>99.9%, High Purity Chem. Co., Japan), 비정질(amorphous)인 용융실리카를 사용하였고, 제조한 붕화규소 유리와 충진제를 유효숫자 소숫점 4자리까지 정량비로 칭량하고 안정화 지르코니아볼 (YSZ)과 에탄올을 사용하여 24시간동안 습식 혼합을 시행했다. 혼합된 슬러리는 80℃ 건조오븐에서 12시간동안 충분히 건조시킨 뒤 모르타르를 사용해서 일정비로 혼합된 미립자의 분말을 얻었다. 이렇게 얻어진 최종분말을 1000㎏/㎤의 압력으로 직경 22.5㎜의 몰드에서 일축가압하여 원주형태로 성형하였다. 제작된 시편을 분당 5℃의 속도로 승혼한 후 800℃ ~ 950℃의 온도 범위에서 2시간 동안 소결하였으며 소결 후 노냉하였다.As a filler, alumina, quartz (> 99.9%, High Purity Chem. Co., Japan) and amorphous molten silica were used, and the silicon boride glass and the filler were weighed to the nearest four decimal places in quantitative ratio. Wet mixing was performed for 24 hours using stabilized zirconia ball (YSZ) and ethanol. The mixed slurry was sufficiently dried in a drying oven at 80 ° C. for 12 hours to obtain a powder of fine particles mixed at a constant ratio using mortar. The final powder thus obtained was uniaxially pressurized in a mold having a diameter of 22.5 mm at a pressure of 1000 kg / cm 3 to form a columnar shape. The fabricated specimens were sublimed at a rate of 5 ° C. per minute, and then sintered for 2 hours in a temperature range of 800 ° C. to 950 ° C., and then sintered and sintered.

붕화규소에 대하여 석영이 충진제로 적용된 시스템에서 소결된 시편에 대하여 수축율, 밀도, 유전율, 유전손실 등을 조사한 결과 전반적으로 수축율과 밀도가 다른 충진제들인 알루미나 및 용융실리카 보다 좋지 않은 결과를 보여 주었지만, 유전율은 상대적으로 가장 낮게 나타나는 좋은 결과를 나타내었다. 800℃에서 950℃까지 소성온도가 증가함에 따라 치밀화 정도는 계속 상승하는 경향을 보여주고 있으며, 통상 LTCC 조성의 경우에 14-16% 정도의 소성수축이면 완전한 치밀화가 일어난다는 보고에 비추어 볼 때 glass의 함량이 60% 이상으로 첨가된 경우에도 900 ~ 950℃의 LTCC 소성온도에서 활용가능한 것으로 판단된다. 유전특성은 전반적으로 볼 때 소성온도가 증가함에 따라 유전율은 다소 감소하는 경향을 보여주고 있다. 유전율은 950℃의 소성온도에서 약 3.5 ~ 4.2 정도의 값을 나타내었고 유전손실 값은 0.1% 정도로 나타났다.Shrinkage, density, dielectric constant, dielectric loss, etc. of the sintered specimens were investigated in the system in which quartz was applied as a filler for silicon boride. The permittivity was relatively low, showing good results. As the firing temperature increases from 800 ℃ to 950 ℃, the degree of densification continues to increase, and in the case of LTCC composition, it is reported that 14-16% of plastic shrinkage results in complete densification. Even if the content of more than 60% is determined to be available at LTCC firing temperature of 900 ~ 950 ℃. Dielectric properties show that the dielectric constant tends to decrease somewhat with increasing firing temperature. The dielectric constant was about 3.5 ~ 4.2 at the firing temperature of 950 ℃ and the dielectric loss was about 0.1%.

붕화규소에 대하여 용융실리카가 충진제로 적용된 시스템에서 소결된 시편에 대하여 수축율, 밀도, 유전율, 유전손실 등을 조사한 결과 전반적으로 가장 우수한 특성을 보여 주었다. 즉, 치밀화가 잘 이루어졌으며 유전율 및 유전손실 면에서도 상당히 낮은 수준의 값을 나타내었다. 유리 함량이 50% 이상인 경우는 900℃ 이상에서 완전 치밀화 거동을 나타내었다. 전기적 특성을 보면, 950℃에서 소성하였을 때 유전율은 4.0 이하, 유전손실 값은 0.16% 이하의 값을 나타내었다.Shrinkage, density, dielectric constant, dielectric loss, etc. of the sintered specimens in the system in which molten silica was used as filler for silicon boride showed the best overall characteristics. In other words, the densification was well performed and the value of the dielectric constant and dielectric loss was very low. If the glass content is more than 50%, the complete densification behavior was shown at 900 ℃ or more. In terms of the electrical properties, when firing at 950 ° C., the dielectric constant was 4.0 or less and the dielectric loss value was 0.16% or less.

붕화규소에 대하여 알루미나가 충진제로서 적용된 시스템에서 소결된 시편에 대하여 수축율, 밀도, 유전율, 유전손실 등을 조사한 결과, 전반적으로 수축율과 밀도가 대체로 양호한 면을 보여 주었다. 전기적 특성에서는 유전율과 유전손실 값이 전반적으로 높아서 저유전율 구현이라는 본 발명의 목표와는 상당히 거리가 있었다. 이러한 높은 유전율의 이유는 알루미나 자체가 유전율이 9.6 정도 되기 때문이라고 판단된다.Shrinkage, density, dielectric constant, dielectric loss, etc. were investigated for the sintered specimens in the system in which alumina was used as a filler for silicon boride, and the overall shrinkage and density were generally good. In terms of electrical properties, the dielectric constant and dielectric loss values are generally high, which is far from the objective of the present invention to realize low dielectric constant. The reason for this high dielectric constant is that alumina itself has a dielectric constant of about 9.6.

본 발명에 따르면, 950℃ 부근의 낮은 온도 범위에서도 우수한 소성 특성 및 유전 특성을 갖는 저온 소성 다층기판용 고유전율을 세라믹 조성물을 얻을 수 있으며, 이를 통하여 Ag 전극을 사용한 저온 소성 다층기판용 고유전율 세라믹 조성물로서 활용이 충분히 가능한 것으로 판단되다. 특히, 신호지연이 적은 고속신호전달 기판으로 사용이 가능하다.According to the present invention, it is possible to obtain a ceramic composition having a high dielectric constant for low-temperature calcined multilayer substrates having excellent plasticity and dielectric properties even at a low temperature range around 950 ° C, and through this, a high-k dielectric ceramic for low-temperature calcined multilayer substrates using Ag electrodes. It is judged that utilization as a composition is possible enough. In particular, it can be used as a high speed signal transmission substrate with low signal delay.

Claims (8)

비정질 붕화규소계 유리 40 ~ 60 중량%와 40 ~ 60%의 충진제로 구성되며,40 to 60% by weight of amorphous silicon boride glass and 40 to 60% filler, 상기 붕화규소계 유리는 SiO2와 B2O3를 주원료로 하고, 여기에 소결조제로서 Na2O, MgO, Li2O, Al2O3 중에서 선택되는 어느 하나 이상의 알칼리 산화물이 포함되며, 상기 충진제는 석영 또는 용융실리카 중에서 선택되는 어느 하나 이상이고,The silicon boride-based glass has SiO 2 and B 2 O 3 as the main raw materials, and includes at least one alkali oxide selected from Na 2 O, MgO, Li 2 O, and Al 2 O 3 as a sintering aid. Filler is any one or more selected from quartz or fused silica, 유전율이 1MHz에서 3.3 이상 4.2 미만의 범위에 있는 것을 특징으로 하는 The dielectric constant is in the range of 3.3 to less than 4.2 at 1 MHz. 저온 소성 유전체 세라믹 조성물.Low temperature calcined dielectric ceramic composition. 제1항에 있어서, 상기 붕화규소계 유리의 SiO2의 비율은 66 ~ 72 중량%의 범위인 저온 소성 유전체 세라믹 조성물.The low temperature calcined dielectric ceramic composition according to claim 1, wherein the ratio of SiO 2 in the silicon boride-based glass is in the range of 66 to 72 wt%. 제2항에 있어서, 알칼리산화물 중 Li2O의 함량이 1.0 ~ 3.0중량%인 저온 소성 유전체 세라믹 조성물.The low temperature calcined dielectric ceramic composition according to claim 2, wherein the content of Li 2 O in the alkali oxide is 1.0 to 3.0% by weight. 제2항에 있어서, 알칼리산화물 중 Na2O와 Li2O의 함량이 2.0 ~ 3.0중량%인 저온 소성 유전체 세라믹 조성물.The low temperature calcined dielectric ceramic composition according to claim 2, wherein the content of Na 2 O and Li 2 O in the alkali oxide is 2.0 to 3.0% by weight. 제1항에 있어서, 상기 조성물의 유전손실은 1MHz에서 0.1 ~ 0.2%인 저온소성 세라믹 유전체 조성물.The low temperature fired ceramic dielectric composition of claim 1, wherein the dielectric loss of the composition is 0.1 to 0.2% at 1 MHz. (1) 하기의 단계에 의하여 붕화규소유리를 제조하고;(1) preparing silicon boride glass by the following steps; 붕화규소유리 원료로 SiO2및 B2O3와, 소결조제로서 Al2O3, Na2O, K2O, Li2O 중에서 선택되는 어느 하나 이상의 알칼리 산화물을 건식혼합하고,Dry mixing SiO 2 and B 2 O 3 as a silicon boride glass raw material and at least one alkali oxide selected from Al 2 O 3 , Na 2 O, K 2 O, and Li 2 O as a sintering aid, 혼합된 분말을 1700℃까지 열처리한 후 급냉하여 붕화규소 유리를 제조하고,After heat-treating the mixed powder to 1700 ℃ and quenched to produce silicon boride glass, 급냉시킨 붕화규소 유리를 건조시킨 후 분쇄하고,The quenched silicon boride glass is dried and pulverized, (2) 하기의 단계에 의하여 붕화규소와 충진제를 혼합물을 얻고;(2) obtaining a mixture of silicon boride and a filler by the following steps; 상기 (1)의 단계에서 얻어진 붕화규소 유리 40 ~ 60%와 충진제로서 석영, 용융실리카 중에서 선택되는 어느 하나의 물질 40 ~ 60%를 습식혼합하여 슬러리를 준비하고,A slurry is prepared by wet mixing 40 to 60% of the silicon boride glass obtained in the step (1) and 40 to 60% of any one material selected from quartz and fused silica as a filler. 혼합된 슬러리를 건조시키고,The mixed slurry is dried, 건조된 혼합물을을 분쇄하여 미립의 분말을 얻고,Grinding the dried mixture to obtain fine powder, (3) 상기 미립의 분말을 성형하고;(3) shaping the fine powder; (4) 성형체를 800℃ ~ 950℃의 온도 범위에서 2시간 동안 소결하여 유전율이 1MHz에서 3.3 이상 4.2 미만의 범위에 있는 유전체를 얻는 것을 포함하여 이루어지는 (4) sintering the molded body in the temperature range of 800 ° C to 950 ° C for 2 hours to obtain a dielectric having a dielectric constant in the range of 3.3 to 4.2 at 1 MHz. 저온소성 세라믹 유전체의 제조방법.Method for producing low temperature fired ceramic dielectric. 제6항에 있어서, 붕화규소 유리 내의 SiO2의 비율은 66 ~ 72중량%인 저온 소성 유전체 세라믹 제조방법.7. The method of claim 6, wherein the proportion of SiO 2 in the silicon boride glass is 66-72 wt%. 제6항에 있어서, 단계 (1)의 붕화규소 유리를 건조하고 분쇄하는 방법은The method of claim 6, wherein the method of drying and pulverizing the silicon boride glass of step (1) is 붕화규소 유리를 1차 건조한 후, 모르타르를 사용하여 1차 분쇄하고,The silicon boride glass is first dried and then first ground using mortar, 안정화 지르코니아볼(YSZ)과 에탄올을 사용하여 2차 분쇄하고,Secondary grinding using stabilized zirconia ball (YSZ) and ethanol, 분쇄된 분말을 2차 건조하고,Secondary drying of the ground powder, 건조된 분말을 모르타르를 사용하여 3차 분쇄하는 것으로 이루어지는 Consisting of tertiary grinding of the dried powder with mortar 저온 소성 유전체 세라믹 제조방법.Low temperature fired dielectric ceramic manufacturing method.
KR10-2002-0032062A 2002-06-07 2002-06-07 Dielectric ceramic composition and method for preparing dielectric ceramic for low temperature co-fired ceramic KR100479688B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0032062A KR100479688B1 (en) 2002-06-07 2002-06-07 Dielectric ceramic composition and method for preparing dielectric ceramic for low temperature co-fired ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0032062A KR100479688B1 (en) 2002-06-07 2002-06-07 Dielectric ceramic composition and method for preparing dielectric ceramic for low temperature co-fired ceramic

Publications (2)

Publication Number Publication Date
KR20030094774A KR20030094774A (en) 2003-12-18
KR100479688B1 true KR100479688B1 (en) 2005-03-30

Family

ID=32386294

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0032062A KR100479688B1 (en) 2002-06-07 2002-06-07 Dielectric ceramic composition and method for preparing dielectric ceramic for low temperature co-fired ceramic

Country Status (1)

Country Link
KR (1) KR100479688B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10351196B4 (en) * 2003-10-28 2016-08-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Use of anodically silicon bondable glass ceramic (LTCC)
CN105174733B (en) * 2015-08-31 2017-11-21 中国人民解放军国防科学技术大学 Low-temperature co-burning ceramic material and preparation method thereof
KR102068172B1 (en) * 2018-03-23 2020-01-20 주식회사 새한텅스텐 Machinable ceramic and manufacturing method of the same
CN108997006B (en) * 2018-10-12 2021-04-27 中国人民解放军国防科技大学 Low-thermal-expansion LTCC substrate material and preparation method thereof
CN109534806A (en) * 2019-01-08 2019-03-29 工业和信息化部电子第五研究所华东分所 A kind of Li system microwave dielectric ceramic material and its preparation method and application
CN112786234B (en) * 2020-12-16 2022-01-07 洛阳中超新材料股份有限公司 Metallic aluminum conductor paste, conductor paste and low-temperature co-fired dielectric ceramic material matched with same
CN113461413B (en) * 2021-07-02 2023-03-17 广东风华高新科技股份有限公司 LTCC ceramic material and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360443A (en) * 1989-07-28 1991-03-15 Kyocera Corp Low-temperature calcined glass ceramic body
US5070046A (en) * 1989-10-19 1991-12-03 E. I. Du Pont De Nemours And Company Dielectric compositions
US5242867A (en) * 1992-03-04 1993-09-07 Industrial Technology Research Institute Composition for making multilayer ceramic substrates and dielectric materials with low firing temperature
JPH05254923A (en) * 1992-03-10 1993-10-05 Hitachi Ltd Ceramic composition and ceramic circuit board
JPH10338545A (en) * 1997-06-03 1998-12-22 Tdk Corp Nonmagnetic ceramic and ceramic laminated parts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360443A (en) * 1989-07-28 1991-03-15 Kyocera Corp Low-temperature calcined glass ceramic body
US5070046A (en) * 1989-10-19 1991-12-03 E. I. Du Pont De Nemours And Company Dielectric compositions
US5242867A (en) * 1992-03-04 1993-09-07 Industrial Technology Research Institute Composition for making multilayer ceramic substrates and dielectric materials with low firing temperature
JPH05254923A (en) * 1992-03-10 1993-10-05 Hitachi Ltd Ceramic composition and ceramic circuit board
JPH10338545A (en) * 1997-06-03 1998-12-22 Tdk Corp Nonmagnetic ceramic and ceramic laminated parts

Also Published As

Publication number Publication date
KR20030094774A (en) 2003-12-18

Similar Documents

Publication Publication Date Title
JP6852198B2 (en) Boroaluminosilicate mineral material, low temperature co-fired ceramic composite material, low temperature co-fired ceramic, composite substrate and its manufacturing method
JP5073064B2 (en) Low temperature co-fired ceramic powder and special raw materials and their use
US4015048A (en) Ceramic articles having cordierite coatings
CN113024122A (en) SiO (silicon dioxide)2High-frequency low-dielectric low-temperature co-fired ceramic material and preparation method thereof
JPS6331422B2 (en)
CN102173587A (en) Glass ceramic material for electronic substrate and preparation method thereof
CN110171963A (en) A kind of low-temperature co-fired ceramics microwave and millimeter wave dielectric powder
CN107176834A (en) LTCC ceramic materials of middle high-k and preparation method thereof
JP3737773B2 (en) Dielectric ceramic composition
KR100479688B1 (en) Dielectric ceramic composition and method for preparing dielectric ceramic for low temperature co-fired ceramic
CN105347781A (en) Ceramic material and preparation method thereof
CN101565302B (en) Ceramic packaging material for LED and production method thereof
JPS59137341A (en) Crystallized glass body
JPS63107838A (en) Glass-ceramic sintered body
JPH0725570B2 (en) Colored crystallized glass body and its manufacturing method
JPH0269335A (en) Alkaline earth metal aluminoborate glass ceramic and production thereof
JPH10120436A (en) Glass ceramic dielectric material
CN111470778B (en) Calcium barium silicon aluminum glass-based low-dielectric low-temperature co-fired ceramic material and preparation method thereof
JPH01141837A (en) Material for dielectric body for circuit substrate
CN109734428B (en) Low dielectric low temperature co-fired ceramic material and preparation method thereof
JPS6350345A (en) Glass ceramic sintered body
JP3226056B2 (en) Low dielectric constant high strength glass ceramic composition
JPH0517211A (en) Substrate material and circuit substrate
KR101038772B1 (en) Ceramic Low-k dielectric composition with Nucleation Agent for low-temperature firing and ceramic Low-k dielectric
JPH0449497B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100225

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee