KR100461112B1 - High Performance, Low precious metal loading Pd only Three way Catalyst - Google Patents

High Performance, Low precious metal loading Pd only Three way Catalyst Download PDF

Info

Publication number
KR100461112B1
KR100461112B1 KR10-2002-0029619A KR20020029619A KR100461112B1 KR 100461112 B1 KR100461112 B1 KR 100461112B1 KR 20020029619 A KR20020029619 A KR 20020029619A KR 100461112 B1 KR100461112 B1 KR 100461112B1
Authority
KR
South Korea
Prior art keywords
palladium
oxide
catalyst
rhodium
cerium
Prior art date
Application number
KR10-2002-0029619A
Other languages
Korean (ko)
Other versions
KR20030091537A (en
Inventor
여권구
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR10-2002-0029619A priority Critical patent/KR100461112B1/en
Publication of KR20030091537A publication Critical patent/KR20030091537A/en
Application granted granted Critical
Publication of KR100461112B1 publication Critical patent/KR100461112B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing

Abstract

본 발명은 우수한 질소산화물(NOx) 제거능 및 우수한 내열성을 갖는 팔라듐(Pd)-로듐(Rh) 삼원촉매의 제조방법에 관한 것으로서, 더욱 상세하게는 팔라듐-로듐 삼원촉매를 제조하는 방법에 있어서, 종래 산화세륨(CeO2)만을 이용하는 방법 대신 산화세륨(CeO2) 및 세륨-지르코늄 복합산화물[(Ce·Zr)O2]을 함께 이용하고, 그 다음 산화프라세오디미움(PrO2)을 첨가하는 공정을 사용하고, 탄화수소, 일산화탄소의 산화성능 향상과 질소산화물의 제거 성능을 향상시키기 위하여 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3또는 (LaSr)(FeCo)O3를 추가로 사용함으로써, 배기가스 정화효과가 우수하고 기존 촉매에 비해 저 귀금속 함량을 나타내어 성능이 매우 우수한 팔라듐-로듐 삼원촉매의 제조방법에 관한 것이다.The present invention relates to a method for preparing a palladium (Pd)-rhodium (Rh) three-way catalyst having excellent nitrogen oxide (NOx) removal ability and excellent heat resistance, and more particularly in the method for producing a palladium-rhodium three-way catalyst, Instead of using only cerium oxide (CeO 2 ), cerium oxide (CeO 2 ) and cerium-zirconium composite oxide [(Ce.Zr) O 2 ] are used together, followed by addition of praseodymium oxide (PrO 2 ). a (LaCe) using the process, the metal oxide in order to improve the hydrocarbon, improved oxidation performance of the carbon monoxide and the removing performance of nitrogen oxides (perovskite) (FeCo) O 3 or (LaSr) (FeCo) O 3 adding The present invention relates to a method for preparing a palladium-rhodium tertiary catalyst which has excellent exhaust gas purification effect and exhibits a low noble metal content compared to a conventional catalyst, and has excellent performance.

Description

저팔라듐 함량의 고성능 팔라듐-로듐 삼원촉매의 제조방법{High Performance, Low precious metal loading Pd only Three way Catalyst}Manufacturing method of high performance palladium-rhodium terpolymer with low palladium content {High Performance, Low precious metal loading Pd only Three way Catalyst}

본 발명은 우수한 질소산화물(NOx) 제거능 및 우수한 내열성을 갖는 팔라듐(Pd)-로듐(Rh) 삼원촉매의 제조방법에 관한 것으로서, 더욱 상세하게는 팔라듐-로듐 삼원촉매를 제조하는 방법에 있어서, 종래 산화세륨(CeO2)만을 이용하는 방법 대신 산화세륨(CeO2) 및 세륨-지르코늄 복합산화물[(Ce·Zr)O2]을 함께 이용하고, 그 다음 산화프라세오디미움(PrO2)을 첨가하는 공정을 사용하고, 탄화수소, 일산화탄소의 산화성능 향상과 질소산화물의 제거 성능을 향상시키기 위하여 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3또는 (LaSr)(FeCo)O3를 추가로 사용함으로써, 배기가스 정화효과가 우수하고 기존 촉매에 비해 저 귀금속 함량을 나타내어 성능이 매우 우수한 팔라듐-로듐 삼원촉매의 제조방법에 관한 것이다.The present invention relates to a method for preparing a palladium (Pd)-rhodium (Rh) three-way catalyst having excellent nitrogen oxide (NOx) removal ability and excellent heat resistance, and more particularly in the method for producing a palladium-rhodium three-way catalyst, Instead of using only cerium oxide (CeO 2 ), cerium oxide (CeO 2 ) and cerium-zirconium composite oxide [(Ce.Zr) O 2 ] are used together, followed by addition of praseodymium oxide (PrO 2 ). a (LaCe) using the process, the metal oxide in order to improve the hydrocarbon, improved oxidation performance of the carbon monoxide and the removing performance of nitrogen oxides (perovskite) (FeCo) O 3 or (LaSr) (FeCo) O 3 adding The present invention relates to a method for preparing a palladium-rhodium tertiary catalyst which has excellent exhaust gas purification effect and exhibits a low noble metal content compared to a conventional catalyst, and has excellent performance.

일반적으로 삼원촉매(three way catalyst)는 배기가스의 유해성분인 탄화수소계 화합물, 일산화탄소 및 질소산화물(NOx)과 동시에 반응하여 이들 화합물을 제거시키는 촉매로서, 종래에는 Pt/Rh, Pd/Rh, Pt/Pd/Rh 등을 사용하여 왔다.In general, a three way catalyst is a catalyst that removes these compounds by simultaneously reacting with hydrocarbon-based compounds, carbon monoxide, and nitrogen oxides (NOx), which are harmful components of the exhaust gas, and conventionally, Pt / Rh, Pd / Rh, and Pt. / Pd / Rh and the like have been used.

팔라듐 용액을 알루미나에 함침한 후 환원시키고 여기에 산화세륨 및 혼합용액을 첨가한 다음 pH를 조절하여 반응시키고 밀링하여 촉매물질 코팅슬러리(coating slurry)를 얻은 후 여기에 세라믹모노리스(ceramic monolith)를 담가서 코팅하고 건조 및 소성하여 팔라듐 로듐 삼원촉매를 제조한다. 여기에서 코팅은 성능 최대화를 위하여 2중층 구조를 한다.After impregnating the palladium solution with alumina, reducing it, adding cerium oxide and mixed solution to it, reacting by adjusting the pH and milling to obtain a coating slurry of catalyst material, and then immersing ceramic monolith in it. Coating, drying and firing to prepare a palladium rhodium terpolymer. The coating here is double layered for maximum performance.

강화되는 배기가스규제의 대응에 있어서 촉매의 고성능화가 요구되고, 고내구성이 요구되면서 촉매재로서의 귀금속 사용량이 많아지는 추세에 있으므로 촉매의 가격이 계속적으로 상승하는 문제가 되고 있다.In response to tightened exhaust gas regulations, high performance of catalysts is required, and the use of precious metals as catalyst materials is on the rise as high durability is required, and thus the price of catalysts is continuously increasing.

이에, 본 발명자는 종래 삼원촉매의 질소산화물 제거능을 보다 향상시키고 내열성을 증대시키기 위하여 연구 노력한 결과, 벌크 산화세륨(CeO2) 및 세륨-지르코늄 복합산화물[(Ce·Zr)O2]을 함께 이용하고 산화프라세오디미움(PrO2)을 첨가하면 고효율로 질소산화물을 제거할 수 있고 내열성이 증대됨과 동시에 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3또는 (LaSr)(FeCo)O3를 추가로 사용함에 따라 팔라듐과 로듐의 함량을 줄이면서 성능을 향상시킬 수 있음을 확인하여 본 발명을 완성하였다.Accordingly, the present inventors have made efforts to improve the nitrogen oxide removal ability of the three-way catalyst and to increase the heat resistance. As a result, the bulk cerium oxide (CeO 2 ) and the cerium-zirconium composite oxide [(Ce.Zr) O 2 ] are used together. The addition of praseodymium oxide (PrO 2 ) can remove nitrogen oxides with high efficiency and increase the heat resistance and at the same time (LaCe (FeCo) O 3 or (LaSr) (FeCo), which is a metal oxide (perovskite) By further using) O 3 It was confirmed that the performance can be improved while reducing the content of palladium and rhodium has been completed the present invention.

따라서, 본 발명은 팔라듐과 로듐을 적게 사용하여도 질소산화물의 정화효과가 특히 우수하고 팔라듐과 로듐의 함량을 대폭 줄인 삼원촉매를 제조하는 방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for preparing a three-way catalyst having a particularly excellent purifying effect of nitrogen oxides and a significant reduction in the content of palladium and rhodium even when less palladium and rhodium are used.

본 발명은 a) 팔라듐 용액을 알루미나에 함침하고 열고정화법에 의해 환원시키는 단계; b) 로듐의 용액을 알루미나에 함침한 후 환원제를 이용하여 환원시키는 단계; c) 상기 환원 결과물을 산화세륨과 반응시켜 촉매 슬러리를 얻는 단계; 및 d) 상기 촉매 슬러리를 세라믹모노리스 담체에 코팅하여 팔라듐 삼원촉매를 제조하는 단계로 이루어진 팔라듐-로듐 삼원촉매의 제조방법에 있어서,The present invention comprises the steps of: a) impregnating a palladium solution into alumina and reducing by thermal purification; b) impregnating a solution of rhodium into alumina and then reducing using a reducing agent; c) reacting the reduction product with cerium oxide to obtain a catalyst slurry; And d) coating the catalyst slurry on a ceramic monolith carrier to prepare a palladium ternary catalyst.

상기 c) 단계의 촉매 슬러리는 산화세륨(CeO2) 및 세륨-지르코늄 복합산화물[(Ce·Zr)O2]을 전체 담체 겉보기 부피에 대하여 30 ∼ 40 g/ℓ 첨가한 후, 산화프라세오디미움을 전체 담체 겉보기 부피에 대하여 5 ∼ 7 g/ℓ 첨가하고 팔라듐과 로듐 혼합용액을 첨가하여 1차 촉매 슬러리를 제조하고,The catalyst slurry of step c) is added cerium oxide (CeO 2 ) and cerium-zirconium composite oxide [(Ce.Zr) O 2 ] 30 to 40 g / L with respect to the total carrier apparent volume, then Praseody oxide The primary catalyst slurry was prepared by adding 5-7 g / l of hate to the total carrier apparent volume and adding a palladium and rhodium mixed solution.

상기에서 얻은 슬러리에 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3이나 (LaSr)(FeCo)O3를 추가로 40 ∼ 45 g/ℓ 첨가하여 제조하는 저팔라듐 함량의 고성능 팔라듐-로듐 삼원촉매의 제조방법을 그 특징으로 한다.To the slurry obtained in the metal oxide (a perovskite) of (LaCe) (FeCo) O 3 or (LaSr) high performance palladium of the low palladium content of manufacturing in addition to the addition of 40 ~ 45 g / ℓ of (FeCo) O 3 It is characterized by the manufacturing method of a rhodium ternary catalyst.

이하, 본 발명을 더욱 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

본 발명은 자동차 배기가스의 정화효과가 우수하고 그 중에서도 질소산화물의 제거효과가 탁월하며 내열성이 향상된 팔라듐촉매제를 사용하고 보다 활성성능을 향상시키기위해 저함량의 로듐을 추가로 사용한 저 함량의 팔라듐-로듐 삼원촉매의 제조방법에 관한 것이다.The present invention uses a palladium catalyst which is excellent in purifying automobile exhaust gas, among other things, excellent in removing nitrogen oxides and having improved heat resistance, and using a low content of palladium-rhodium by using a low content of rhodium to further improve the active performance. It relates to a method for producing a three-way catalyst.

본 발명에 따른 질소산화물 제거능 및 내열성이 우수한 팔라듐 삼원촉매의 제조방법을 단계별로 더욱 구체적으로 설명하면 다음과 같다.Hereinafter, the method of preparing the palladium three-way catalyst having excellent nitrogen oxide removal ability and heat resistance according to the present invention will be described in more detail as follows.

제1 단계는 팔라듐 용액을 알루미나(Al2O3)에 함침시킨 다음 이를 환원시키는 공정을 수행한다. 환원방법은 열고정화법(Thermal Fixation)을 이용하여 촉매의 저온활성 성능을 향상시킨다.In the first step, a palladium solution is impregnated with alumina (Al 2 O 3 ) and then reduced. The reduction method improves the low temperature activity of the catalyst using a thermal fixation method.

제2 단계는 로듐의 용액을 알루미나(Al2O3)에 함침시킨 다음 이를 환원시키는 공정을 수행한다. 환원방법은 메틸에틸아민을 이용하는 것이 바람직하나, 이에 한정되는 것은 아니다.In the second step, a solution of rhodium is impregnated into alumina (Al 2 O 3 ), and then a process of reducing it is performed. It is preferable to use methyl ethyl amine as the reduction method, but is not limited thereto.

특히, 제3 단계는 벌크(Bulk)의 산화세륨(CeO2) 및 세륨-지르코늄 복합산화물[(Ce·Zr)O2]을 첨가하고 산화프라세오디미움(PrO2)을 첨가한 후 상기 팔라듐 및 로듐 혼합용액을 첨가하여 1차 슬러리를 제조하고, 이후 추가로 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3과 (LaSr)(FeCo)O3를 사용하여 최종 슬러리를 제조함으로써 질소산화물의 제거 성능을 향상시킬 수 있다.In particular, the third step is the addition of bulk cerium oxide (CeO 2 ) and cerium-zirconium complex oxide [(Ce.Zr) O 2 ] and the addition of praseodymium (PrO 2 ) to the palladium and preparing a primary slurry by the addition of the rhodium mixture, adding a metal oxide, since (a perovskite) of (LaCe) (FeCo) O 3 and (LaSr) producing a final slurry by use of a (FeCo) O 3 As a result, the removal performance of nitrogen oxides can be improved.

즉, 본 발명은 CeO2및 (Ce·Zr)O2를 혼합 첨가하여 촉매의 내열성을 향상시킬 수 있다. 상기 CeO2및 (Ce·Zr)O2의 혼합비율은 15 : 85 ∼ 30 : 70의 비율로 사용하며, 그 비율이 상기 범위를 벗어나면 내열성 향상에 기여하는 정도가 미흡한 문제가 있어 바람직하지 못하다. 상기 CeO2및 (Ce·Zr)O2의 함량은 전체 담체의 겉보기 부피에 대하여 30 ∼ 40 g/ℓ로 사용하는 바, 그 함량이 상기 범위를 벗어나면 향상효과가 적다.That is, in the present invention, CeO 2 and (Ce.Zr) O 2 may be mixed and added to improve the heat resistance of the catalyst. The mixing ratio of CeO 2 and (Ce.Zr) O 2 is used in a ratio of 15:85 to 30:70. If the ratio is out of the above range, there is a problem that the degree of contribution to improving heat resistance is insufficient, which is not preferable. . The content of CeO 2 and (Ce.Zr) O 2 is used in an amount of 30 to 40 g / l based on the apparent volume of the entire carrier. If the content is out of the above range, there is little improvement effect.

상기 PrO2는 분말상태로 사용하며, 이는 촉매상에서 Ce을 안정화시킴으로써 CO의 흡착과 산소저장능력을 조절하여 질소산화물을 효과적으로 제거하는 역할을 한다. PrO2의 함량은 전체 담체의 겉보기 부피에 대하여 5 ∼ 7 g/ℓ 사용하는 것이 바람직하며, 그 함량이 상기 범위를 벗어나면 향상효과가 적고, 가격이 높은 문제가 있다.The PrO 2 is used in a powder state, which stabilizes Ce on a catalyst, thereby controlling CO adsorption and oxygen storage ability to effectively remove nitrogen oxides. The content of PrO 2 is preferably used in an amount of 5 to 7 g / l based on the apparent volume of the entire carrier. If the content is out of the above range, the PrO 2 content is less enhanced and there is a problem of high price.

상기 혼합용액은 산화바륨, 산화란탄, 아세트산 및 물을 혼합한 것으로, 산화바륨은 전체 담체의 겉보기 부피에 대하여 5 ∼ 6 g/ℓ, 산화란탄은 전체 담체의 겉보기 부피에 대하여 1 ∼ 2 g/ℓ를 첨가하는 것이 알루미나의 내열성, 산화세륨의 특성 향상을 위하여 바람직하다. 또한, 아세트산은 전체 담체의 겉보기 부피에 대하여 23.5 ∼ 33.5 g/ℓ로 사용하는 것이 pH의 조절에 있어서 바람직하며, pH는 4.5 이하인 것이 다음 단계의 코팅을 위한 촉매 슬러리 제조에 있어서 점도의 조절을 위하여 바람직하다.The mixed solution is a mixture of barium oxide, lanthanum oxide, acetic acid and water, and barium oxide is 5 to 6 g / l based on the apparent volume of the entire carrier, and lanthanum oxide is 1 to 2 g / relative to the apparent volume of the entire carrier. It is preferable to add L to improve the heat resistance of alumina and the properties of cerium oxide. In addition, it is preferable to use acetic acid at 23.5 to 33.5 g / l based on the total volume of the whole carrier, and the pH is 4.5 or less for the control of the viscosity in the preparation of the catalyst slurry for the coating of the next step. desirable.

그 다음, 상기 혼합물을 볼밀(Ball mill) 방법으로 슬러리 반응 및 입도를 조절하며 밀링하여 입자크기 7 ㎛ 이하인 것이 전체 입자중 90 % 이상이 되도록 미분한다. 이때, 입자크기가 상기 범위를 벗어나도록 밀링하는 경우 활성의 저감 및 내구성이 저감되는 문제가 있다. 본 발명은 상기 밀링 공정을 수행하여 고형분이 30 ∼ 50 중량 % 이고 점도가 200 ∼ 400 cpsi인 1차 촉매 슬러리를 얻을 수 있다.Then, the mixture is milled by controlling the slurry reaction and particle size by a ball mill method, so that the particle size of 7 μm or less is 90% or more of the total particles. At this time, when milling the particle size outside the above range there is a problem that the reduction in activity and durability is reduced. The present invention may be carried out by the milling process to obtain a primary catalyst slurry having a solid content of 30 to 50% by weight and a viscosity of 200 to 400 cpsi.

이후, 본 발명에서는 상기한 바와 같이, 1차 슬러리에 질소산화물의 제거 성능을 향상시키기 위하여 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3과 (LaSr)(FeCo)O3를 추가로 혼합하여 사용하는 특징이 있다. 상기 (LaCe)(FeCo)O3또는 (LaSr)(FeCo)O3는 함량이 40 ∼ 45 g/ℓ로 사용하여 최종 슬러리를 제조한다. 마지막 단계는 상기 촉매 슬러리에 세라믹 모노리스 담체를 담가서 코팅한 후 건조하고 소성하는 공정을 수행한다.Since, in the present invention, a manner, the first slurry the metal oxide in order to improve the removal performance of the nitrogen oxide in (a perovskite) of (LaCe) (FeCo) O 3 and (LaSr) (FeCo) O 3 described above, In addition, there is a characteristic to use by mixing. The (LaCe) (FeCo) O 3 or (LaSr) (FeCo) O 3 was prepared the final slurry amount is used as a 40 ~ 45 g / ℓ. The last step is to dip the ceramic monolith carrier in the catalyst slurry to coat, dry and calcining.

본 발명의 코팅은 세그레게이션 효과(segregation effect)를 이용한 단일코팅으로서, 이는 일반적으로 임의의 성분을 원하는 위치에 두기 위하여 주로 2중 코팅을 하고 있으나, 서로 뭉치는 특성을 갖는 화합물 상태를 이용하여 필요부분에 성분을 위치시킴으로써 단일코팅의 효율을 극대화시킬 수 있으며, 촉매성능을 향상시킬 수 있는 효과이다. 다시말해, 본 발명의 코팅시에 각 성분의 투입방식 및 성분의 적정한 출발물질의 선정으로 딥핑(dipping)형태로도 가능한 원하는 성분을 원하는 위치에 코팅한다. 또한, 상기 건조는 건조로에서 150 ℃ 온도로 2시간 동안 수행되고, 소성은 전기로에서 450 ∼ 550 ℃ 온도로 4시간 동안 실시한다. 이때, 건조 및 소성조건이 상기 범위를 벗어나면 코팅층의 크랙발생 및 유해한 화합물이 형성되는 문제가 있다. 따라서, 이상과 같은 본 발명에 따른 삼원 촉매의 제조방법은 질소산화물 제거능이 우수하고 내열성이 우수하며 귀금속의 양을 줄일수 있으며, 그 중에서도 기존의 팔라듐 및 로듐 함량의 70 ∼ 80% 수준으로 우수한 성능을 나타낸다. 따라서, 상기 방법으로 제조된 삼원촉매는 자동차 배기가스 정화, 디젤촉매 및 산업용 촉매 등에 폭넓게 사용될 수 있다.The coating of the present invention is a single coating using a segregation effect, which is generally a double coating to place any component in a desired position, but using a compound state having a property of agglomeration with each other By locating the components in the required portion can maximize the efficiency of the single coating, it is an effect that can improve the catalytic performance. In other words, in the coating of the present invention, the desired component, which can be in the form of dipping, is coated at a desired position by the method of adding each component and selecting an appropriate starting material of the component. In addition, the drying is carried out for 2 hours at 150 ℃ temperature in a drying furnace, firing is carried out for 4 hours at 450 ~ 550 ℃ temperature in an electric furnace. At this time, when the drying and firing conditions are out of the above range, there is a problem that cracks and harmful compounds are formed in the coating layer. Therefore, the three-way catalyst production method according to the present invention as described above is excellent in nitrogen oxide removal ability, excellent heat resistance and can reduce the amount of precious metals, and among them, the excellent performance of 70 to 80% of the existing palladium and rhodium content Indicates. Therefore, the three-way catalyst prepared by the above method can be widely used in automobile exhaust purification, diesel catalyst and industrial catalyst.

이하, 본 발명을 실시예에 의거하여 더욱 상세하게 설명하겠는바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by Examples.

실시예Example

팔라듐과 로듐이 7:1 비율, 3.5 g/l의 촉매를 제조하였다.A catalyst having a palladium and rhodium 7: 1 ratio and 3.5 g / l was prepared.

즉, 팔라듐 3.06 g이 들어있는 용액을 알루미나 87.5 g에 함침시킨 다음 500℃조건에서 3시간 열고정화 처리하였고, 로듐을 0.44 g이 들어있는 용액을 알루미나 12.5 g에 함침시킨 다음 메틸에틸아민을 적가하여 고정화를 시켰다. 그 다음, CeO27.5 g 및 (Ce·Zr)O222.5 g를 혼합하여 첨가하고 PrO2를 6.0 g을 넣었다. 또한, 산화바륨 5.6 g, 산화란탄 1.33 g, 아세트산 27.0 g 및 물 375 ㎖를 혼합한 용액을 넣고, 아세트산을 사용하여 pH를 4.2로 맞추었다. 그리고, 볼밀(Ball mill)방법으로 입자크기 9㎛ 이하로 한 후 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3를 45 g/ℓ 분말 형태로 추가 투입한 후 최종적으로 입자크기를 7㎛ 인 것이 전체 입자중 94 %가 되도록 밀링하여 고형분이 40 %이고 점도가 300 cpsi인 촉매 슬러리를 얻었다. 여기에, 세라믹 모노리스 담체를 담가서 코팅한 후 건조로에서 150 ℃ 온도로 2시간 동안 건조하고 전기로에서 450 ∼ 550 ℃ 온도로4시간 동안 소성하였다.That is, a solution containing 3.06 g of palladium was impregnated in 87.5 g of alumina, and then thermally purified at 500 ° C. for 3 hours. A solution containing 0.44 g of rhodium was impregnated in 12.5 g of alumina, and then methylethylamine was added dropwise thereto. Immobilization was performed. Then, 7.5 g of CeO 2 and 22.5 g of (Ce.Zr) O 2 were mixed and added, and 6.0 g of PrO 2 was added thereto. Furthermore, the solution which mixed 5.6 g of barium oxide, 1.33 g of lanthanum oxide, 27.0 g of acetic acid, and 375 ml of water was put, and pH was adjusted to 4.2 using acetic acid. After the particle size was 9 μm or less by a ball mill method, additionally added (LaCe (FeCo) O 3 ), a metal oxide (perovskite), in the form of 45 g / L powder, and finally, the particle size The catalyst slurry was milled so that 7 µm was 94% of the total particles, and the solid content was 40% and the viscosity was 300 cpsi. Here, the ceramic monolith carrier was immersed and coated, dried at 150 ° C. for 2 hours in a drying furnace, and fired at 450-550 ° C. for 4 hours in an electric furnace.

비교예Comparative example

기존의 팔라듐과 로듐이 7:1 비율로 함량이 5.0g/l의 촉매를 사용하였다.Conventional palladium and rhodium were used in a 7: 1 ratio of 5.0g / l catalyst.

상기 실시예 및 비교예의 촉매를 비교 시험하여 그 결과를 다음 표 1에 나타내었다Comparative tests of the catalysts of the Examples and Comparative Examples are shown in Table 1 below.

비교예Comparative example 실시예Example 저온활성온도(℃)Low temperature active temperature (℃) 탄화수소hydrocarbon 213213 211211 COCO 212212 212212 NOX NO X 211211 213213 삼원특성(%)Ternary characteristics (%) 탄화수소hydrocarbon 9999 9999 COCO 9898 9797 NOX NO X 9999 9999 저온활성온도*(℃)Low temperature active temperature * (℃) 탄화수소hydrocarbon 279279 280280 COCO 278278 270270 NOX NO X 271271 270270 삼원특성*(%)Ternary characteristics * (%) 탄화수소hydrocarbon 9797 9898 COCO 9595 9595 NOX NO X 9292 9191 *; 950 ℃에이징삼원특성은 λ= 0.97 ∼ 1.01 평균치*; Aging ternary characteristics at 950 ° C are λ = 0.97 to 1.01

상기 표 1에서 보면, 저온활성온도는 50 % 정화되는 온도로서, 상기 측정된 온도가 낮을 수록 탄화수소, 일산화탄소, 질소산화물의 정화효능이 우수함을 의미하며, 삼원특성은 3가지 성분의 제거능력을 나타내는 것으로 높을수록 좋은 특성을 나타낸다. 또한, 950 ℃ 에이징은 950 ℃ , 대기중에서 전기로 분위기에서 140시간 실시하였고, 여기서, 저온활성 온도는 실시예를 비교예에 비교하면 거의 동등수준으로 나타나며, 이로써 본 발명의 정화효능이 낮은 함량의 팔라듐-로듐의 함량임에도 불구하고 높은 것을 알 수 있었다. 또한, 삼원특성은 본 발명이 동등 이상의 효과를 보이는 것을 확인하였다.In Table 1, the low temperature activity temperature is 50% of the purification temperature, the lower the measured temperature means that the higher the purification efficiency of hydrocarbon, carbon monoxide, nitrogen oxide, the three-way characteristic indicates the ability to remove three components The higher the value, the better the property. In addition, 950 ℃ aging was carried out at 950 ℃, 140 hours in an atmosphere of an electric furnace in the air, where the low temperature activation temperature is shown to be almost the same level compared to the comparative example, whereby the purification efficiency of the present invention is low It was found to be high despite the content of palladium-rhodium. In addition, the three-way characteristic confirmed that the present invention exhibits an equivalent or more effect.

상술한 바와 같이, 본 발명의 팔라듐-로듐 삼원촉매 제조방법은 낮은 팔라듐-로듐 함량에서도 촉매성능을 보다 향상시키고 내열성을 강화하여 각종 정화용 촉매 및 산업용 촉매 등으로 활용할 수 있다.As described above, the palladium-rhodium three-way catalyst production method of the present invention can be utilized as various purification catalysts and industrial catalysts by improving the catalytic performance and enhancing heat resistance even at a low palladium-rhodium content.

Claims (2)

a) 팔라듐 용액을 알루미나에 함침하고 열고정화법에 의해 환원시키는 단계;a) impregnating the palladium solution into alumina and reducing by thermosetting; b) 로듐의 용액을 알루미나에 함침한 후 환원제를 이용하여 환원시키는 단계;b) impregnating a solution of rhodium into alumina and then reducing using a reducing agent; c) 상기 환원 결과물을 산화세륨과 반응시켜 촉매 슬러리를 얻는 단계; 및c) reacting the reduction product with cerium oxide to obtain a catalyst slurry; And d) 상기 촉매 슬러리를 세라믹모노리스 담체에 코팅하여 팔라듐 삼원촉매를 제조하는 단계로 이루어진 팔라듐-로듐 삼원촉매의 제조방법에 있어서,d) coating the catalyst slurry on a ceramic monolith carrier to produce a palladium ternary catalyst, the method of producing a palladium-rhodium ternary catalyst, 상기 c) 단계의 촉매 슬러리는 산화세륨(CeO2) 및 세륨-지르코늄 복합산화물[(Ce·Zr)O2]을 전체 담체 겉보기 부피에 대하여 30 ∼ 40 g/ℓ 첨가한 후, 산화프라세오디미움을 전체 담체 겉보기 부피에 대하여 5 ∼ 7 g/ℓ 첨가하고 팔라듐과 로듐 혼합용액을 첨가하여 1차 촉매 슬러리를 제조하고,The catalyst slurry of step c) is added cerium oxide (CeO 2 ) and cerium-zirconium composite oxide [(Ce.Zr) O 2 ] 30 to 40 g / L with respect to the total carrier apparent volume, then Praseody oxide The primary catalyst slurry was prepared by adding 5-7 g / l of hate to the total carrier apparent volume and adding a palladium and rhodium mixed solution. 상기에서 얻은 슬러리에 금속산화물(페로브스카이트)인 (LaCe)(FeCo)O3또는 (LaSr)(FeCo)O3를 추가로 40 ∼ 45 g/ℓ 첨가하여 제조하는 것을 특징으로 하는 저팔라듐 함량의 고성능 팔라듐-로듐 삼원촉매의 제조방법.To the slurry obtained in the metal oxide (a perovskite) of (LaCe) (FeCo) O 3 or (LaSr) (FeCo) O 3 me characterized in that the manufacture in addition to the addition of 40 ~ 45 g / ℓ of palladium Method for producing a high performance palladium-rhodium tertiary catalyst in a content. 제 1 항에 있어서, 상기 산화세륨 및 세륨-지르코늄 복합산화물은 혼합비율이 15 : 85 ∼ 30 : 70인 것을 특징으로 하는 팔라듐-로듐 삼원촉매의 제조방법.The method of claim 1, wherein the cerium oxide and cerium-zirconium composite oxide have a mixing ratio of 15:85 to 30:70.
KR10-2002-0029619A 2002-05-28 2002-05-28 High Performance, Low precious metal loading Pd only Three way Catalyst KR100461112B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0029619A KR100461112B1 (en) 2002-05-28 2002-05-28 High Performance, Low precious metal loading Pd only Three way Catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0029619A KR100461112B1 (en) 2002-05-28 2002-05-28 High Performance, Low precious metal loading Pd only Three way Catalyst

Publications (2)

Publication Number Publication Date
KR20030091537A KR20030091537A (en) 2003-12-03
KR100461112B1 true KR100461112B1 (en) 2004-12-13

Family

ID=32384712

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0029619A KR100461112B1 (en) 2002-05-28 2002-05-28 High Performance, Low precious metal loading Pd only Three way Catalyst

Country Status (1)

Country Link
KR (1) KR100461112B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1916029T3 (en) 2006-10-23 2014-11-28 Haldor Topsoe As Method and apparatus for the purifiction of exhaust gas from a compression ignition engine
CN104785257B (en) * 2015-04-02 2018-07-03 无锡威孚环保催化剂有限公司 A kind of single coating three-way catalyst and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184876A (en) * 1992-01-10 1993-07-27 Nissan Motor Co Ltd Catalyst for purifying exhaust gas
JPH0663403A (en) * 1992-08-24 1994-03-08 Nissan Motor Co Ltd Exhaust gas cleaning catalyst
JP2001079403A (en) * 1999-09-14 2001-03-27 Daihatsu Motor Co Ltd Exhaust gas cleaning catalyst
JP2001269578A (en) * 2000-01-19 2001-10-02 Toyota Motor Corp Exhaust gas cleaning catalyst
KR20030008713A (en) * 2001-07-19 2003-01-29 현대자동차주식회사 High Performance Pd only Three way Catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184876A (en) * 1992-01-10 1993-07-27 Nissan Motor Co Ltd Catalyst for purifying exhaust gas
JPH0663403A (en) * 1992-08-24 1994-03-08 Nissan Motor Co Ltd Exhaust gas cleaning catalyst
JP2001079403A (en) * 1999-09-14 2001-03-27 Daihatsu Motor Co Ltd Exhaust gas cleaning catalyst
JP2001269578A (en) * 2000-01-19 2001-10-02 Toyota Motor Corp Exhaust gas cleaning catalyst
KR20030008713A (en) * 2001-07-19 2003-01-29 현대자동차주식회사 High Performance Pd only Three way Catalyst

Also Published As

Publication number Publication date
KR20030091537A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
KR100527943B1 (en) Method for manufacturing double layer coated Pd only three way catalyst
JP4148997B2 (en) Method for producing ternary conversion catalyst
JP5361855B2 (en) Palladium-rhodium single layer catalyst
EP2542339B1 (en) Carbon monoxide conversion catalyst
US5814576A (en) Catalyst for purifying exhaust gas and method of producing same
EP3730203B1 (en) Exhaust gas purification catalyst
EP3848564B1 (en) Catalyst
JPH05237390A (en) Catalyst for purification of exhaust gas
JPH01127044A (en) Catalyst for clarifying exhaust gas
US6043188A (en) Process for manufacturing palladium ternary catalyst
KR100410952B1 (en) High Performance Pd only Three way Catalyst
KR100494543B1 (en) Method for manufacturing low precious metal loaded Pt-Pd-Rh three way catalyst
KR100461112B1 (en) High Performance, Low precious metal loading Pd only Three way Catalyst
KR100535009B1 (en) Method for manufacturing double layer coated Pd only three way catalyst
KR100410942B1 (en) A process of preparing the High porous Pd only Three way Catalyst
KR100235029B1 (en) Preparation of pd-three way catalyst
KR100494542B1 (en) Method for manufacturing double layer coated Pd only three way catalyst
KR100384015B1 (en) Improved NOx conversion and thermal durable Pd only three way catalyst
KR100488853B1 (en) Method for manufacturing double layer coated Pd-Rh three way catalyst
KR100488779B1 (en) Method for manufacturing low precious metal loading Pd only three way catalyst
KR100410801B1 (en) High porous and HC removal Pd only Three way Catalyst
JP4303799B2 (en) Method for producing lean NOx purification catalyst
JP3314301B2 (en) Method for producing palladium (Pd) three-way catalyst
KR100384016B1 (en) High durable Pd-Rh three way catalyst for NOx reduction
EP4237141A1 (en) Novel tri-metal pgm catalysts for gasoline engine exhaust gas treatments

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121130

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20131129

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee