KR100463173B1 - Method for preparing of color toner for non-magnetic mono-component system - Google Patents

Method for preparing of color toner for non-magnetic mono-component system Download PDF

Info

Publication number
KR100463173B1
KR100463173B1 KR10-2002-0061233A KR20020061233A KR100463173B1 KR 100463173 B1 KR100463173 B1 KR 100463173B1 KR 20020061233 A KR20020061233 A KR 20020061233A KR 100463173 B1 KR100463173 B1 KR 100463173B1
Authority
KR
South Korea
Prior art keywords
weight
particle diameter
average particle
parts
color toner
Prior art date
Application number
KR10-2002-0061233A
Other languages
Korean (ko)
Other versions
KR20040032280A (en
Inventor
이형진
이창순
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR10-2002-0061233A priority Critical patent/KR100463173B1/en
Publication of KR20040032280A publication Critical patent/KR20040032280A/en
Application granted granted Critical
Publication of KR100463173B1 publication Critical patent/KR100463173B1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/113Developers with toner particles characterised by carrier particles having coatings applied thereto
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08797Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their physical properties, e.g. viscosity, solubility, melting temperature, softening temperature, glass transition temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

본 발명은 비자성 일성분계 칼라 토너의 제조방법에 관한 것으로, 특히 토너 모입자에 구형의 유기 분말을 코팅하여 부착시킨 후, 실리카를 코팅하여 부착시키는 2단계 코팅을 방법을 실시하여 대전 분포가 좁고 고대전성을 가져 화상농도, 및 전사효율이 우수할 뿐만 아니라, 대전유지성을 현저히 향상시켜 장기신뢰성이 우수한 비자성 일성분계 칼라 토너의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a non-magnetic one-component color toner, and in particular, a two-stage coating method in which a spherical organic powder is coated and adhered to a toner base particle, followed by a silica coating to apply a method to narrow charge distribution. The present invention relates to a method for producing a non-magnetic one-component color toner having high conductivity, not only excellent in image density and transfer efficiency, but also significantly improving electrification maintainability.

Description

비자성 일성분계 칼라 토너의 제조방법{METHOD FOR PREPARING OF COLOR TONER FOR NON-MAGNETIC MONO-COMPONENT SYSTEM}Manufacturing method of nonmagnetic one-component color toner {METHOD FOR PREPARING OF COLOR TONER FOR NON-MAGNETIC MONO-COMPONENT SYSTEM}

본 발명은 비자성 일성분계 칼라 토너의 제조방법에 관한 것으로, 더욱 상세하게는 대전 분포가 좁고 고대전성을 가져 화상농도, 및 전사효율이 우수할 뿐만 아니라, 대전유지성을 현저히 향상시켜 장기신뢰성이 우수한 비자성 일성분계 칼라 토너의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a non-magnetic one-component color toner, and more particularly, has a narrow charge distribution and high conductivity, which not only has excellent image density and transfer efficiency, but also significantly improves charge maintainability and thus has excellent long-term reliability. A method for producing a nonmagnetic one-component color toner.

최근 칼라토너는 전자 사진 기술의 분야에서 수요가 증가되고 있으며, 이는 혼련 분쇄법, 현탁 중합법, 유화 중합법 등에 의해서 제조되고 있다. 상기 제조 방법 중 제조 안정성, 생산성 등의 관점에서 볼 때, 혼련 분쇄법이 주로 사용되고 있다.In recent years, color toner is increasing in the field of electrophotographic technology, and it is manufactured by kneading pulverization, suspension polymerization, emulsion polymerization, and the like. From the viewpoint of production stability, productivity and the like in the above production method, a kneading pulverization method is mainly used.

혼련 분쇄법이란 바인더 수지, 착색제, 전하제어제, 이형제 등의 토너 원료로 된 혼합물을 용융 혼련하여 얻어진 혼합물을 냉각한 후, 원하는 입경의 토너입자로 분쇄한 후, 분급을 하여 토너를 제조하는 방법이다. 여기서 현상용 토너는 마찰 대전법에 의해서 현상이 되고, 현상된 정전잠상의 극성에 따라서 정, 또는 부의 전하를 보유하게 된다. 토너의 대전 성능은 상기와 같은 내부 배합에 의해서도좌우되지만, 주로 첨가되는 첨가제에 의해서 많은 영향을 받기 때문에 첨가제의 배합, 및 첨가 방법의 변경에 의한 대전 성능의 향상을 꾀하고자 하였다.The kneading pulverization method is a method for producing a toner by cooling a mixture obtained by melt kneading a mixture of toner raw materials such as a binder resin, a colorant, a charge control agent, a mold release agent, and then grinding the mixture into toner particles having a desired particle size. to be. The developing toner is developed by the triboelectric charging method, and retains positive or negative charges depending on the polarity of the developed electrostatic latent image. Although the charging performance of the toner is also influenced by the above internal formulation, the charging performance of the toner is largely influenced by the additive to be added. Therefore, the charging performance of the toner is improved by changing the formulation of the additive and the addition method.

상기와 같은 첨가제에 의해서 토너가 현상될 때, 토너 공급부에서 현상 슬리브를 회전시키는 회전부에 관련된 저항이 경감되고, 대전 블래드(charging blade) 등에 토너가 융착되거나 토너끼리 서로 응집되는 일이 없도록 하고, 낮은 토오크로 균일하고 안정된 토너 층을 얻을 수가 있다.When the toner is developed by the above additives, the resistance associated with the rotating portion for rotating the developing sleeve in the toner supply portion is reduced, and the toner is not fused or charged together with a charging blade or the like, It is possible to obtain a uniform and stable toner layer with low torque.

특히 최근에는 컴퓨터의 출력장치로서의 프린터도 전자사진 방식의 레이저빔을 광원으로 한 프린터가 시장의 주류가 되고 있고, 소형화, 경량화, 및 고신뢰성을 중요시하고, 풀 칼라화의 수요가 급속하게 높아지고 있다. 이와 같은 배경으로부터 전자사진장치로는 다양한 면에서 보다 심플한 구성을 가지며, 고화질과 고내구성을 필요로 한다. 따라서 토너에 있어서도 고전사 효율을 가지며, 장기적으로 균일한 현상특성을 가지는 토너를 필요로 한다.In particular, in recent years, printers as output devices for computers have become mainstream in the market with electrophotographic laser beams, and the demand for full colorization is increasing rapidly, with the emphasis on miniaturization, light weight, and high reliability. . From such a background, the electrophotographic apparatus has a simpler configuration in various aspects, and requires high quality and high durability. Therefore, a toner having high high reflection efficiency and a uniform developing property in the long term is also required.

또한 첨가제가 토너입자의 표면에 균일하게 첨가되지 않을 경우에는 입자의 대전성이 서로 상이하여 균일한 화상을 얻을 수 없게 된다. 첨가제가 토너 표면에 균일하게 입혀진 경우에도 비자성 일성분계 토너에서는 인쇄를 진행함에 따라 토너에 가해지는 압력에 의해 토너-토너, 토너-대전 블래드(charging blade), 또는 토너-슬리브(sleeve) 간의 응집이 발생할 수 있고, 이러한 경우 장기적으로 화상이 흐려지고 불균일하게 되는 현상을 나타내게 된다.In addition, when the additive is not uniformly added to the surface of the toner particles, the charging properties of the particles are different from each other, so that a uniform image cannot be obtained. Even when the additive is uniformly coated on the surface of the toner, in the non-magnetic one-component toner, the pressure applied to the toner as the printing proceeds, the toner-toner, the toner-charging blade, or the toner-sleeve Agglomeration may occur, in which case the image becomes blurred and uneven in the long term.

따라서, 입자의 대전 분포가 좁고 고대전성을 가지며, 화상농도 및 전사효율이 우수할 뿐만 아니라, 대전유지성을 현저히 향상시켜 장기신뢰성이 우수한 비자성 일성분계 칼라 토너의 제조방법에 관한 것이다.Accordingly, the present invention relates to a method for producing a nonmagnetic one-component color toner having a narrow charge distribution of particles, high conductivity, excellent image density and transfer efficiency, and remarkably improving charge maintainability and excellent long-term reliability.

상기와 같은 문제점을 해결하고자, 본 발명은 대전 분포가 좁고 고대전성을 가지며, 화상농도와 전사효율이 우수할 뿐만 아니라, 동시에 대전유지성을 현저히 향상시켜 장기신뢰성이 우수한 비자성 일성분계 칼라 토너의 제조방법을 제공하는 것을 목적으로 한다.In order to solve the above problems, the present invention has a narrow charge distribution, high conductivity, excellent image density and transfer efficiency, and at the same time, remarkably improves charge maintainability, thereby preparing a nonmagnetic one-component color toner having excellent long-term reliability. It is an object to provide a method.

상기 목적을 달성하기 위하여, 본 발명은 비자성 일성분계 칼라 토너의 제조방법에 있어서, 토너 모입자에In order to achieve the above object, the present invention provides a method for producing a non-magnetic one-component color toner, comprising:

a) 구형의 유기 분말로 1차 코팅하는 단계; 및a) first coating with spherical organic powder; And

b) 실리카로 2차 코팅하는 단계b) secondary coating with silica

를 포함하는 비자성 일성분계 칼라 토너의 제조방법을 제공한다.It provides a method for producing a nonmagnetic one-component color toner comprising a.

이하 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자들은 대전 분포가 좁고 고대전성을 가지며, 대전유지성을 향상시킬 수 있는 칼라 토너의 제조방법에 대하여 연구하던 중, 토너 모입자에 구형의 유기 분말을 외첨하여 부착시킨 후 실리카를 부착시키는 2단계 코팅을 방법을 실시한 결과, 대전시 슬리브와 대전 블래드 사이에서 토너가 받는 마찰저항을 줄여 대전 블래드 상에 용융(melt)이나 토너간의 고체 부착(solid adhesion)의 형성을 방지하여 장기적으로 안정적인 화상을 얻을 수 있음을 확인하고, 이를 토대로 본 발명을 완성하게 되었다.The inventors of the present invention are studying a method for producing a color toner that has a narrow charge distribution, high conductivity, and improves charge retention, and attaches silica after attaching a spherical organic powder to the toner base particles, followed by silica. As a result of the coating method, the frictional resistance received by the toner between the sleeve and the charging blade during charging is reduced to prevent the formation of melt or solid adhesion between the toner on the charging bladder, resulting in a long-term stable image. It was confirmed that this can be obtained, and based on this, the present invention was completed.

본 발명은 비자성 일성분계 칼라 토너의 제조방법에 있어서, 토너 모입자에 구형의 유기 분말로 1차 코팅한 후, 실리카로 2차 코팅하는 2단계 코팅을 방법을 실시하는 비자성 일성분계 칼라 토너의 제조방법에 관한 것이다.In the method of manufacturing a nonmagnetic one-component color toner, the non-magnetic one-component color toner is subjected to a two-stage coating method in which the toner base particles are first coated with a spherical organic powder and then secondly coated with silica. It relates to a manufacturing method of.

본 발명의 방법에 의해 제조된 비자성 일성분계 칼라 토너는 종래의 1단계로 코팅한 토너와 비교하여, 슬리브와 대전 블래드 사이에서 받는 압력을 줄여 용융, 또는 고체 부착을 줄임으로써 장기적으로 안정적인 화상을 얻을 수 있으며, 동시에 구형 유기 분말이 대전 블래드에 닿아 대전 블래드, 또는 슬리브 표면과의 마찰저항을 낮춤으로써 고전사효율, 및 고색도를 나타내는 화상을 얻을 수가 있다.The non-magnetic one-component color toner prepared by the method of the present invention has a long-term stable image by reducing the pressure applied between the sleeve and the charging bladder and reducing melting or solid adhesion as compared with the conventional toner coated in one step. At the same time, the spherical organic powder is brought into contact with the charging bladder to lower the frictional resistance with the charging bladder or the sleeve surface, thereby obtaining an image exhibiting high high efficiency and high color.

본 발명에 사용되는 상기 a)단계의 구형의 유기 분말은 토너 전체 중량에 대하여 0.1 내지 4.0 중량부로 포함되는 것이 바람직하며, 더욱 바람직하게는 0.2 내지 5.0 중량부로 포함되는 것이다. 그 함량이 0.1 중량부 미만일 경우에는 그 효과가 미미하며, 5.0 중량부를 초과할 경우에는 토너 입자 표면에 너무 많은 구형의 유기 분말에 의해서 PCR 오염, 드럼 오염 등과 같은 오염의 문제점이 있다.The spherical organic powder of step a) used in the present invention is preferably included in 0.1 to 4.0 parts by weight, more preferably 0.2 to 5.0 parts by weight based on the total weight of the toner. If the content is less than 0.1 parts by weight, the effect is insignificant, and if it exceeds 5.0 parts by weight, there is a problem of contamination such as PCR contamination, drum contamination, etc. by too much spherical organic powder on the surface of the toner particles.

상기 구형의 유기 분말의 입자 지름은 0.05 내지 1.2 ㎛인 것이 바람직하며, 더욱 바람직하게는 0.8 ㎛ 이하인 것이다. 상기 지름이 1.2 ㎛를 초과할 경우에는 입자 크기가 지나치게 커서 토너 입자의 표면에의 부착성이 저하되는 문제점이 있다.It is preferable that the particle diameter of the said spherical organic powder is 0.05-1.2 micrometer, More preferably, it is 0.8 micrometer or less. If the diameter is larger than 1.2 mu m, the particle size is too large, which causes a problem that the adhesion of the toner particles to the surface is lowered.

또한 상기 구형의 유기 분말은 고분자 구조를 가지며, 하기와 같은 단량체로부터 제조할 수가 있다. 상기 단량체의 예로는 스티렌, 메틸스티렌, 디메틸스티렌, 에틸스테렌, 페닐스티렌, 클로로스티렌, 헥실스티렌, 옥틸스티렌, 또는 노닐스티렌 등의 스티렌류; 비닐클로라이드, 또는 비닐플루오라이드 등의 비닐 할라이드류; 비닐아세테이트, 또는 비닐벤조에이트 등의 베닐에스테르류; 메틸메타크릴레이트, 에틸메타크릴레이트, 프로필메타크릴레이트, n-부틸메타크릴레이트, 이소부틸메타크릴레이트, 2-에틸헥실메타크릴레이트, 또는 페닐아크릴레이트 등의 메타크릴레이트류; 아크릴로니트릴, 또는 메타크릴로니트릴 등의 아크릴산 유도체류; 메틸아크릴레이트, 에틸아크릴레이트, 부틸아크릴레이트, 또는 페닐아크릴레이트 등의 아크릴레이트류; 테트라플루오르에틸렌; 또는 1,1-디플루오르에틸렌 등이 있다. 상기 단량체는 단독 또는 2 종 이상 혼합하여 사용할 수 있다. 또한 상기 단량체는 스티렌계 수지, 에폭시 수지, 폴리에스테르 수지, 또는 폴리우레탄 수지 등과 혼합하여 사용할 수도 있다.In addition, the spherical organic powder has a polymer structure and can be produced from the following monomers. Examples of the monomers include styrenes such as styrene, methyl styrene, dimethyl styrene, ethyl styrene, phenyl styrene, chloro styrene, hexyl styrene, octyl styrene, and nonyl styrene; Vinyl halides such as vinyl chloride or vinyl fluoride; Benyl esters, such as vinyl acetate or vinyl benzoate; Methacrylates such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, or phenyl acrylate; Acrylic acid derivatives such as acrylonitrile or methacrylonitrile; Acrylates such as methyl acrylate, ethyl acrylate, butyl acrylate or phenyl acrylate; Tetrafluoroethylene; Or 1,1-difluoroethylene. The said monomer can be used individually or in mixture of 2 or more types. In addition, the said monomer can also be used in mixture with a styrene resin, an epoxy resin, a polyester resin, or a polyurethane resin.

본 발명에 사용되는 상기 b)단계의 실리카는 토너 전체 중량에 대하여 1.0 내지 4.0 중량부로 포함되는 것이 바람직하며, 더욱 바람직하게는 1.5 내지 3.5 중량부로 포함되는 것이다. 그 함량이 1.0 중량부 미만일 경우에는 효과가 미미하며, 4.0 중량부를 초과할 경우에는 부착(fixing)이 어렵다는 문제점이 있다.The silica of step b) used in the present invention is preferably included in an amount of 1.0 to 4.0 parts by weight, more preferably 1.5 to 3.5 parts by weight based on the total weight of the toner. If the content is less than 1.0 parts by weight, the effect is insignificant, and if it exceeds 4.0 parts by weight, there is a problem that the fixing (fixing) is difficult.

또한 상기 실리카의 입경은 7 내지 40 ㎚인 것이 바람직하며, 더욱 바람직하게는 10 내지 30 ㎚인 것이다.In addition, the particle diameter of the silica is preferably 7 to 40 nm, more preferably 10 to 30 nm.

상기 a)단계의 구형의 유기 분말과 b)단계의 실리카는 토너 모입자 표면에 정전기적으로 부착되고 있어도 좋지만, 특히 헨셀믹서, 하이브리다이저 등의 기계적인 혼합 처리에 의해 구형의 유기 분말, 및 실리카가 토너 모입자 표면에 정착되어 있는 것이 바람직하다. 또한 바인더 레진에 정전기적, 또는 기계적으로 부착되고, 고체 부착의 방지할 뿐만 아니라, 구형화 효과를 극대화하기 위해서는 상기 a)단계의 구형의 유기 분말을 코팅하는 경우 4000 rpm 이상의 헨셀믹서를 이용하여 혼합하는 것이 바람직하다.Although the spherical organic powder of step a) and the silica of step b) may be electrostatically attached to the surface of the toner base particles, in particular, the spherical organic powder may be formed by mechanical mixing such as Henschel mixer, hybridizer, and the like. It is preferable that silica is fixed to the surface of the toner base particles. In addition, in order to prevent electrostatic or mechanical adhesion to the binder resin and to prevent solid adhesion, and to maximize the spherical effect, when the spherical organic powder of step a) is coated, it is mixed using a Hensel mixer of 4000 rpm or more. It is desirable to.

또한 상기 토너 모입자는 바인더 수지, 및 착색제를 필수 성분으로 포함한다.In addition, the toner base particles include a binder resin and a colorant as essential components.

상기 바인더 수지는 스티렌, 클로로스티렌, 또는 비닐스티렌 등의 스티렌류; 에틸렌, 프로필렌, 부틸렌, 또는 이소프렌 등의 올레핀류; 초산 비닐, 프로피온산 비닐, 안식향산 비닐, 또는 낙산 비닐 등의 비닐 에스테르류; 아크릴산 메틸, 아크릴산 에틸, 아크릴산 부틸, 아크릴산 도데실, 아크릴산 옥틸, 아크릴산 페닐, 메타크릴산 메틸, 메타크릴산 에틸, 메타크릴산 부틸, 또는 메타크릴산 도데실 등의 메틸렌크릴산 에스테르류; 비닐 메틸 에테르, 비닐 에틸 에테르, 또는 비닐 부틸 에테르 등의 비닐 에테르류; 또는 비닐 메틸 케톤, 비닐 헥실 케톤, 또는 비닐 이소프로페닐 케톤 등의 비닐 케톤류 등을 단독 또는 혼합하여 사용할 수 있다.The binder resin may be styrene such as styrene, chlorostyrene, or vinyl styrene; Olefins such as ethylene, propylene, butylene, or isoprene; Vinyl esters such as vinyl acetate, vinyl propionate, vinyl benzoate, or vinyl butyrate; methyl acrylate, ethyl acrylate, butyl acrylate, dodecyl acrylate, octyl acrylate, phenyl acrylate, methyl methacrylate, ethyl methacrylate, and methacrylic acid Methylenecrylic acid esters such as butyl or dodecyl methacrylate; vinyl ethers such as vinyl methyl ether, vinyl ethyl ether, or vinyl butyl ether; or vinyl methyl ketone, vinyl hexyl ketone, or vinyl isopropenyl ketone Vinyl ketones and the like can be used alone or in combination.

바람직하게는 폴리스티렌, 스티렌 아크릴산 알킬 공중합체, 스티렌 메타크릴산 알킬 공중합체, 스티렌 아크릴로니트릴 공중합체, 스티렌 부타디엔 공중합체, 스티렌 무수 말레산 공중합체, 폴리에틸렌, 폴리프로필렌, 폴리에스테르, 폴리우레탄, 에폭시 수지, 실리콘 수지, 폴리아미드, 변성 로진, 또는 파라핀 등을 사용하는 것이다.Preferably polystyrene, styrene alkyl acrylate copolymer, styrene methacrylate alkyl copolymer, styrene acrylonitrile copolymer, styrene butadiene copolymer, styrene maleic anhydride copolymer, polyethylene, polypropylene, polyester, polyurethane, epoxy Resin, silicone resin, polyamide, modified rosin, or paraffin.

상기 착색제는 탄소 블랙, 자성분, 염료, 또는 안료를 사용할 수 있으며, 그 예로는 니구로신 염료, 아닐린 블루, 카르코일 블루, 크롬 옐로, 군청색 블루, 듀폰 오일 레드, 메틸렌 블루 염화물, 프탈로시아닌 블루, 램프 블랙, 로즈벤갈, C.I.안료 레드 48:1, C.I.안료 레드 48:4, C.I.안료 레드 122, C.I.안료 레드 57:1, C.I.안료 레드 257, C.I.안료 옐로 97, C.I.안료 옐로 12, C.I.안료 옐로 17, C.I.안료 옐로 14, C.I.안료 옐로 13, C.I.안료 옐로 16, C.I.안료 옐로 81, C.I.안료 옐로 126, C.I.안료 옐로 127, C.I.안료 블루 9, C.I.안료 블루 15, C.I.안료 블루 15:1, 또는 C.I.안료 블루 15:3 등을 사용할 수 있다.The colorant may use carbon black, magnetic powder, dye, or pigment, for example nigurosine dye, aniline blue, chacoyl blue, chrome yellow, ultramarine blue, dupont oil red, methylene blue chloride, phthalocyanine blue, Lamp black, Rose Bengal, CI pigment red 48: 1, CI pigment red 48: 4, CI pigment red 122, CI pigment red 57: 1, CI pigment red 257, CI pigment yellow 97, CI pigment yellow 12, CI pigment yellow 17, CI Pigment Yellow 14, CI Pigment Yellow 13, CI Pigment Yellow 16, CI Pigment Yellow 81, CI Pigment Yellow 126, CI Pigment Yellow 127, CI Pigment Blue 9, CI Pigment Blue 15, CI Pigment Blue 15: 1, or CI pigment blue 15: 3 etc. can be used.

또한 본 발명의 토너 모입자는 헥사메틸디실라잔, 디메틸 디클로로 실레인, 옥틸트리메톡시 실레인 등의 소수화 처리가 가해진 SiO2,TiO2, MgO, Al2O3, MnO, ZnO, Fe2O3, CaO, BaSO4, CeO2, K2O, Na2O, ZrO2, CaO·SiO, K2O·(TiO2)n, 또는 Al2O3·2SiO2등의 무기물 산화물 미립자를 유동 촉진제로 더욱 첨가할 수 있으며, 이형제를 더욱 첨가할 수 있다.In addition, the toner base particles of the present invention are SiO 2 , TiO 2 , MgO, Al 2 O 3 , MnO, ZnO, Fe 2 to which hydrophobization treatment such as hexamethyldisilazane, dimethyl dichlorosilane, octyltrimethoxy silane, and the like has been applied. Inorganic oxide fine particles such as O 3 , CaO, BaSO 4 , CeO 2 , K 2 O, Na 2 O, ZrO 2 , CaO · SiO, K 2 O · (TiO 2 ) n , or Al 2 O 3 · 2SiO 2 It can be further added as a flow promoter, and further a release agent can be added.

본 발명의 제조방법에 따라 제조한 비자성 일성분계 칼라 토너의 평균입자지름은 20 ㎛ 이하인 것이 바람직하며, 더욱 바람직하게는 3∼15 ㎛인 것이다.The average particle diameter of the nonmagnetic one-component color toner prepared according to the production method of the present invention is preferably 20 m or less, more preferably 3 to 15 m.

본 발명의 제조방법은 고대전성, 대전유지성, 및 고색도를 가지는 토너를 제조할 수 있고, 보다 환경친화적이며, 특히 최근의 칼라화 경향에 따라 많이 이용되는 간접전사방식에서도 안정적으로 화상을 구현할 수 있는 효과가 있다.The manufacturing method of the present invention can produce a toner having high conductivity, antistatic property, and high color, and is more environmentally friendly, and can stably implement an image even in an indirect transfer method that is widely used according to the recent colorization trend. It has an effect.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are merely to illustrate the present invention, and the scope of the present invention is not limited to the following examples.

[실시예]EXAMPLE

실시예 1Example 1

(시안 토너 모입자 제조)(Cyan Toner Base Particles)

폴리에스테르수지(분자량 : 2.5 ×105) 94 중량부, 프탈로시아닌 P.BI.15:3 5 중량부, 대전제어제로 함금속아조염 1 중량부, 저분자량 폴리프로필렌 3 중량부를 헨쉘 믹서로 혼합하였다. 이를 2축 용융 혼련에서 165 ℃의 온도로 용융 혼련하고, 제트 밀 분쇄기로 미분쇄한 후, 풍력분급기에서 분급하여 체적 평균입자경이 9.2 ㎛인 토너 모입자를 제조하였다.94 parts by weight of polyester resin (molecular weight: 2.5 × 10 5 ), 5 parts by weight of phthalocyanine P.BI.15: 3, 1 part by weight of metal azo salt and 3 parts by weight of low molecular weight polypropylene as a charge control agent were mixed with a Henschel mixer. . This was melt kneaded at a temperature of 165 DEG C in biaxial melt kneading, finely ground in a jet mill grinder, and then classified in a wind classifier to prepare toner base particles having a volume average particle diameter of 9.2 mu m.

(비자성 일성분계 칼라 토너 제조)(Manufacture of nonmagnetic one-component color toner)

상기와 같이 제조한 토너 모입자 100 중량부에 대하여 구형의 유기 분말로 평균입경이 0.3 ㎛인 폴리테트라플루오로에틸렌(PTFE, polytetrafluoroethylene) 0.2 중량부를 헬쉘 믹서를 사용하여 5,000 rpm에서 5 분 동안 교반, 혼합하여 토너 모입자의 표면에 코팅하였다. 여기에 평균입경이 17 ㎚인 실리카 2.0 중량부를 헨쉘 믹서를 사용하여 3,000 rpm에서 3 분 동안 교반, 혼합하고 코팅하여 비자성 일성분계 칼라 토너를 제조하였다.0.2 parts by weight of polytetrafluoroethylene (PTFE, polytetrafluoroethylene) having an average particle diameter of 0.3 μm with a spherical organic powder with respect to 100 parts by weight of the toner base particles prepared as described above was stirred at 5,000 rpm for 5 minutes using a HellShell mixer, The mixture was coated on the surface of the toner base particles. A nonmagnetic one-component color toner was prepared by stirring, mixing, and coating 2.0 parts by weight of silica having an average particle diameter of 17 nm at 3,000 rpm for 3 minutes using a Henschel mixer.

실시예 2~10Examples 2-10

상기 실시예 1에서 하기 표 1에 나타낸 바와 같이 평균입경 및 함량이 서로 다른 구형 유기 분말을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.In Example 1, the same method as in Example 1 was performed except that spherical organic powders having different average particle diameters and contents were used as shown in Table 1 below.

구분division 구형의 유기 분말Spherical Organic Powder 실리카Silica 실시예 1Example 1 평균입경 0.3 ㎛의 PTFE 0.3 중량부0.3 parts by weight of PTFE having an average particle diameter of 0.3 μm 2.0 중량부2.0 parts by weight 실시예 2Example 2 평균입경 0.3 ㎛의 PTFE 0.5 중량부0.5 parts by weight of PTFE with an average particle diameter of 0.3 μm 2.0 중량부2.0 parts by weight 실시예 3Example 3 평균입경 0.3 ㎛의 PTFE 1.0 중량부1.0 part by weight of PTFE having an average particle diameter of 0.3 μm 2.0 중량부2.0 parts by weight 실시예 4Example 4 평균입경 0.5 ㎛의 PTFE 1.5 중량부1.5 parts by weight of PTFE having an average particle diameter of 0.5 μm 2.0 중량부2.0 parts by weight 실시예 5Example 5 평균입경 0.3 ㎛의 PVDF 0.5 중량부0.5 parts by weight of PVDF with an average particle diameter of 0.3 μm 2.0 중량부2.0 parts by weight 실시예 6Example 6 평균입경 0.3 ㎛의 PVDF 1.0 중량부1.0 part by weight of PVDF with an average particle diameter of 0.3 μm 2.0 중량부2.0 parts by weight 실시예 7Example 7 평균입경 0.5 ㎛의 PVDF 1.5 중량부1.5 parts by weight of PVDF with an average particle diameter of 0.5 μm 2.0 중량부2.0 parts by weight 실시예 8Example 8 평균입경 0.3 ㎛의 실리콘 파우더 0.5 중량부0.5 parts by weight of silicon powder with an average particle diameter of 0.3 μm 2.0 중량부2.0 parts by weight 실시예 9Example 9 평균입경 0.3 ㎛의 실리콘 파우더 1.0 중량부1.0 part by weight of silicon powder with an average particle diameter of 0.3 μm 2.0 중량부2.0 parts by weight 실시예 10Example 10 평균입경 0.5 ㎛의 실리콘 파우더 1.5 중량부1.5 parts by weight of silicon powder with an average particle diameter of 0.5 μm 2.0 중량부2.0 parts by weight [주] PMMA : 폴리메틸메티크릴레이트(polymethylmethacrylate)PVDF : 폴리비닐리덴 플루오라이드(polyvinylidene fluoride)PTFE : 폴리테트라플루오로에틸렌(polytetrafluoroetylene)PMMA: Polymethylmethacrylate PVDF: Polyvinylidene fluoride PTFE: Polytetrafluoroetylene

실시예 11~28Examples 11-28

상기 실시예 1에서 하기 표 2에 나타낸 바와 같이 평균입경 및 함량이 서로 다른 구형 유기 분말, 및 실리카를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.As shown in Table 2 in Example 1 was carried out in the same manner as in Example 1 except for using the spherical organic powder and silica having a different average particle diameter and content.

실시예Example 구형의 유기 분말Spherical Organic Powder 실리카Silica 1111 평균입경 1.2 ㎛의 PTFE 1.0 중량부1.0 part by weight of PTFE having an average particle diameter of 1.2 μm 평균입경 10 ㎚의 실리카 0.5 중량부0.5 parts by weight of silica with an average particle diameter of 10 nm 1212 평균입경 1.2 ㎛의 PTFE 1.0 중량부1.0 part by weight of PTFE having an average particle diameter of 1.2 μm 평균입경 10 ㎚의 실리카 4.0 중량부4.0 parts by weight of silica with an average particle diameter of 10 nm 1313 평균입경 0.3 ㎛의 PTFE 1.0 중량부1.0 part by weight of PTFE having an average particle diameter of 0.3 μm 평균입경 17 ㎚의 실리카 0.5 중량부0.5 part by weight of silica with an average particle diameter of 17 nm 1414 평균입경 0.3 ㎛의 PTFE 1.0 중량부1.0 part by weight of PTFE having an average particle diameter of 0.3 μm 평균입경 17 ㎚의 실리카 2.5 중량부2.5 parts by weight of silica with an average particle diameter of 17 nm 1515 평균입경 0.5 ㎛의 PTFE 1.0 중량부1.0 part by weight of PTFE having an average particle diameter of 0.5 μm 평균입경 17㎚의 실리카 4.0 중량부4.0 parts by weight of silica with an average particle diameter of 17 nm 1616 평균입경 0.5 ㎛의 PTFE 1.0 중량부1.0 part by weight of PTFE having an average particle diameter of 0.5 μm 평균입경 40 ㎚의 실리카 0.5 중량부0.5 part by weight of silica with an average particle diameter of 40 nm 1717 평균입경 0.3 ㎛의 실리콘 파우더 1.0 중량부1.0 part by weight of silicon powder with an average particle diameter of 0.3 μm 평균입경 10 ㎚의 실리카 2.0 중량부2.0 parts by weight of silica with an average particle diameter of 10 nm 1818 평균입경 0.3 ㎛의 실리콘 파우더 1.0 중량부1.0 part by weight of silicon powder with an average particle diameter of 0.3 μm 평균입경 17 ㎚의 실리카 4.0 중량부4.0 parts by weight of silica with an average particle diameter of 17 nm 1919 평균입경 0.5 ㎛의 실리콘 파우더 1.0 중량부1.0 part by weight of silicon powder with an average particle diameter of 0.5 μm 평균입경 10 ㎚의 실리카 0.5 중량부0.5 parts by weight of silica with an average particle diameter of 10 nm 2020 평균입경 0.5 ㎛의 실리콘 파우더 1.0 중량부1.0 part by weight of silicon powder with an average particle diameter of 0.5 μm 평균입경 17 ㎚의 실리카 2.0 중량부2.0 parts by weight of silica with an average particle diameter of 17 nm 2121 평균입경 1.2 ㎛의 실리콘 파우더 1.0 중량부1.0 part by weight of silicon powder with an average particle diameter of 1.2 μm 평균입경 40 ㎚의 실리카 4.0 중량부4.0 parts by weight of silica with an average particle diameter of 40 nm 2222 평균입경 1.2 ㎛의 실리콘 파우더 1.0 중량부1.0 part by weight of silicon powder with an average particle diameter of 1.2 μm 평균입경 10 ㎚의 실리카 0.5 중량부0.5 parts by weight of silica with an average particle diameter of 10 nm 2323 평균입경 0.3 ㎛의 PVDF 1.0 중량부1.0 part by weight of PVDF with an average particle diameter of 0.3 μm 평균입경 40 ㎚의 실리카 4.0 중량부4.0 parts by weight of silica with an average particle diameter of 40 nm 2424 평균입경 0.3 ㎛의 PVDF 1.0 중량부1.0 part by weight of PVDF with an average particle diameter of 0.3 μm 평균입경 10 ㎚의 실리카 0.5 중량부0.5 parts by weight of silica with an average particle diameter of 10 nm 2525 평균입경 0.5 ㎛의 PVDF 1.0 중량부1.0 part by weight of PVDF with an average particle diameter of 0.5 μm 평균입경 17 ㎚의 실리카 2.0 중량부2.0 parts by weight of silica with an average particle diameter of 17 nm 2626 평균입경 0.5 ㎛의 PVDF 1.0 중량부1.0 part by weight of PVDF with an average particle diameter of 0.5 μm 평균입경 40 ㎚의 실리카 4.0 중량부4.0 parts by weight of silica with an average particle diameter of 40 nm 2727 평균입경 1.2 ㎛의 PVDF 1.0 중량부1.0 part by weight of PVDF with an average particle diameter of 1.2 μm 평균입경 10 ㎚의 실리카 0.5 중량부0.5 parts by weight of silica with an average particle diameter of 10 nm 2828 평균입경 1.2 ㎛의 PVDF 1.0 중량부1.0 part by weight of PVDF with an average particle diameter of 1.2 μm 평균입경 40 ㎚의 실리카 4.0 중량부4.0 parts by weight of silica with an average particle diameter of 40 nm

비교예 1~10Comparative Examples 1 to 10

상기 실시예 1에서 하기 표 3에 나타낸 바와 같이 평균입경 및 함량이 서로 다른 구형 유기 분말을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.In Example 1, the same method as in Example 1 was performed except that spherical organic powders having different average particle diameters and contents were used as shown in Table 3 below.

구분division 구형의 유기 분말Spherical Organic Powder 실리카Silica 비교예 1Comparative Example 1 평균입경 0.3 ㎛의 PTFE 0.3 중량부0.3 parts by weight of PTFE having an average particle diameter of 0.3 μm 2.0 중량부2.0 parts by weight 비교예 2Comparative Example 2 평균입경 0.3 ㎛의 PTFE 0.5 중량부0.5 parts by weight of PTFE with an average particle diameter of 0.3 μm 2.0 중량부2.0 parts by weight 비교예 3Comparative Example 3 평균입경 0.3 ㎛의 PTFE 1.0 중량부1.0 part by weight of PTFE having an average particle diameter of 0.3 μm 2.0 중량부2.0 parts by weight 비교예 4Comparative Example 4 평균입경 0.5 ㎛의 PTFE 1.5 중량부1.5 parts by weight of PTFE having an average particle diameter of 0.5 μm 2.0 중량부2.0 parts by weight 비교예 5Comparative Example 5 평균입경 0.3 ㎛의 PVDF 0.5 중량부0.5 parts by weight of PVDF with an average particle diameter of 0.3 μm 2.0 중량부2.0 parts by weight 비교예 6Comparative Example 6 평균입경 0.3 ㎛의 PVDF 1.0 중량부1.0 part by weight of PVDF with an average particle diameter of 0.3 μm 2.0 중량부2.0 parts by weight 비교예 7Comparative Example 7 평균입경 0.5 ㎛의 PVDF 1.5 중량부1.5 parts by weight of PVDF with an average particle diameter of 0.5 μm 2.0 중량부2.0 parts by weight 비교예 8Comparative Example 8 평균입경 0.3 ㎛의 실리콘 파우더 0.5 중량부0.5 parts by weight of silicon powder with an average particle diameter of 0.3 μm 2.0 중량부2.0 parts by weight 비교예 9Comparative Example 9 평균입경 0.3 ㎛의 실리콘 파우더 1.0 중량부1.0 part by weight of silicon powder with an average particle diameter of 0.3 μm 2.0 중량부2.0 parts by weight 비교예 10Comparative Example 10 평균입경 0.5 ㎛의 실리콘 파우더 1.5 중량부1.5 parts by weight of silicon powder with an average particle diameter of 0.5 μm 2.0 중량부2.0 parts by weight

비교예 11~40Comparative Examples 11-40

상기 실시예 1에서 하기 표 4에 나타낸 바와 같이 평균입경 및 함량이 서로 다른 구형 유기 분말, 및 실리카를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.As shown in Table 4 in Example 1 was carried out in the same manner as in Example 1 except for using the spherical organic powder and silica having a different average particle diameter and content.

비교예Comparative example 구형의 유기 분말Spherical Organic Powder 실리카Silica 1111 평균입경 1.2 ㎛의 PTFE 1.0 중량부1.0 part by weight of PTFE having an average particle diameter of 1.2 μm 평균입경 5 ㎚의 실리카 0.3 중량부0.3 part by weight of silica with an average particle diameter of 5 nm 1212 평균입경 1.2 ㎛의 PTFE 1.0 중량부1.0 part by weight of PTFE having an average particle diameter of 1.2 μm 평균입경 5 ㎚의 실리카 4.5 중량부4.5 parts by weight of silica with an average particle diameter of 5 nm 1313 평균입경 1.2 ㎛의 PTFE 1.0 중량부1.0 part by weight of PTFE having an average particle diameter of 1.2 μm 평균입경 50 ㎚의 실리카 0.3 중량부0.3 part by weight of silica with an average particle diameter of 50 nm 1414 평균입경 1.2 ㎛의 PTFE 1.0 중량부1.0 part by weight of PTFE having an average particle diameter of 1.2 μm 평균입경 50 ㎚의 실리카 4.5중량부4.5 parts by weight of silica with an average particle diameter of 50 nm 1515 평균입경 1.2 ㎛의 PTFE 1.0 중량부1.0 part by weight of PTFE having an average particle diameter of 1.2 μm 평균입경 100 ㎚의 실리카 0.5 중량부0.5 part by weight of silica with an average particle diameter of 100 nm 1616 평균입경 1.2 ㎛의 PTFE 1.0 중량부1.0 part by weight of PTFE having an average particle diameter of 1.2 μm 평균입경 100 ㎚의 실리카 2.0 중량부2.0 parts by weight of silica with an average particle diameter of 100 nm 1717 평균입경 1.2 ㎛의 PTFE 1.0 중량부1.0 part by weight of PTFE having an average particle diameter of 1.2 μm 평균입경 100 ㎚의 실리카 4.5 중량부4.5 parts by weight of silica with an average particle diameter of 100 nm 1818 평균입경 0.3 ㎛의 PTFE 1.0 중량부1.0 part by weight of PTFE having an average particle diameter of 0.3 μm 평균입경 5 ㎚의 실리카 0.3 중량부0.3 part by weight of silica with an average particle diameter of 5 nm 1919 평균입경 0.3 ㎛의 PTFE 1.0 중량부1.0 part by weight of PTFE having an average particle diameter of 0.3 μm 평균입경 5 ㎚의 실리카 2.0 중량부2.0 parts by weight of silica with an average particle diameter of 5 nm 2020 평균입경 0.3 ㎛의 PTFE 1.0 중량부1.0 part by weight of PTFE having an average particle diameter of 0.3 μm 평균입경 5 ㎚의 실리카 4.5 중량부4.5 parts by weight of silica with an average particle diameter of 5 nm 2121 평균입경 0.3 ㎛의 PTFE 1.0 중량부1.0 part by weight of PTFE having an average particle diameter of 0.3 μm 평균입경 50 ㎚의 실리카 0.3 중량부0.3 part by weight of silica with an average particle diameter of 50 nm 2222 평균입경 0.3 ㎛의 PTFE 1.0 중량부1.0 part by weight of PTFE having an average particle diameter of 0.3 μm 평균입경 50 ㎚의 실리카 4.5 중량부4.5 parts by weight of silica with an average particle diameter of 50 nm 2323 평균입경 0.5 ㎛의 PVDF 1.0 중량부1.0 part by weight of PVDF with an average particle diameter of 0.5 μm 평균입경 5 ㎚의 실리카 0.3 중량부0.3 part by weight of silica with an average particle diameter of 5 nm 2424 평균입경 0.5 ㎛의 PVDF 1.0 중량부1.0 part by weight of PVDF with an average particle diameter of 0.5 μm 평균입경 5 ㎚의 실리카 4.5 중량부4.5 parts by weight of silica with an average particle diameter of 5 nm 2525 평균입경 0.5 ㎛의 PVDF 1.0 중량부1.0 part by weight of PVDF with an average particle diameter of 0.5 μm 평균입경 50 ㎚의 실리카 0.3 중량부0.3 part by weight of silica with an average particle diameter of 50 nm 2626 평균입경 0.5 ㎛의 PVDF 1.0 중량부1.0 part by weight of PVDF with an average particle diameter of 0.5 μm 평균입경 50 ㎚의 실리카 4.5 중량부4.5 parts by weight of silica with an average particle diameter of 50 nm 2727 평균입경 0.5 ㎛의 PVDF 1.0 중량부1.0 part by weight of PVDF with an average particle diameter of 0.5 μm 평균입경 100 ㎚의 실리카 0.3 중량부0.3 part by weight of silica with an average particle diameter of 100 nm 2828 평균입경 0.5 ㎛의 PVDF 1.0 중량부1.0 part by weight of PVDF with an average particle diameter of 0.5 μm 평균입경 100 ㎚의 실리카 4.5 중량부4.5 parts by weight of silica with an average particle diameter of 100 nm 2929 평균입경 0.3 ㎛의 실리콘 파우더 1.0 중량부1.0 part by weight of silicon powder with an average particle diameter of 0.3 μm 평균입경 5 ㎚의 실리카 0.3 중량부0.3 part by weight of silica with an average particle diameter of 5 nm 3030 평균입경 0.3 ㎛의 실리콘 파우더 1.0 중량부1.0 part by weight of silicon powder with an average particle diameter of 0.3 μm 평균입경 5 ㎚의 실리카 4.5 중량부4.5 parts by weight of silica with an average particle diameter of 5 nm 3131 평균입경 0.3 ㎛의 실리콘 파우더 1.0 중량부1.0 part by weight of silicon powder with an average particle diameter of 0.3 μm 평균입경 50 ㎚의 실리카 0.3 중량부0.3 part by weight of silica with an average particle diameter of 50 nm 3232 평균입경 0.3 ㎛의 실리콘 파우더 1.0 중량부1.0 part by weight of silicon powder with an average particle diameter of 0.3 μm 평균입경 50 ㎚의 실리카 4.5 중량부4.5 parts by weight of silica with an average particle diameter of 50 nm 3333 평균입경 0.3 ㎛의 실리콘 파우더 1.0 중량부1.0 part by weight of silicon powder with an average particle diameter of 0.3 μm 평균입경 100 ㎚의 실리카 0.3 중량부0.3 part by weight of silica with an average particle diameter of 100 nm 3434 평균입경 0.3 ㎛의 실리콘 파우더 1.0 중량부1.0 part by weight of silicon powder with an average particle diameter of 0.3 μm 평균입경 100 ㎚의 실리카 4.5 중량부4.5 parts by weight of silica with an average particle diameter of 100 nm 3535 평균입경 0.5 ㎛의 실리콘 파우더 1.0 중량부1.0 part by weight of silicon powder with an average particle diameter of 0.5 μm 평균입경 5 ㎚의 실리카 0.3 중량부0.3 part by weight of silica with an average particle diameter of 5 nm 3636 평균입경 0.5 ㎛의 실리콘 파우더 1.0 중량부1.0 part by weight of silicon powder with an average particle diameter of 0.5 μm 평균입경 5 ㎚의 실리카 4.5 중량부4.5 parts by weight of silica with an average particle diameter of 5 nm 3737 평균입경 0.5 ㎛의 실리콘 파우더 1.0 중량부1.0 part by weight of silicon powder with an average particle diameter of 0.5 μm 평균입경 50 ㎚의 실리카 0.3 중량부0.3 part by weight of silica with an average particle diameter of 50 nm 3838 평균입경 0.5 ㎛의 실리콘 파우더 1.0 중량부1.0 part by weight of silicon powder with an average particle diameter of 0.5 μm 평균입경 50 ㎚의 실리카 4.5 중량부4.5 parts by weight of silica with an average particle diameter of 50 nm 3939 평균입경 0.5 ㎛의 실리콘 파우더 1.0 중량부1.0 part by weight of silicon powder with an average particle diameter of 0.5 μm 평균입경 100 ㎚의 실리카 0.3 중량부0.3 part by weight of silica with an average particle diameter of 100 nm 4040 평균입경 0.5 ㎛의 실리콘 파우더 1.0 중량부1.0 part by weight of silicon powder with an average particle diameter of 0.5 μm 평균입경 100 ㎚의 실리카 4.5 중량부4.5 parts by weight of silica with an average particle diameter of 100 nm

실험예 1Experimental Example 1

상기 실시예 1 내지 10, 및 비교예 1 내지 10에서 제조한 비자성 일성분계 칼라 토너를 접촉식 현상기구로 구성된 시판되는 비자성 일성분 현상 방식의 프린터(HP4500, Hewlett-Packard사)를 이용하여 상온, 상습(20 ℃, 55 % RH)의 조건에서 5,000 매까지 프린트하여 하기의 방법으로 화상농도, 전사효율, 및 장기성을 측정하고, 그 결과를 하기 표 5에 나타내었다.The nonmagnetic one-component color toners prepared in Examples 1 to 10 and Comparative Examples 1 to 10 were manufactured by using a commercially available non-magnetic one-component developing printer (HP4500, Hewlett-Packard Co., Ltd.) composed of a contact developing mechanism. Under the condition of normal temperature and humidity (20 ° C, 55% RH), up to 5,000 sheets were printed and image density, transfer efficiency, and long term were measured by the following method, and the results are shown in Table 5 below.

ㄱ) 화상농도 (I.D) - 솔리드(solid) 면적 화상을 맥베스 반사 농도계 RD918로 측정하였다.A) Image Density (I.D)-Solid area images were measured with a Macbeth Reflectometer RD918.

A : 화상의 이미지 밀도가 1.4 이상A: The image density of the image is 1.4 or more

B : 화상의 이미지 밀도가 1.2 이상B: The image density of the image is 1.2 or more

C : 화상의 이미지 밀도가 1.0 이상C: Image density of the image is 1.0 or more

ㄴ) 전사효율 : 상기 프린트한 5,000 매에 대하여 각 500 매 단위로 소모량에서 낭비량을 뺀 순 소모량을 계산하여 순수하게 종이로 전사된 토너의 %를 계산하였다.B) Transfer efficiency: The percentage of toner transferred purely to paper was calculated by calculating the net consumption of the printed 5,000 sheets by subtracting waste from each 500 sheets.

A : 전사효율 80 % 이상 B : 전사효율 70∼80 %A: 80% or more transfer efficiency B: 70 ~ 80% transfer efficiency

C : 전사효율 60∼70 % D : 전사효율 50∼60 %C: transfer efficiency 60-70% D: transfer efficiency 50-60%

ㄷ) 장기성 : 5,000 매까지 프린트하여 I.D, 및 전사효율이 유지되는지를 확인하였다.C) Long-term: Printed up to 5,000 sheets to confirm that I.D and transfer efficiency are maintained.

A : 5,000 매까지 I.D. 1.4 이상, 전사효율 80 % 이상A: Up to 5,000 sheets I.D. 1.4 or more, 80% transfer efficiency

B : 5,000 매까지 I.D. 1.3 이상, 전사효율 70 % 이상B: up to 5,000 sheets I.D. 1.3 or more, 70% or more transfer efficiency

C : 5,000 매까지 I.D. 1.2 이상, 전사효율 60 % 이상C: up to 5,000 sheets I.D. 1.2 or more, transfer efficiency 60% or more

D : 5,000 매까지 I.D. 1.0 이상, 전사효율 50 % 이상D: Up to 5,000 sheets I.D. 1.0 or more, transfer efficiency 50% or more

구분division 화상농도Burn density 전사효율Transcription efficiency 장기성Long-term 구분division 화상농도Burn density 전사효율Transcription efficiency 장기성Long-term 실시예 1Example 1 AA AA BB 비교예 1Comparative Example 1 DD DD DD 실시예 2Example 2 BB AA BB 비교예 2Comparative Example 2 DD DD CC 실시예 3Example 3 AA AA AA 비교예 3Comparative Example 3 CC DD DD 실시예 4Example 4 AA AA AA 비교예 4Comparative Example 4 DD DD DD 실시예 5Example 5 BB AA AA 비교예 5Comparative Example 5 DD DD CC 실시예 6Example 6 AA AA AA 비교예 6Comparative Example 6 CC DD DD 실시예 7Example 7 AA AA AA 비교예 7Comparative Example 7 CC DD DD 실시예 8Example 8 BB AA AA 비교예 8Comparative Example 8 DD DD DD 실시예 9Example 9 AA AA AA 비교예 9Comparative Example 9 CC DD DD 실시예 10Example 10 AA AA AA 비교예 10Comparative Example 10 CC DD DD

상기 표 5를 통하여, 본 발명에 따라 토너 모입자에 구형의 유기 분말을 코팅하여 부착시킨 후, 실리카를 코팅하여 부착시키는 2단계 코팅을 실시한 실시예 1 내지 10의 칼라 토너는 비교예 1 내지 10과 비교하여 화상농도, 전사효율, 및 장기성이 우수함을 확인할 수 있었다. 이는 구형의 유기 분말이 먼저 토너 모입자의 표면에 입혀져서 구형화한 효과를 나타내고, 이에 따라 토너 모입자 사이에 부착을 감소시킨 것을 알 수 있었다.Through the Table 5, the color toners of Examples 1 to 10, which were subjected to two-stage coating of coating and attaching spherical organic powder to the toner base particles according to the present invention, followed by coating and attaching silica, Comparative Examples 1 to 10 Compared with the results, it was confirmed that the image density, the transfer efficiency, and the long term were excellent. It was found that the spherical organic powder was first coated on the surface of the toner base particles to give spherical effect, thereby reducing the adhesion between the toner base particles.

실험예 2Experimental Example 2

구형의 유기 분말, 및 실리카의 입자 크기와 함량이 화상 농도, 잔사효율, 및 장기성에 미치는 영향을 실험하기 위하여, 상기 실시예 11 내지 28, 및 비교예 11 내지 40에서 제조한 칼라 토너를 상기 실험예 1과 동일한 방법으로 실시하여 측정하고, 그 결과를 하기 표 6에 나타내었다.The color toners prepared in Examples 11 to 28 and Comparative Examples 11 to 40 were tested to investigate the effect of the spherical organic powder and the particle size and content of silica on the image density, residue efficiency, and long-term. The measurement was carried out in the same manner as in Example 1, and the results are shown in Table 6 below.

구분division 화상농도Burn density 전사효율Transcription efficiency 장기성Long-term 구분division 화상농도Burn density 전사효율Transcription efficiency 장기성Long-term 실시예 11Example 11 BB AA BB 비교예 17Comparative Example 17 DD DD CC 실시예 12Example 12 AA AA BB 비교예 18Comparative Example 18 DD DD DD 실시예 13Example 13 AA AA AA 비교예 19Comparative Example 19 CC DD DD 실시예 14Example 14 AA AA AA 비교예 20Comparative Example 20 CC DD DD 실시예 15Example 15 BB AA BB 비교예 21Comparative Example 21 DD DD DD 실시예 16Example 16 AA AA AA 비교예 22Comparative Example 22 DD DD CC 실시예 17Example 17 BB AA AA 비교예 23Comparative Example 23 DD BB CC 실시예 18Example 18 AA AA AA 비교예 24Comparative Example 24 DD CC DD 실시예 19Example 19 BB BB BB 비교예 25Comparative Example 25 DD DD DD 실시예 20Example 20 AA AA BB 비교예 26Comparative Example 26 DD DD CC 실시예 21Example 21 BB AA BB 비교예 27Comparative Example 27 DD DD DD 실시예 22Example 22 AA AA AA 비교예 28Comparative Example 28 DD DD DD 실시예 23Example 23 BB BB BB 비교예 29Comparative Example 29 DD DD CC 실시예 24Example 24 AA AA BB 비교예 30Comparative Example 30 CC CC CC 실시예 25Example 25 BB AA AA 비교예 31Comparative Example 31 DD CC BB 실시예 26Example 26 BB AA AA 비교예 32Comparative Example 32 DD DD DD 실시예 27Example 27 BB BB BB 비교예 33Comparative Example 33 DD DD CC 실시예 28Example 28 AA AA BB 비교예 34Comparative Example 34 DD CC DD 비교예 11Comparative Example 11 DD DD DD 비교예 35Comparative Example 35 DD DD DD 비교예 12Comparative Example 12 DD DD CC 비교예 36Comparative Example 36 DD DD DD 비교예 13Comparative Example 13 DD DD DD 비교예 37Comparative Example 37 DD DD CC 비교예 14Comparative Example 14 DD DD CC 비교예 38Comparative Example 38 CC CC CC 비교예 15Comparative Example 15 DD DD CC 비교예 39Comparative Example 39 CC BB DD 비교예 16Comparative Example 16 DD DD DD 비교예 40Comparative Example 40 DD DD CC

상기 표 6을 통하여, 구형의 유기 분말을 코팅하여 부착한 후, 실리카를 코팅하여 부착할 경우에도, 본 발명에 따라 0.05~1.2 ㎛의 평균입경을 갖는 구형의 유기 분말 0.1~3.0 중량부, 및 7~40 ㎚의 평균입경을 갖는 실리카 0.5~4.0 중량부를 포함하는 실시예 11 내지 28의 칼러 토너의 화상 농도, 잔사효율, 및 장기성이 비교예 11 내지 40의 토너와 비교하여 우수함을 확인할 수 있었다.Through the above Table 6, even after coating and attaching the spherical organic powder, 0.1 to 3.0 parts by weight of the spherical organic powder having an average particle diameter of 0.05 ~ 1.2 ㎛ in accordance with the present invention, and It was confirmed that the image density, the residue efficiency, and the long term of the color toner of Examples 11 to 28 including 0.5 to 4.0 parts by weight of silica having an average particle diameter of 7 to 40 nm were superior to those of Comparative Examples 11 to 40. .

상기에서 살펴본 바와 같이, 본 발명의 제조방법에 따르면 슬리브와 대전 블래드 사이에서 받는 압력을 줄여 용융, 또는 고체 부착을 줄임으로써 장기적으로 안정적인 화상을 얻을 수 있으며, 동시에 구형 유기 분말이 대전 블래드에 닿아 대전 블래드, 또는 슬리브 표면과의 마찰저항을 낮춤으로써 고전사효율, 및 고색도를 나타내는 화상을 얻을 수가 있다. 또한 본 발명의 제조방법은 환경친화적이며, 특히 최근의 칼라화 경향에 따라 많이 이용되는 간접전사방식에서도 안정적으로 화상을 구현할 수 있는 장점이 있다.As described above, according to the manufacturing method of the present invention, a long-term stable image can be obtained by reducing the pressure received between the sleeve and the charging bladder, thereby reducing melting or solid adhesion, and at the same time, spherical organic powder is applied to the charging bladder. By lowering the frictional resistance with the charged bladder or the sleeve surface, it is possible to obtain an image showing high high efficiency and high chromaticity. In addition, the manufacturing method of the present invention is environmentally friendly, and in particular, there is an advantage in that the image can be stably implemented even in the indirect transfer method which is widely used according to the recent colorization trend.

Claims (9)

비자성 일성분계 칼라 토너의 제조방법에 있어서, 토너 모입자에In the method for producing a nonmagnetic one-component color toner, the toner base particles a) 구형의 유기 분말로 1차 코팅하는 단계; 및a) first coating with spherical organic powder; And b) 실리카로 2차 코팅하는 단계b) secondary coating with silica 를 포함하는 비자성 일성분계 칼라 토너의 제조방법.Method for producing a nonmagnetic one-component color toner comprising a. 제1항에 있어서,The method of claim 1, 토너 모입자 100 중량부에 대하여To 100 parts by weight of toner base particles a) 구형의 유기 분말 0.1 내지 4.0 중량부로 1차 코팅하는 단계; 및a) primary coating with 0.1 to 4.0 parts by weight of spherical organic powder; And b) 실리카 0.5 내지 4.0 중량부로 2차 코팅하는 단계b) secondary coating with 0.5 to 4.0 parts by weight of silica 를 포함하는 비자성 일성분계 칼라 토너의 제조방법.Method for producing a nonmagnetic one-component color toner comprising a. 제1항에 있어서,The method of claim 1, 상기 a)단계의 구형의 유기 분말이 스티렌, 메틸스티렌, 디메틸스티렌, 에틸스테렌, 페닐스티렌, 클로로스티렌, 헥실스티렌, 옥틸스티렌, 노닐스티렌, 비닐클로라이드, 비닐플루오라이드, 비닐아세테이트, 비닐벤조에이트, 메틸메타크릴레이트, 에틸메타크릴레이트, 프로필메타크릴레이트, n-부틸메타크릴레이트, 이소부틸메타크릴레이트, 2-에틸헥실메타크릴레이트, 페닐아크릴레이트, 아크릴로니트릴, 메타크릴로니트릴, 메틸아크릴레이트, 에틸아크릴레이트, 부틸아크릴레이트, 페닐아크릴레이트, 테트라플루오르에틸렌, 및 1,1-디플루오르에틸렌으로 이루어지는 군으로부터 1 종 이상 선택되는 단량체로부터 제조되며, 고분자 구조를 가지는 비자성 일성분계 칼라 토너의 제조방법.The spherical organic powder of step a) is styrene, methyl styrene, dimethyl styrene, ethyl styrene, phenyl styrene, chloro styrene, hexyl styrene, octyl styrene, nonyl styrene, vinyl chloride, vinyl fluoride, vinyl acetate, vinyl benzoate , Methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, phenyl acrylate, acrylonitrile, methacrylonitrile, Nonmagnetic one-component system prepared from monomers selected from one or more selected from the group consisting of methyl acrylate, ethyl acrylate, butyl acrylate, phenyl acrylate, tetrafluoroethylene, and 1,1-difluoroethylene. Method for producing color toner. 제3항에 있어서,The method of claim 3, 상기 단량체가 스티렌계 수지, 에폭시 수지, 폴리에스테르 수지, 및 폴리우레탄 수지로 이루어지는 군으로부터 1 종 이상 선택되는 수지를 추가로 포함하는 비자성 일성분계 칼라토너의 제조방법.A method for producing a nonmagnetic one-component color toner, wherein the monomer further comprises at least one resin selected from the group consisting of styrene resin, epoxy resin, polyester resin, and polyurethane resin. 제1항에 있어서,The method of claim 1, 상기 a)단계의 구형의 유기 분말의 입자 지름이 0.05 내지 1.2 ㎛인 비자성 일성분계 칼라 토너의 제조방법.A method for producing a nonmagnetic one-component color toner having a particle diameter of 0.05 to 1.2 μm of the spherical organic powder of step a). 제1항에 있어서,The method of claim 1, 상기 b)단계의 실리카의 입경이 7 내지 40 ㎚인 비자성 일성분계 칼라 토너의 제조방법.Method for producing a non-magnetic one-component color toner of the silica particle of step b) is 7 to 40 nm. 제1항에 있어서,The method of claim 1, 상기 a)단계의 구형의 유기 분말을 적어도 4,000 rpm에서 코팅하는 비자성 일성분계 칼라 토너의 제조방법.A method of producing a nonmagnetic one-component color toner, wherein the spherical organic powder of step a) is coated at at least 4,000 rpm. 제1항에 있어서,The method of claim 1, 상기 토너 모입자가 바인더 수지, 및 착색제를 포함하는 비자성 일성분계 칼라 토너의 제조방법.A method for producing a nonmagnetic one-component color toner, wherein the toner base particles include a binder resin and a colorant. 제8항에 있어서,The method of claim 8, 상기 토너 모입자가 유동 촉진제, 또는 이형제를 추가로 포함하는 비자성 일성분계 칼라 토너의 제조방법.A method for producing a nonmagnetic one-component color toner, wherein the toner base particles further include a flow promoter or a release agent.
KR10-2002-0061233A 2002-10-08 2002-10-08 Method for preparing of color toner for non-magnetic mono-component system KR100463173B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0061233A KR100463173B1 (en) 2002-10-08 2002-10-08 Method for preparing of color toner for non-magnetic mono-component system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0061233A KR100463173B1 (en) 2002-10-08 2002-10-08 Method for preparing of color toner for non-magnetic mono-component system

Publications (2)

Publication Number Publication Date
KR20040032280A KR20040032280A (en) 2004-04-17
KR100463173B1 true KR100463173B1 (en) 2004-12-23

Family

ID=37332195

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0061233A KR100463173B1 (en) 2002-10-08 2002-10-08 Method for preparing of color toner for non-magnetic mono-component system

Country Status (1)

Country Link
KR (1) KR100463173B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08137122A (en) * 1994-11-04 1996-05-31 Mita Ind Co Ltd Nonmagnetic one-component developer
KR19980024543A (en) * 1996-09-12 1998-07-06 이데미쓰 유지 An electrophotographic carrier and an electrophotographic developer using the same
WO2001084248A1 (en) * 2000-04-11 2001-11-08 Ticona Gmbh Toner for electrostatically charged image development
KR20030060383A (en) * 2002-01-08 2003-07-16 주식회사 엘지화학 Method for preparing of color toner based nonmagnetic one component
KR20030080935A (en) * 2002-04-11 2003-10-17 주식회사 엘지화학 Method for preparing of non-magnetic monocomponent color toner having superior long term stability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08137122A (en) * 1994-11-04 1996-05-31 Mita Ind Co Ltd Nonmagnetic one-component developer
KR19980024543A (en) * 1996-09-12 1998-07-06 이데미쓰 유지 An electrophotographic carrier and an electrophotographic developer using the same
WO2001084248A1 (en) * 2000-04-11 2001-11-08 Ticona Gmbh Toner for electrostatically charged image development
KR20030060383A (en) * 2002-01-08 2003-07-16 주식회사 엘지화학 Method for preparing of color toner based nonmagnetic one component
KR20030080935A (en) * 2002-04-11 2003-10-17 주식회사 엘지화학 Method for preparing of non-magnetic monocomponent color toner having superior long term stability

Also Published As

Publication number Publication date
KR20040032280A (en) 2004-04-17

Similar Documents

Publication Publication Date Title
US7374846B2 (en) Method for preparing of non-magnetic monocomponent color toner having superior long term stability
JP4125777B2 (en) Non-magnetic one-component color toner capable of improving printing quality and method for producing the same
KR100657415B1 (en) Color toner having low contamination of charging elements
KR20090130769A (en) Surface modified non-magnetic mono-component color toner with low background contamination and excellent transfer efficiency
JP2013122499A (en) Toner for nonmagnetic electrostatic charge image developing and manufacturing method thereof
KR100446652B1 (en) Method for preparing of color toner based nonmagnetic one component
KR100713780B1 (en) Color toner for non-magnetic mono-component system for increasing printing quality and a method for preparing the same
JP2003255606A (en) Method for manufacturing white toner
JP3981135B2 (en) Non-magnetic one-component color toner and method for producing the same
CN101592879B (en) Toner and manufacture method thereof
KR100463173B1 (en) Method for preparing of color toner for non-magnetic mono-component system
KR100635287B1 (en) Color toner based nonmagnetic one component and method for preparing thereof
KR100409080B1 (en) Toner composition having high transfer efficiency and a method for preparing the same
KR101243715B1 (en) Non-magnetic color toner of one-component with long-time stability and method of preparation for the same
KR100635286B1 (en) Non-magnetic monocomponent toner having excellent developing property at low temperature condition
KR100409078B1 (en) Two-component system color toner composition and a method for preparing the same
JPH11327195A (en) Electrostatic image developing toner
KR100713779B1 (en) Color toner for non-magnetic mono-component system having excellent gradation and a method for preparing the same
KR101184965B1 (en) Mothod for manufacturing surface modified non-magnetic mono-component color toner with low background contamination and excellent transfer efficiency
JPH09319148A (en) Electrophotographic toner, its production and image forming method
JP2003223017A (en) Method of manufacturing toner
JPH1020545A (en) Electrophotographic developer, its production and image forming method using that
JPH0895291A (en) Electrophotographic toner
JPH0683114A (en) Powder toner
JPH0869121A (en) Toner for electrophotograph

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100929

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee