KR100471743B1 - Method For Preparing Cobalt Oxide-Silicon Dioxide Pillared Clays As Catalysts For NOx Decomposition - Google Patents

Method For Preparing Cobalt Oxide-Silicon Dioxide Pillared Clays As Catalysts For NOx Decomposition Download PDF

Info

Publication number
KR100471743B1
KR100471743B1 KR10-2002-0079418A KR20020079418A KR100471743B1 KR 100471743 B1 KR100471743 B1 KR 100471743B1 KR 20020079418 A KR20020079418 A KR 20020079418A KR 100471743 B1 KR100471743 B1 KR 100471743B1
Authority
KR
South Korea
Prior art keywords
clay
sio
crosslinked
coo
mmol
Prior art date
Application number
KR10-2002-0079418A
Other languages
Korean (ko)
Other versions
KR20040051760A (en
Inventor
최진호
정현
한양수
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR10-2002-0079418A priority Critical patent/KR100471743B1/en
Publication of KR20040051760A publication Critical patent/KR20040051760A/en
Application granted granted Critical
Publication of KR100471743B1 publication Critical patent/KR100471743B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

본 발명은 층상형 점토의 층간 무기 양이온을 알킬암모늄 양이온으로 이온교환시키고, 여기에 실리콘 알콕사이드, 알킬아민, 및 코발트 금속염을 첨가하여 가수분해 및 축합 반응과 함께 층간 삽입 반응을 시킨 후, 얻어진 분말을 열처리하는 것을 특징으로 하는 CoO-SiO2 가교화 점토의 제조 방법 및 이에 의해 제조된 가교화 점토를 제공한다.The present invention ion-exchanges the interlaminar inorganic cations of layered clay with alkylammonium cations, adds silicon alkoxides, alkylamines, and cobalt metal salts to undergo intercalation reactions with hydrolysis and condensation reactions, and then obtains the powder obtained. It provides a method for producing CoO-SiO 2 crosslinked clay, characterized in that the heat treatment, and the crosslinked clay produced thereby.

본 발명의 방법에 따라 제조된 CoO-SiO2 가교화 점토는 열안정성이 우수하고 높은 비표면적과 다공성 및 균일한 동공을 가질 뿐만 아니라, 높은 NOx 분해 활성을 나타내며 비교적 낮은 온도에서도 그 활성을 유지하기 때문에 NOx의 분해용 촉매로서 매우 적합하다.CoO-SiO 2 crosslinked clay prepared according to the method of the present invention is excellent in thermal stability, has a high specific surface area, porosity and uniform pupils, exhibits high NOx decomposition activity and maintains its activity even at a relatively low temperature. Therefore, it is very suitable as a catalyst for the decomposition of NO x .

Description

NOx 분해 촉매용 산화코발트-이산화규소 가교화 점토의 제조 방법 {Method For Preparing Cobalt Oxide-Silicon Dioxide Pillared Clays As Catalysts For NOx Decomposition} Method for preparing cobalt oxide-silicon dioxide crosslinked clay for NOx decomposition catalyst {Method For Preparing Cobalt Oxide-Silicon Dioxide Pillared Clays As Catalysts For NOx Decomposition}

본 발명은 다공성 산화코발트-이산화규소(CoO-SiO2) 가교화 점토의 제조 방법 및 이에 의해 제조된 가교화 점토에 관한 것이다. 보다 구체적으로, 본 발명은 비표면적이 크고 동공 크기가 일정한 NOx 분해 촉매용 다공성 CoO-SiO2 가교화 점토의 제조 방법에 관한 것이다.The present invention relates to a process for preparing porous cobalt oxide-silicon dioxide (CoO-SiO 2 ) crosslinked clay and to crosslinked clay produced thereby. More specifically, the present invention relates to a method for producing porous CoO-SiO 2 crosslinked clay for NOx decomposition catalysts having a large specific surface area and a constant pore size.

에너지 소비량이 증가함에 따라 화석 연료의 사용이 증가하고 이러한 연료의 연소 과정에서 발생되는 질소 산화물은 산성비와 광화학적 스모그의 원인이 된다. 따라서, 최근 이러한 질소 산화물의 배출량을 엄격히 규제하고 있으며, 이에 따라 경제적이고 효율적으로 질소 산화물을 제거하는 기술이 절실히 요구되고 있다.As energy consumption increases, the use of fossil fuels increases and the nitrogen oxides produced during the combustion of these fuels contribute to acid rain and photochemical smog. Therefore, in recent years, the emission of nitrogen oxides is strictly regulated, and therefore, there is an urgent need for a technology for removing nitrogen oxides economically and efficiently.

종래, 질소 산화물의 제거 방법으로서 여러 가지가 보고된 바 있지만, 선택적 촉매 환원(Selective Catalytic Reduction) 반응을 통해 질소 산화물을 제거하는 방법이 가장 경제적이고 효율적인 방법의 하나로 인정받고 있다. 선택적 환원 촉매로는 여러 가지 다공성 금속 산화물이 사용되었는데, 그 중에서도 다양한 금속 이온이 담지된 ZSM-5 제올라이트 형태의 촉매가 특히 효과적인 것으로 나타났다.Conventionally, various methods have been reported as a method of removing nitrogen oxides, but a method of removing nitrogen oxides through a selective catalytic reduction reaction is recognized as one of the most economical and efficient methods. As the selective reduction catalyst, various porous metal oxides were used. Among them, a catalyst of ZSM-5 zeolite type having various metal ions was found to be particularly effective.

그러나, 기존의 제올라이트 촉매의 경우 그 동공 크기가 약 5Å 이하의 채널 형태로서 배기가스 중에 포함되어 있는 탄화수소의 불완전 연소에 의해 발생되는 잔존탄소(residual carbon)에 의해 동공이 막혀 촉매효율이 떨어지는 포이즈닝 효과(poisoning effect)를 유발하는 등의 문제점을 가지고 있다. 이는 동공의 크기가 매우 작으며 또한 그 구조가 채널 형태라는 문제에서 발생된다고 볼 수 있다.However, in the case of conventional zeolite catalysts, the pore size is about 5 μs or less, and the pore size decreases catalyst efficiency due to the blockage of the pores by residual carbon generated by incomplete combustion of hydrocarbons contained in the exhaust gas. There are problems such as causing a poisoning effect. This can be said to arise from the problem that the size of the pupil is very small and its structure is channel shape.

점토는 대부분 알루미늄과 실리콘으로 이루어진 산화물로서, 수중 팽윤성을 나타내며, 이질동상 치환에 의해 적당한 층전하 밀도를 갖는 특성이 있다. 따라서, 점토의 층간에 있는 양이온을 다양한 유기 양이온, 유기 금속 이온, 무기 양이온 등과 교환시킬 수 있으며, 이를 열처리하여 순수한 점토의 특성을 개질시켜 가교화 점토를 얻을 수 있다. 특히 부피가 큰 무기 양이온을 가교화시키면 견고하게 유지되는 동공을 갖는 가교화 점토를 얻게 된다. 이러한 무기 가교화 점토의 예로는 Al2O3, SiO2, ZrO2, Cr2O3, Ga2 O3, Fe2O3, TiO2, TiO2-SiO2, Fe2O3-SiO2가 가교화된 점토가 있다.Clay is an oxide mainly composed of aluminum and silicon, and exhibits swelling property in water, and has a characteristic of having proper layer charge density by heterogeneous phase substitution. Therefore, cations in the interlayers of clay can be exchanged with various organic cations, organometallic ions, inorganic cations, and the like, and can be heat treated to modify the properties of pure clay to obtain crosslinked clay. In particular, crosslinking bulky inorganic cations results in crosslinked clays having pores that remain rigid. Examples of such inorganic crosslinked clays include Al 2 O 3 , SiO 2 , ZrO 2 , Cr 2 O 3 , Ga 2 O 3 , Fe 2 O 3 , TiO 2 , TiO 2 -SiO 2 , Fe 2 O 3 -SiO 2 Clay is crosslinked.

가교화 점토의 또다른 제조 방법으로는, 유기물 주형법을 통해 점토 층간을 팽윤시킨 후 가수분해 및 축합 반응에 의해 층간에 금속 알콕사이드를 가교화시킴으로써 비표면적이 매우 크고 동공 크기가 균일한 SiO2 가교화 점토를 얻는 방법이 있다.Another method for producing crosslinked clay is SiO 2 crosslinking with a very large specific surface area and uniform pore size by swelling the clay interlayers by organic casting and then crosslinking the metal alkoxides between the layers by hydrolysis and condensation reactions. There is a way to get fire clay.

기존의 졸-겔 가교화 점토 제조 방법 중에서, 특히 두 가지 이상의 무기 가교화용 졸이 가교화된 점토를 제조할 때, 서로 다른 표면전하를 갖는 두 가지 이상의 무기 가교용 나노졸이 가교화 반응 전에 혼합되었을 때 전체 전하가 양전하를 가지면서 서로 응집되지 않고 혼합나노졸 콜로이드 형태로 안정화되어 점토의 나트륨 양이온과 이온교환반응이 되도록 유도하여야 한다. 그러나, 실제로는 대다수의 금속산화 나노졸의 혼합졸의 경우 위와 같은 조건에 부합하지 못하고 있다.Among the existing sol-gel crosslinking clay production methods, two or more inorganic crosslinking nanosols having different surface charges are mixed before the crosslinking reaction, particularly when preparing at least two inorganic crosslinking sol crosslinked clays. When the total charge is positively charged and does not aggregate with each other, it is stabilized in the form of mixed nanosol colloid to induce an ion exchange reaction with the sodium cation of clay. In practice, however, the mixed sol of most metal oxide nanosols does not meet the above conditions.

따라서, 본 발명의 목적은 동공 크기가 균일하고, 비표면적이 크며, NOx 분해 활성이 매우 뛰어나 ZSM-5 제올라이트를 대체할 수 있는 NOx 분해 촉매용 가교화 점토를 제공하는 것이다.Accordingly, it is an object of the invention to a uniform pore size and specific surface area is larger, the NO x decomposition activity is very excellent provide a crosslinked clay for NOx decomposition catalyst capable of replacing the ZSM-5 zeolite.

본 발명은 층상형 점토의 층간 무기 양이온을 알킬암모늄 양이온으로 이온교환시키고, 여기에 실리콘 알콕사이드, 알킬아민, 및 코발트 금속염을 첨가하여 가수분해 및 축합 반응과 함께 층간 삽입 반응을 시킨 후, 얻어진 분말을 열처리하는 것을 특징으로 하는 NOx 분해 촉매용 CoO-SiO2 가교화 점토의 제조 방법 및 상기 방법으로 제조한 NOx 분해 촉매용 CoO-SiO2 가교화 점토를 제공한다.The present invention ion-exchanges the interlaminar inorganic cations of layered clay with alkylammonium cations, adds silicon alkoxides, alkylamines, and cobalt metal salts to undergo intercalation reactions with hydrolysis and condensation reactions, and then obtains the powder obtained. provide a NOx decomposition catalyst CoO-SiO 2 crosslinked clay manufactured by the method for manufacturing and method of CoO-SiO 2 crosslinked clay for NOx decomposition catalyst, characterized in that the heat treatment.

본 발명에 따른 가교화 점토의 제조 방법에 사용되는 점토는 층상 구조를 갖는 점토라면 어떠한 점토도 사용할 수 있다. 점토는 대부분 알루미늄과 실리콘으로 이루어진 산화물로서 적층 양식에 따라 크게 1:1형, 2:1형 및 2:1:1형으로 구분할 수 있는데, 본 발명에서는 이 중 스멕타이트라고 불리는 2:1형 층상 규산염이 더욱 바람직하다. 스멕타이트는 수중에서 팽윤 특성이 있으며 구성 성분인 Al 또는 Si가 Mg, Al, Fe와 같은 원소로 이질동상 치환됨으로써 적당한 층전하 밀도를 갖기 때문에 다양한 유기 양이온, 유기 금속 이온, 무기 양이온 등을 층간의 양이온과 교환시킬 수 있다. 천연 스멕타이트와 합성 스멕타이트가 있으나, 비용이나 방법의 용이성 면에서 천연 스멕타이트가 더욱 바람직하다.The clay used in the method for producing the crosslinked clay according to the present invention may be any clay as long as the clay has a layered structure. Clay is an oxide mainly composed of aluminum and silicon, and can be classified into 1: 1 type, 2: 1 type, and 2: 1: 1 type according to the stacking mode. In the present invention, 2: 1 type layered silicate which is called smectite This is more preferable. Smectite has swelling properties in water and has a moderate layer charge density by heterogeneous substitution of Al or Si as elements such as Mg, Al, Fe, etc. Can be exchanged with There are natural smectite and synthetic smectite, but natural smectite is more preferred in terms of cost and ease of method.

알킬암모늄 양이온은 유기물 주형으로 사용되는 것으로서, 예를 들면 헥사데실트리메틸 암모늄 양이온이 특히 바람직하다. 점토의 층간에 유기물 주형을 이온교환 시킬 때의 반응 온도는 0℃ 내지 100℃, 바람직하게는 50℃ 내지 90℃, 가장 바람직하게는 약 80℃이다. 또한, 이온교환반응은 농도차이에 의한 교환반응이므로 반응이 완결되기 위해서는 점토가 양이온을 교환할수 있는 최대값인 양이온 교환능(cation exchange capacity; CEC) 이상의 암모늄 양이온을 사용해야한다. 따라서, 알킬암모늄 양이온을 점토 CEC의 약 1 내지 약 10배, 바람직하게는 2 내지 5배, 가장 바람직하게는 약 3이 되도록 한다. 반응 후 현탁액은 원심분리 후 증류수로 세척 과정을 반복한 후 건조시킨다. 이와 같이 알킬암모늄 양이온이 이온교환되어 점토의 층간이 소수성을 띠게 되면, 반데르발스 인력에 의해 후술하는 CoO-SiO2의 층간 삽입 반응이 가능해지게 된다.Alkyl ammonium cations are used as organic template, for example hexadecyltrimethyl ammonium cation is particularly preferred. The reaction temperature at the time of ion-exchanging an organic mold between layers of clay is 0 degreeC-100 degreeC, Preferably it is 50 degreeC-90 degreeC, Most preferably, it is about 80 degreeC. In addition, since the ion exchange reaction is an exchange reaction due to the difference in concentration, in order to complete the reaction, an ammonium cation having a cation exchange capacity (CEC) or higher, which is the maximum value that the clay can exchange cations with, must be used. Thus, the alkylammonium cation is about 1 to about 10 times, preferably 2 to 5 times, most preferably about 3 times the clay CEC. After the reaction, the suspension is dried after repeated washing with distilled water after centrifugation. Thus, when the alkylammonium cation is ion-exchanged and the interlayers of the clay become hydrophobic, the intercalation reaction of CoO-SiO 2 described later is enabled by van der Waals attraction.

층간 삽입 반응은 실리콘 알콕사이드, 코발트 금속염 및 알킬아민의 혼합액을 첨가하여 수행한다. 층간 삽입 반응시, 층 안에 포함되어 있는 소량의 물에 의해 상기 실리콘 알콕사이드의 가수분해 및 축합 반응도 함께 일어나게 된다. The intercalation reaction is carried out by adding a mixed solution of silicon alkoxide, cobalt metal salt and alkylamine. In the intercalation reaction, the hydrolysis and condensation reaction of the silicon alkoxide also occurs with a small amount of water contained in the layer.

실리콘 알콕사이드로는 예를 들면 테트라메톡시실란, 테트라에톡시실란, 테트라이소프로폭시실란, 테트라부톡시실란 등이 있으나, 테트라에톡시실란이 특히 바람직하다. 또한, 코발트 금속염은 NOx 제거 촉매의 전구체로서 예를 들면 CoCl2ㆍ6H2O, Co(NO3)2ㆍ6H2O, Co(SO4)2ㆍ6H 2O가 있지만, CoCl2ㆍ6H2O가 특히 바람직하다.Examples of the silicon alkoxide include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane and the like, but tetraethoxysilane is particularly preferred. Further, cobalt salts, for example as a precursor of the NO x removal catalyst CoCl 2 and 6H 2 O, Co (NO 3) 2 and 6H 2 O, Co (SO 4) 2 and 6H 2 O are, but CoCl 2 and 6H 2 O is particularly preferred.

알킬아민은 수화 축합 반응 촉매 및 부주형의 역할을 하는 것으로서, 예를 들면 염기성 특성을 지니고 있는 모든 유기 아민계열이 사용 가능하나, 균일한 동공 및 비표면적을 형성하기 위해서는 노르말 아민(CnH2n+1NH2, n = 6, 8, 10, 12), 특히 C12H25NH2가 바람직하다. 본 발명에서 보조 주형으로 사용한 아민은 종래의 유기물 주형법에서와 같이 SiO2 전구체의 가수분해 반응 촉진용 촉매로 기능할 뿐만 아니라 CoO의 전구체인 Co2+ 이온과 결합하여 극성인 Co2+를 비극성적 특성을 갖는 [Co(아민)6]2+ 형태로 전환시켜 본 발명에서 촉매 특성을 부여하고자 하는 CoO의 전구체를 반데르발스 인력에 의해 친유성 주형이 층간삽입된 점토층 사이에 전달하는 역할을 한다.Alkylamines serve as hydration condensation reaction catalysts and subcategories. For example, all organic amines having basic properties may be used, but normal amines (C n H 2n) may be used to form uniform pupils and specific surface areas. +1 NH 2 , n = 6, 8, 10, 12), in particular C 12 H 25 NH 2 . In the present invention, the amine used as an auxiliary template not only functions as a catalyst for promoting hydrolysis reaction of SiO 2 precursor as in the conventional organic casting method, but also binds Co 2+ ion, which is a precursor of CoO, to make polar Co 2+ It converts into a [Co (amine) 6 ] 2+ form having sexual properties and transfers precursors of CoO to impart catalytic properties in the present invention between clay layers interleaved with lipophilic templates by van der Waals attraction. do.

알킬암모늄이 이온교환된 점토에 대한 실리콘 알콕사이드, 코발트 금속염 및 알킬아민의 비는 (1 g):(20 내지 80 mmol):(0.1 내지 5 mmol):(1 내지 10 mmol)이 가능하나, 열안정성과 비표면적을 고려하면 (1 g):(30 내지 50 mmol):(0.1 내지 1 mmol):(3 내지 7 mmol)가 바람직하고, 특히 (1 g):(약 40 mmol):(약 0.5 mmol):(약 5 mmol)이 바람직하다.The ratio of silicon alkoxide, cobalt metal salt and alkylamine to alkylammonium ion exchanged clay is (1 g) :( 20 to 80 mmol) :( 0.1 to 5 mmol) :( 1 to 10 mmol), but heat Considering stability and specific surface area, (1 g) :( 30-50 mmol) :( 0.1-1 mmol) :( 3-7 mmol) is preferred, in particular (1 g) :( about 40 mmol) :( about 0.5 mmol): (about 5 mmol) is preferred.

층간 삽입 반응이 완료된 후, 현탁액은 원심분리법으로 분리하여 수회 수세한 후 건조하고, 열처리를 시킨다. 열처리 과정의 온도는 예를 들면 약 500 내지 600℃가 바람직하다. 열처리 과정을 통해 유기물 주형 및 부주형이 제거된다.After the intercalation reaction is completed, the suspension is separated by centrifugation, washed with water several times, dried and heat treated. The temperature of the heat treatment process is preferably about 500 to 600 ° C, for example. The heat treatment process removes the organic mold and the sub mold.

본 발명에 따라 제조된 NOx 분해 촉매용 CoO-SiO2 가교화 점토는 유기물 부주형 노르말 아민(CnH2n+1NH2, n = 6, 8, 10, 12)의 탄소 갯수에 따라 그 BET 비표면적이 250-700 m 2 /g, 특히 420-570 m 2 /g이고, 동공의 크기는 18-22 Å이다. 또한, 이때 동공의 균일도를 나타내는 동공크기 분포도에서 제조된 모든 가교화 점토에서 약 10 Å의 반높이띠나비를 갖는 균일한 동공 분포를 나타낸다.CoO-SiO 2 crosslinked clay for NOx decomposition catalyst prepared according to the present invention has its BET according to the number of carbons of organic subcategories normal amine (C n H 2n + 1 NH 2 , n = 6, 8, 10, 12) Specific surface area 250-700 m 2 / g, especially 420-570 m 2 / g, the size of the pupil is 18-22 mm 3. In addition, all the crosslinked clays produced in the pore size distribution showing the uniformity of the pores exhibit a uniform pore distribution having a half-height butterfly of about 10 mm 3.

이하, 본 발명을 하기의 실시예를 통해 더욱 상세히 예시하나, 본 발명이 다음 실시예로만 제한되는 것은 아니다.Hereinafter, the present invention is illustrated in more detail by the following examples, but the present invention is not limited only to the following examples.

[실시예 1]Example 1

본 실시예에서는 천연 점토로서 몬트모릴로나이트를 사용하였다. 우선 헥사데실트리메틸 암모늄 양이온이 이온교환된 점토를 제조하기 위해 Na + -몬트모릴로나이트 1 g을 100 ml 증류수에서 4시간 동안 상온 교반시켜 제조한 1% 점토 현탁액에 1.1 g의 헥사데실트리메틸 암모늄 브로마이드를 첨가하여 80℃에서 12시간 교반한 후 원심분리 세척 과정을 5회 반복하여 상온 건조시켰다. 상기 암모늄이 교환된 점토 1 g에 테트라에톡시실란, CoCl2ㆍ6H2O, C12H25NH2의 혼합 용액을 상온 질소 기류 하에서 24시간 교반하였다. 이 때 점토, 테트라에톡시실란, CoCl2ㆍ6H2O, C12 H25NH2의 몰비는 1 g/40 mmol/0.5 mmol/5 mmol이며, 반응 후 현탁액은 원심분리법으로 분리하고 w/w 50% 에탄올 수용액으로 수세한 후 건조하고, 550℃에서 하소하여 CoO-SiO2 가교화 점토를 제조하였다. 제조 과정 동안의 점토 화합물의 X선 회절 분석 결과를 도 1에 나타내었다.In this example, montmorillonite was used as natural clay. First, to prepare clays ion-exchanged with hexadecyltrimethyl ammonium cation, + To 1% clay suspension prepared by stirring 1 g of montmorillonite in 100 ml distilled water at room temperature for 4 hours, 1.1 g of hexadecyltrimethyl ammonium bromide was added and stirred at 80 ° C. for 12 hours, followed by centrifugal washing. Repeated to dry at room temperature. A mixed solution of tetraethoxysilane, CoCl 2 .6H 2 O, and C 12 H 25 NH 2 was stirred for 24 hours in a room temperature nitrogen stream to 1 g of the ammonium-exchanged clay. At this time, the molar ratio of clay, tetraethoxysilane, CoCl 2 · 6H 2 O, C 12 H 25 NH 2 was 1 g / 40 mmol / 0.5 mmol / 5 mmol, and after the reaction, the suspension was separated by centrifugation and w / w. After washing with 50% aqueous ethanol solution, it was dried and calcined at 550 ° C. to prepare CoO—SiO 2 crosslinked clay. X-ray diffraction analysis of the clay compound during the manufacturing process is shown in FIG.

[실시예 2]Example 2

실시예 1에서 제조한 생성물을 공기중에서 건조시킨 후 열분석을 실시하였다. 그 결과를 도 2에 나타내었다. CoO-SiO2 가교화 점토의 열분석 결과에 따르면, 팔면체층의 히드록실기의 분해가 이루어져 격자가 붕괴하는 온도로 평가되는 가교화 점토의 열 안정성은 700℃로 우수한 열 안정성을 나타내었다.The product prepared in Example 1 was dried in air and then subjected to thermal analysis. The results are shown in FIG. According to the thermal analysis of CoO-SiO 2 crosslinked clay, the thermal stability of the crosslinked clay, which is evaluated as the temperature at which the hydroxyl group of the octahedral layer decomposes and the lattice collapses, showed excellent thermal stability.

[실시예 3]Example 3

실시예 1에서 제조된 생성물의 다공 특성을 평가하기 위해 10-4 Torr 이하의 진공 하에 300℃에서 2시간 동안 활성화시킨 후 N2 등온 흡착-탈착 측정을 수행하였다. 측정 결과 얻어진 N2 등온 흡착-탈착 곡선을 도 3에 도시하였다. 이 생성물은 0.65 ml/g의 우수한 총다공부피를 가지며 일반적인 평가에 이용되는 BET 비표면적은 570 m 2 /g이었다. 상기에서 얻어진 N2 등온 흡착-탈착 곡선을 BJH 분석법으로 계산하여 얻은 동공 크기 분포 곡선을 도 4에 도시하였다. 이 계산법으로 얻어진 평균 동공 크기는 약 22 Å이고 10 Å의 반높이띠나비를 갖는 균일한 동공 분포를 나타내었다.N 2 isothermal adsorption-desorption measurements were performed after activation at 300 ° C. for 2 hours under a vacuum of 10 −4 Torr or less to evaluate the porosity properties of the product prepared in Example 1. The N 2 isothermal adsorption-desorption curve obtained as a result of the measurement is shown in FIG. 3. This product has a good total pore volume of 0.65 ml / g and a BET specific surface area of 570 m for general evaluation. 2 / g. The pupil size distribution curve obtained by calculating the N 2 isothermal adsorption-desorption curve obtained above by BJH analysis is shown in FIG. 4. The average pupil size obtained by this calculation was about 22 mm 3 and showed a uniform pupil distribution with a half height band butterfly of 10 mm 3.

[실시예 4]Example 4

실시예 1에서 제조된 생성물의 NO 제거 촉매 특성을 평가하기 위해 질량분석기를 이용하여 온도에 따른 NO의 양을 측정하여 촉매 반응 결과를 도 5에 도시하였다. 이 생성물의 최적 촉매 반응 온도인 550℃에서 80% 이상의 NO 전환율을 보였고 200℃의 낮은 온도에서도 50%의 우수한 NO 전환율을 보였다.In order to evaluate the characteristics of the NO removal catalyst of the product prepared in Example 1 by using a mass spectrometer to measure the amount of NO according to the temperature the catalytic reaction results are shown in FIG. The product showed an NO conversion of over 80% at 550 ° C, the optimum catalytic reaction temperature, and a good NO conversion of 50% at low temperatures of 200 ° C.

[실시예 5]Example 5

실시예 1과 동일한 방법으로 제조하되, 부주형 아민으로서 C12H25NH2 대신 C10H21NH2을 사용하여 CoO-SiO2 가교화 점토를 제조하였다. 제조된 생성물의 다공특성을 평가하기 위해 10-4 Torr 이하의 진공 하에 300℃에서 2시간 동안 활성화시킨 후 N2 등온 흡착-탈착 측정을 수행하였다. 측정 결과 얻어진 N2 등온 흡착-탈착 곡선을 도 6에 도시하였다. 제조된 가교화 점토의 BET 비표면적은 약 470 m 2 /g이었다. 이때 얻어진 N2 등온 흡착-탈착 곡선을 BJH 분석법으로 계산하였다. 이 계산법으로 얻어진 평균 동공 크기는 약 20 Å이고 10 Å의 반높이띠나비를 갖는 균일한 동공 분포를 나타내었다.Prepared in the same manner as in Example 1, but CoO-SiO 2 crosslinked clay was prepared using C 10 H 21 NH 2 instead of C 12 H 25 NH 2 as the minor column amine. N 2 isothermal adsorption-desorption measurement was performed after activation at 300 ° C. for 2 hours under a vacuum of 10 −4 Torr or less to evaluate the porosity of the prepared product. The N 2 isothermal adsorption-desorption curve obtained as a result of the measurement is shown in FIG. 6. The BET specific surface area of the crosslinked clays produced was about 470 m 2 / g. The N 2 isothermal adsorption-desorption curve obtained at this time was calculated by BJH analysis. The average pupil size obtained by this calculation was about 20 mm 3 and showed a uniform pupil distribution with a half-height butterfly of 10 mm 3.

[실시예 6]Example 6

실시예 1과 동일한 방법으로 제조하되, 부주형 아민으로서 C12H25NH2 대신 C6H15NH2을 사용하여 CoO-SiO2 가교화 점토를 제조하였다. 제조된 생성물의 다공특성을 평가하기 위해 10-4 Torr 이하의 진공 하에 300℃에서 2시간 동안 활성화시킨 후 N2 등온 흡착-탈착 측정을 수행하였다. 측정 결과 얻어진 N2 등온 흡착-탈착 곡선을 도 7에 도시하였다. 제조된 가교화 점토의 BET 비표면적은 약 420 m2/g이었다. 이때 얻어진 N2 등온 흡착-탈착 곡선을 BJH 분석법으로 계산하였다. 이 계산법으로 얻어진 평균 동공 크기는 약 18 Å이고 10 Å의 반높이띠나비를 갖는 균일한 동공 분포를 나타내었다.Prepared in the same manner as in Example 1, but CoO-SiO 2 crosslinked clay was prepared using C 6 H 15 NH 2 instead of C 12 H 25 NH 2 as the minor column amine. N 2 isothermal adsorption-desorption measurement was performed after activation at 300 ° C. for 2 hours under a vacuum of 10 −4 Torr or less to evaluate the porosity of the prepared product. The N 2 isothermal adsorption-desorption curve obtained as a result of the measurement is shown in FIG. 7. The BET specific surface area of the crosslinked clays produced was about 420 m 2 / g. The N 2 isothermal adsorption-desorption curve obtained at this time was calculated by BJH analysis. The average pupil size obtained by this calculation was approximately 18 mm 3 and showed a uniform pupil distribution with a half height band butterfly of 10 mm 3.

이와 같이 본 발명에 따라 제조된 가교화 점토는 700℃까지 열안정성을 나타냈으며, 유기물 부주형 노르말 아민(CnH2n+1NH2, n = 6, 8, 10, 12)의 탄소 갯수에 따라 높은 BET 비표면적을 갖고, 동공의 크기는 18-22 Å이었다. 또한, 이때 동공의 균일도를 나타내는 동공크기 분포도에서 제조된 모든 가교화 점토에서 약 10 Å의 반높이띠나비를 갖는 균일한 동공 분포를 나타내었다.Thus, the crosslinked clay prepared according to the present invention exhibited thermal stability up to 700 ° C., and the carbon number of organic subcategories normal amine (C n H 2n + 1 NH 2 , n = 6, 8, 10, 12) Thus with a high BET specific surface area, the pupil size was 18-22 mm 3. In addition, all the crosslinked clays produced in the pore size distribution showing the uniformity of the pores showed a uniform pore distribution having a half height band of about 10 mm 3.

본 발명에 따르면, 열안정성이 우수하고 높은 비표면적과 다공성 및 균일한 동공을 갖는 CoO-SiO2 가교화 점토를 제조할 수 있다.According to the present invention, CoO-SiO 2 crosslinked clay having excellent thermal stability, high specific surface area, porosity and uniform pupil can be prepared.

또한, 본 발명의 방법으로 제조된 CoO-SiO2 가교화 점토는 높은 NOx 분해 활성을 나타내며 비교적 낮은 온도에서도 그 활성을 유지하기 때문에 NOx의 분해용 촉매로서 매우 적합하다.In addition, CoO-SiO 2 crosslinked clay prepared by the method of the present invention exhibits a high NOx decomposition activity and is very suitable as a catalyst for decomposition of NO x since it maintains its activity even at a relatively low temperature.

도 1은 본 발명의 실시예 1에서 제조한 가교화 점토의 X선 회절분석 결과를 보여주는 그래프.1 is a graph showing the results of X-ray diffraction analysis of the crosslinked clay prepared in Example 1 of the present invention.

도 2는 실시예 1에서 제조한 가교화 점토의 열안정성 분석 결과를 나타낸 그래프.Figure 2 is a graph showing the thermal stability analysis of the crosslinked clay prepared in Example 1.

도 3은 실시예 1에서 제조한 가교화 점토의 N2 등온 흡착-탈착 곡선.3 is an N 2 isothermal adsorption-desorption curve of the crosslinked clay prepared in Example 1. FIG.

도 4는 도 3의 N2 등온 흡착-탈착 곡선을 BJH 분석법으로 계산하여 얻은 동공 크기 분포 곡선.4 is a pupil size distribution curve obtained by calculating the N 2 isothermal adsorption-desorption curve of FIG. 3 by BJH analysis.

도 5는 실시예 1에서 제조한 가교화 점토에 의한 온도에 따른 NO 전환율을 보여주는 곡선.Figure 5 is a curve showing the NO conversion with temperature by the crosslinked clay prepared in Example 1.

도 6은 실시예 5에서 제조한 가교화 점토의 N2 등온 흡착-탈착 곡선.6 is an N 2 isothermal adsorption-desorption curve of the crosslinked clay prepared in Example 5. FIG.

도 7은 실시예 6에서 제조한 가교화 점토의 N2 등온 흡착-탈착 곡선.7 is an N 2 isothermal adsorption-desorption curve of the crosslinked clay prepared in Example 6. FIG.

Claims (10)

층상형 점토의 층간 무기 양이온을 알킬암모늄 양이온으로 이온교환시키고, 여기에 실리콘 알콕사이드, 알킬아민, 및 코발트 금속염을 첨가하여 가수분해 및 축합 반응과 함께 층간 삽입 반응을 시킨 후, 얻어진 분말을 열처리하는 것을 특징으로 하는 NOx 분해 촉매용 CoO-SiO2 가교화 점토의 제조 방법.Ion exchange of the interlayer inorganic cations of layered clay with alkylammonium cations, addition of silicon alkoxides, alkylamines, and cobalt metal salts to undergo intercalation reactions with hydrolysis and condensation reactions, followed by heat treatment of the powder obtained A method for producing CoO-SiO 2 crosslinked clay for NOx decomposition catalyst. 제1항에 있어서, 알킬암모늄 양이온이 헥사데실트리메틸 암모늄 양이온인 방법.The method of claim 1 wherein the alkylammonium cation is hexadecyltrimethyl ammonium cation. 제1항에 있어서, 실리콘 알콕사이드가 테트라메톡시실란, 테트라에톡시실란, 테트라이소프로폭시실란 및 테트라부톡시실란으로 이루어지는 군으로부터 선택된 것인 방법.The method of claim 1 wherein the silicon alkoxide is selected from the group consisting of tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane and tetrabutoxysilane. 제3항에 있어서, 실리콘 알콕사이드가 테트라에톡시실란인 방법.The method of claim 3 wherein the silicon alkoxide is tetraethoxysilane. 제1항에 있어서, 알킬아민이 노르말 아민(CnH2n+1NH2, n = 6, 8, 10, 12)인 방법.The method of claim 1, wherein the alkylamine is a normal amine (C n H 2n + 1 NH 2 , n = 6, 8, 10, 12). 제5항에 있어서, 알킬아민이 C12H25NH2인 방법.The method of claim 5, wherein the alkylamine is C 12 H 25 NH 2 . 제1항에 있어서, 코발트 금속염이 CoCl2ㆍ6H2O, Co(NO3)2ㆍ6H 2O 및 Co(SO4)2ㆍ6H2O로 이루어진 군으로부터 선택된 것인 방법.The method of claim 1 wherein the cobalt metal salt is selected from the group consisting of CoCl 2 .6H 2 O, Co (NO 3 ) 2 .6H 2 O and Co (SO 4 ) 2 .6H 2 O. 제7항에 있어서, 코발트 금속염이 CoCl2ㆍ6H2O인 방법.8. The method of claim 7, wherein the cobalt metal salt is CoCl 2 .6H 2 O. 제1항에 있어서, 알킬암모늄이 이온교환된 점토에 대한 실리콘 알콕사이드, 코발트 금속염 및 알킬아민의 비가 (1 g):(20 내지 80 mmol):(0.1 내지 5 mmol):(1 내지 10 mmol)인 방법.The ratio of silicon alkoxide, cobalt metal salt and alkylamine to alkylammonium ion exchanged clays in the range of (1 g) :( 20 to 80 mmol) :( 0.1 to 5 mmol) :( 1 to 10 mmol) How to be. 제1항 내지 제9항 중 어느 한 항에 따른 방법에 의해 제조된, 비표면적이 250-700 m 2 /g인 NOx 분해 촉매용 CoO-SiO2 가교화 점토.Specific surface area prepared by the process according to any of claims 1 to 9, 250-700 m 2 / g CoO-SiO 2 crosslinked clay for NOx decomposition catalyst.
KR10-2002-0079418A 2002-12-13 2002-12-13 Method For Preparing Cobalt Oxide-Silicon Dioxide Pillared Clays As Catalysts For NOx Decomposition KR100471743B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0079418A KR100471743B1 (en) 2002-12-13 2002-12-13 Method For Preparing Cobalt Oxide-Silicon Dioxide Pillared Clays As Catalysts For NOx Decomposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0079418A KR100471743B1 (en) 2002-12-13 2002-12-13 Method For Preparing Cobalt Oxide-Silicon Dioxide Pillared Clays As Catalysts For NOx Decomposition

Publications (2)

Publication Number Publication Date
KR20040051760A KR20040051760A (en) 2004-06-19
KR100471743B1 true KR100471743B1 (en) 2005-03-10

Family

ID=37345564

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0079418A KR100471743B1 (en) 2002-12-13 2002-12-13 Method For Preparing Cobalt Oxide-Silicon Dioxide Pillared Clays As Catalysts For NOx Decomposition

Country Status (1)

Country Link
KR (1) KR100471743B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100869130B1 (en) * 2007-05-23 2008-11-17 요업기술원 A metal ion incoporated-allumina-pillared clay and a method for preparation of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4515901A (en) * 1983-11-17 1985-05-07 Texaco Inc. Method of preparing pillared, interlayered clay catalyst using soluble carbohydrates
US4968652A (en) * 1985-11-12 1990-11-06 Mobil Oil Corporation Pillared layered silicate compositions containing pillars of silica and metal oxide and their preparation
KR970073713A (en) * 1996-05-07 1997-12-10 최진호 Method for producing SiO_2-TiO_2 crosslinked clay
KR20020010149A (en) * 1999-05-20 2002-02-02 엑손모빌 케미칼 패턴츠 인코포레이티드 Metal-containing macrostructures of porous inorganic oxide, preparation thereof, and use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4515901A (en) * 1983-11-17 1985-05-07 Texaco Inc. Method of preparing pillared, interlayered clay catalyst using soluble carbohydrates
US4968652A (en) * 1985-11-12 1990-11-06 Mobil Oil Corporation Pillared layered silicate compositions containing pillars of silica and metal oxide and their preparation
KR970073713A (en) * 1996-05-07 1997-12-10 최진호 Method for producing SiO_2-TiO_2 crosslinked clay
KR20020010149A (en) * 1999-05-20 2002-02-02 엑손모빌 케미칼 패턴츠 인코포레이티드 Metal-containing macrostructures of porous inorganic oxide, preparation thereof, and use

Also Published As

Publication number Publication date
KR20040051760A (en) 2004-06-19

Similar Documents

Publication Publication Date Title
US8722560B2 (en) Highly heat-resistant β-type zeolite and SCR catalyst employing the same
US5750085A (en) Process for manufacturing a silica porous material
WO2011078149A1 (en) Novel metallosilicate, production method thereof, nitrogen oxide purification catalyst, production method thereof, and nitrogen oxide purification method making use thereof
BR112019020160B1 (en) SELECTIVE CATALYTIC REDUCTION CATALYST COMPOSITION, EMISSION TREATMENT SYSTEM FOR TREATMENT OF A COMBUSTION EXHAUST GAS FLOW, AND METHOD FOR MANUFACTURING AN SCR CATALYST COMPOSITION
JP2009166031A (en) Catalyst and method for conversion of nitrogen oxide
JP4957176B2 (en) Nitrogen oxide purification catalyst and nitrogen oxide purification method
JP2017087204A (en) Catalyst for residual oil decomposition active fluid catalytic cracking and manufacturing method therefor
CN101462741A (en) Method for preparing ZSM-5 zeolite by in situ crystallization
WO2021114208A1 (en) Denitration catalyst and denitration method using the catalyst
KR101473007B1 (en) Nitrogen oxide-reducing catalyst and method for reducing nitrogen oxide
JP2020158389A (en) Zeolitic material having distinctive macroporosity in single crystal, and method for producing the zeolitic material
CN114570415B (en) Pt @ hierarchical pore zeolite catalyst for preparing propylene by propane dehydrogenation and preparation method thereof
CN110944941A (en) Direct synthesis of copper-containing microporous aluminosilicate materials having AFX structure and use of the materials
CN114210363B (en) Preparation method of SSZ-16 copper-containing catalyst
KR101940409B1 (en) Method for preparation of zeolite with controlled aluminum content by controlling composition of synthetic mixture
KR100471743B1 (en) Method For Preparing Cobalt Oxide-Silicon Dioxide Pillared Clays As Catalysts For NOx Decomposition
JP6879680B2 (en) Method for producing high silica chabazite type zeolite and high silica chabazite type zeolite
JP4478572B2 (en) Method for producing doped pentasil-type zeolite using doped reactant
JP5594121B2 (en) Novel metallosilicate and nitrogen oxide purification catalyst
JP7158141B2 (en) Slurry composition for catalyst, method for producing the same, method for producing catalyst using the same, and method for producing Cu-containing zeolite
WO2019117183A1 (en) β-ZEOLITE AND PRODUCTION METHOD THEREOF
WO2023001923A1 (en) Zeolite bodies
CN114433200A (en) SCR catalyst and preparation method thereof
CN112811437A (en) Synthesis method of Cu-SSZ-13 molecular sieve
JP2012051782A (en) Crystalline silica aluminophosphate and method for synthesis of the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
N231 Notification of change of applicant
FPAY Annual fee payment

Payment date: 20120803

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130503

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee