KR100453453B1 - Apparatus for treament of waste water containing nitrogen and phosphorus and treatment process using the same - Google Patents

Apparatus for treament of waste water containing nitrogen and phosphorus and treatment process using the same Download PDF

Info

Publication number
KR100453453B1
KR100453453B1 KR10-2000-0002228A KR20000002228A KR100453453B1 KR 100453453 B1 KR100453453 B1 KR 100453453B1 KR 20000002228 A KR20000002228 A KR 20000002228A KR 100453453 B1 KR100453453 B1 KR 100453453B1
Authority
KR
South Korea
Prior art keywords
tank
denitrification
oxygen
treated water
denitrification tank
Prior art date
Application number
KR10-2000-0002228A
Other languages
Korean (ko)
Other versions
KR20010075776A (en
Inventor
박종복
이원권
Original Assignee
삼성엔지니어링 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성엔지니어링 주식회사 filed Critical 삼성엔지니어링 주식회사
Priority to KR10-2000-0002228A priority Critical patent/KR100453453B1/en
Publication of KR20010075776A publication Critical patent/KR20010075776A/en
Application granted granted Critical
Publication of KR100453453B1 publication Critical patent/KR100453453B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B29/00Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents
    • B24B29/005Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents using brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B47/00Drives or gearings; Equipment therefor
    • B24B47/02Drives or gearings; Equipment therefor for performing a reciprocating movement of carriages or work- tables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B47/00Drives or gearings; Equipment therefor
    • B24B47/10Drives or gearings; Equipment therefor for rotating or reciprocating working-spindles carrying grinding wheels or workpieces
    • B24B47/12Drives or gearings; Equipment therefor for rotating or reciprocating working-spindles carrying grinding wheels or workpieces by mechanical gearing or electric power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C1/00Dry-docking of vessels or flying-boats
    • B63C1/08Graving docks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C5/00Equipment usable both on slipways and in dry docks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C9/00Life-saving in water

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

본 발명은 질소와 인을 포함하는 하폐수의 생물학적 처리를 위한 장치 및 이 장치를 이용하여 실시되는 하폐수의 처리방법에 관한 것이다. 본 발명은 전탈질조, 혐기조 및 선회류 방식으로 반복되는 탈질조와 산소조로 구성된 하폐수 처리장치 및 내부순환을 생략하거나 내부순환율을 현저히 감소시킬 수 있는 하폐수 처리방법을 제공한다.The present invention relates to an apparatus for biological treatment of wastewater containing nitrogen and phosphorus and a method for treating wastewater using the apparatus. The present invention provides a wastewater treatment apparatus composed of a denitrification tank and an oxygen tank repeated in a total denitrification tank, an anaerobic tank and a swirl flow method, and a wastewater treatment method capable of omitting internal circulation or significantly reducing the internal circulation rate.

Description

질소와 인을 함유하는 하폐수의 처리장치 및 그 장치를 이용한 처리방법{Apparatus for treament of waste water containing nitrogen and phosphorus and treatment process using the same}Apparatus for treament of waste water containing nitrogen and phosphorus and treatment process using the same}

본 발명은 질소와 인을 포함하는 하폐수의 생물학적 처리를 위한 장치 및 이 장치를 이용하여 실시되는 하폐수의 처리방법에 관한 것이다.The present invention relates to an apparatus for biological treatment of wastewater containing nitrogen and phosphorus and a method for treating wastewater using the apparatus.

하폐수내의 질소성분은 유기질소와 무기질소의 형태로 존재하며, 이들을 합하여 총 질소라 한다. 무기질소는 다시 암모니아성 질소와 질산성 질소(NOx)로 구분되며, 암모니아성 질소와 유기질소를 합하여 TKN(Total Kieldahl Nitrogen)이라 한다.Nitrogen components in sewage water exist in the form of organic nitrogen and inorganic nitrogen, which are called total nitrogen. Inorganic nitrogen is again classified into ammonia nitrogen and nitrate nitrogen (NOx), and ammonia nitrogen and organic nitrogen are called TKN (Total Kieldahl Nitrogen).

하폐수 중으로 유입되는 질소성분은 대부분 TKN 형태이며, 이들은 일반적으로 질산화(nitrification)와 탈질(denitrification)의 2단계 과정에 의한 생물학적 처리방법에 의하여 처리된다. 즉, 질산화 단계에서는 호기성인 질산화균에 의해 암모니아성 질소 및 유기질소가 질산성 질소로 전환되며, 탈질단계에서는 무산소 조건하에서 산소 대신에 질산성을 질소를 전자수용체로 사용하는 탈질산화 세균이 유기물을 산화시키고 질산성 질소는 질소 기체로 환원시켜 대기 중으로 방출시킨다.Most of the nitrogen components flowing into the sewage water are in the form of TKN, and they are generally treated by a biological treatment method by a two-step process of nitrification and denitrification. That is, in the nitrification step, ammonia nitrogen and organic nitrogen are converted to nitrate nitrogen by aerobic nitrification bacteria, and in the denitrification step, denitrification bacteria which use nitrogen as an electron acceptor instead of oxygen under anoxic conditions are used for organic matter. Oxidized and nitrate nitrogen is reduced to nitrogen gas and released into the atmosphere.

탈질 반응은 유기물이 있는 경우와 없는 경우로 구분할 수 있다. 유기물이 없는 경우를 내생 탈질반응(endogenous denitrofication)이라고 하며, 탈질 속도가 느려 긴 체류시간을 필요로 하는 반면, 유기물이 있는 경우는 탈질 속도가 매우 빠르기 때문에 체류시간을 짧게 할 수 있다. 유기물이 있는 경우에는 구체적인 탈질 속도는 유기물의 종류에 따라 달라질 수 있다.The denitrification reaction can be classified into the presence and absence of organic matter. The absence of organics is called endogenous denitrofication, and the denitrification rate is slow and requires a long residence time, while the presence of organics can be shortened because the denitrification rate is very fast. In the case of organic matter, the specific denitrification rate may vary depending on the type of organic matter.

한편, 유기물을 이용하는 미생물은 혐기성 상태에서 인을 방출한 후 유산소 상태에서 인을 과잉섭취하여 세포내 인 함량을 증가시킴으로써 하폐수내에 포함되어 있는 인을 제거한다. 특히, 혐기성 상태에서 미생물에 의한 인방출을 위해서는 질산성 질소의 농도가 매우 낮아야 하는데, 질산성 질소가 다량 존재하게 되면 유기물이 탈질 반응에 소모되어 미생물의 인방출 활동이 억제되기 때문이다.On the other hand, microorganisms using organic materials remove phosphorus contained in the wastewater by releasing phosphorus in anaerobic state and then ingesting phosphorus in aerobic state to increase intracellular phosphorus content. In particular, the phosphorus release by the microorganism in the anaerobic state should be very low concentration of nitrate nitrogen, because the presence of a large amount of nitrate nitrogen is consumed in the denitrification reaction to inhibit the phosphorus release activity of the microorganism.

따라서, TKN의 질산화 반응을 위해서는 용존산소가 충분히 존재하여야 하나, 탈질 반응 및 인방출 반응을 위해서는 용존산소가 없고 유기물이 충분히 있어야 하기 때문에, 하폐수 중에 존재하는 질소와 인을 동시에 제거하는데는 어려움이 따른다.Therefore, the dissolved oxygen must be sufficient for the nitrification of TKN, but there is no difficulty in removing nitrogen and phosphorus in the sewage at the same time because there is no dissolved oxygen and sufficient organic matter for denitrification and phosphorus release. .

또한, 탈질반응 및 인 제거반응에 관여하는 미생물은 에너지원으로 유기탄소원이 필요한 종속영양(heterotropic nutrition) 미생물이다. 이론적으로 1g의 질산성 질소를 제거하는데 필요한 유기물의 양은 2.89gCOD이고, 1g의 용해성 인을 제거하는데 필요한 유기물의 양은 40gCOD인 것으로 알려져 있다. 그러나, 국내 하폐수는 유입 유기물 농도가 낮기 때문에 질소와 인을 동시에 제거하는데 어려움이 있다.In addition, microorganisms involved in denitrification and phosphorus removal reactions are heterotropic nutritional microorganisms that require an organic carbon source as an energy source. Theoretically, the amount of organics required to remove 1 g of nitrate nitrogen is 2.89 g COD and the amount of organics required to remove 1 g of soluble phosphorus is 40 g COD. However, domestic wastewater has difficulty in removing nitrogen and phosphorus at the same time because the concentration of influent organic matter is low.

그리고, 지금까지 개발된 대부분의 공정들은 인을 제거하기 위해 유입수내에 존재하는 유기물을 일부 사용하고 나머지는 탈질반응에 사용하도록 고안되어져 있다. 탈질반응은 산소조에서 질산화된 하폐수를 탈질조로 순환시켜서 제거한다. 그러므로, 질소제거율은 탈질조에 유입되는 유기물과 산소조에서 탈질조로 순환되는 처리수의 비율에 따라 제거율이 달라진다. 즉, 질소제거율은 유기물이 제한요소가 아닌 공정에서는 내부 순환율에 비례한다. 질소제거율을 높이기 위해서 순환율이 증가되면 동력비가 증가하므로 처리장에서의 유지 관리비 상승과 초기 투자비가 증가하게 된다. 그러므로 가급적이면 내부순환율을 줄이는 하폐수처리 장치가 유리하다.In addition, most of the processes developed so far are designed to use some of the organic matter present in the influent to remove phosphorus and the rest for denitrification. The denitrification reaction removes the nitrified wastewater from the oxygen tank by circulating it into the denitrification tank. Therefore, the nitrogen removal rate is changed depending on the ratio of the organic matter flowing into the denitrification tank and the treated water circulated from the oxygen tank to the denitrification tank. In other words, the nitrogen removal rate is proportional to the internal circulation rate in processes where organic matter is not a limiting factor. If the circulation rate is increased to increase the nitrogen removal rate, the power cost increases, which increases the maintenance cost and initial investment in the treatment plant. Therefore, sewage treatment systems that reduce internal circulation rates are advantageous wherever possible.

하폐수내에 포함된 질소와 인을 생물학적으로 처리하기 위한 기존의 방법은 내부순환율이 최소 100 내지 300%까지 다양하다.Existing methods for biological treatment of nitrogen and phosphorus in sewage water vary in internal circulation rates of at least 100 to 300%.

구체적으로 예를 들면, 다이거(Daigger) 등의 미국특허 제4,867,883호에는 도 1에 도시된 바와 같은 장치를 통한 공정이 개시되어 있다.Specifically, for example, US Pat. No. 4,867,883 to Daigger et al. Discloses a process through an apparatus as shown in FIG.

1차 침전지를 거친 하폐수는 탈질조(102) 끝단과 혐기성 반응조를 연결하는 내부순환라인(102-1)을 통하여 순환되는 처리수와 함께 혐기성 반응조(101)로 유입된다. 혐기성 반응조(101)에서는 유입수내에 존재하는 유기물을 이용하여 미생물들이 인을 방출하는 반응이 일어나며, 용존산소가 없는 것을 조건으로 한다.The wastewater passing through the primary sedimentation basin is introduced into the anaerobic reactor 101 together with the treated water circulated through the internal circulation line 102-1 connecting the end of the denitrification tank 102 and the anaerobic reactor. In the anaerobic reactor 101, microorganisms release phosphorus by using organic materials present in the influent, and the condition is that there is no dissolved oxygen.

혐기조(101)에서 인방출반응을 거친 처리수는 침전조(104)와 탈질조(102)를 연결하는 슬러지순환라인(104-1)을 통하여 순환되는 슬러지 및 산소조(103)과 탈질조(102)를 연결하는 내부순환라인(103-1)을 통하여 순환되는 처리수와 함께 탈질조(102)로 유입된다. 탈질조(102)에서는 잔존 유기물을 이용하여 산소조(103)에서 순환된 처리수내에 존재하는 질산성 질소의 탈질반응이 일어난다. 탈질조(102)를 거친 하폐수는 산소조(103)로 유입되어 질산화 반응 및 인의 과잉섭취 반응이 진행되면서 잔존 유기물도 제거된다. 산소조(103)를 거친 하폐수는 침전조(104)에서 고액분리되어 상청수는 처리수로서 배출되고 침전된 슬러지의 일부는 슬러지순환라인(104-1)을 통하여 탈질조(102)로 순환되고, 나머지는 폐기된다. 이 특허에서는 산소조 및 탈질조에서 탈질조와 혐기조로의 내부순환율은 100 내지200%로 제시되어 있다.The treated water that has undergone the phosphate release reaction in the anaerobic tank 101 is sludge and oxygen tank 103 and denitrification tank circulated through the sludge circulation line 104-1 connecting the sedimentation tank 104 and the denitrification tank 102. ) Is introduced into the denitrification tank 102 together with the treated water circulated through the internal circulation line 103-1. In the denitrification tank 102, denitrification of nitrate nitrogen present in the treated water circulated in the oxygen tank 103 takes place using the remaining organic matter. The wastewater that passed through the denitrification tank 102 is introduced into the oxygen tank 103 to remove the remaining organic substances as the nitrification reaction and the excessive intake of phosphorus proceed. The wastewater passed through the oxygen tank 103 is solid-liquid separated in the settling tank 104 so that the supernatant water is discharged as treated water and a portion of the precipitated sludge is circulated to the denitrification tank 102 through the sludge circulation line 104-1. The rest is discarded. In this patent, the internal circulation rate from the oxygen tank and the denitrification tank to the denitrification tank and the anaerobic tank is set at 100 to 200%.

또한, 도 2는 스펙터(spector) 등의 미국특허 제4,056,465호에 개시된 하폐수 처리장치를 도시한 것이다. 스펙터의 특허가 다이거의 특허와 다른 점은 침전조(204)에서 슬러지순환라인(204-1)을 통해 순환되는 슬러지가 탈질조(202)가 아닌 혐기조(201)로 투입된다는 점과 탈질조(202)를 거친 하폐수의 일부를 혐기조(201)로 순환시키지 않는다는 점이다. 따라서 혐기조(201)에서는 질산성 질소와 용존산소가 모두 존재하지 않는 상태에서 인방출반응이 진행된다. 이 특허에서는 산소조에서 탈질조로의 내부 순환율이 100 내지 300%로 나타나 있다.FIG. 2 also shows the wastewater treatment apparatus disclosed in US Pat. No. 4,056,465 to Specter et al. Specter's patent differs from Diger's patent in that the sludge circulated through the sludge circulation line 204-1 in the settling tank 204 is introduced into the anaerobic tank 201 rather than the denitrification tank 202 and the denitrification tank 202. Part of the wastewater is not circulated to the anaerobic tank 201. Therefore, in the anaerobic tank 201, the phosphorus-release reaction proceeds in the absence of both nitrate nitrogen and dissolved oxygen. In this patent, the internal circulation rate from the oxygen tank to the denitrification tank is shown to be 100 to 300%.

상기 다이거 및 스펙터의 공정에서는, 처리하고자 하는 하폐수를 혐기성 반응조에 모두 유입시켜 미생물에 의한 인방출반응 또는, 인방출반응 및 탈질반응을 진행시킨 후 다시 탈질조에서 탈질반응 진행시킨다. 따라서, 질소 제거율은 탈질조에 유입되는 질산성 질소의 양에 따라 달라지게 된다. 질소 제거율을 높이기 위해 내부 순환율을 증가시키게 되면 반응조내 체류시간이 짧아져 생물학적 반응이 불안정하여 처리효율이 순환율에 정비례하게 증가하지 못하고, 순환에 따른 설비투자비와 유지비가 증가하는 문제점이 있다. 또한, 순환율에 의존한 질소제거 방법은 무한정 순환율을 높일 수 없기 때문에 처리효율을 85% 이상으로 높일 수 없는 단점이 있다.In the process of Diger and Specter, the wastewater to be treated is introduced into the anaerobic reactor to proceed with the phosphorus release reaction by the microorganism, or the phosphorus release reaction and the denitrification reaction, and then the denitrification reaction is performed in the denitrification tank again. Therefore, the nitrogen removal rate depends on the amount of nitrate nitrogen flowing into the denitrification tank. When the internal circulation rate is increased to increase the nitrogen removal rate, the residence time in the reaction vessel is shortened, so that the biological reaction is unstable, so that the treatment efficiency does not increase directly with the circulation rate, and the facility investment cost and maintenance cost increase due to the circulation. In addition, since the nitrogen removal method depending on the circulation rate cannot increase the circulation rate indefinitely, there is a disadvantage in that the treatment efficiency cannot be increased to 85% or more.

따라서, 본 발명이 이루고자 하는 기술적 과제는 생물학적 질소제거를 위해 필요한 내부순환을 없애거나 내부순환율을 줄여 설비투자비 및 유지관리비를 저감시키면서 처리효율은 향상시킬 수 있는 하폐수 처리장치를 제공하는 것이다.Accordingly, the technical problem to be achieved by the present invention is to provide a wastewater treatment apparatus capable of improving treatment efficiency while eliminating the internal circulation necessary for biological nitrogen removal or reducing the internal circulation rate, while reducing facility investment and maintenance costs.

또한, 본 발명이 이루고자 하는 다른 기술적 과제는 상기의 장치를 이용한 하폐수 처리방법을 제공하는 것이다.In addition, another technical problem to be achieved by the present invention is to provide a wastewater treatment method using the above device.

도 1은 종래의 하폐수 처리장치의 개략도이다.1 is a schematic diagram of a conventional wastewater treatment apparatus.

도 2는 종래의 하폐수 처리장치의 개략도이다.2 is a schematic view of a conventional wastewater treatment apparatus.

도 3은 본 발명에 따른 하폐수 처리장치의 개략도이다.3 is a schematic diagram of a wastewater treatment apparatus according to the present invention.

도 4는 본 발명에 따른 하폐수 처리방법의 흐름도이다.4 is a flow chart of the wastewater treatment method according to the present invention.

<주요 도면 부호에 대한 설명><Description of Major Reference Marks>

101, 202, 302..... 혐기조101, 202, 302 ..... anaerobic tank

102, 202, 303, 305, 307..... 탈질조102, 202, 303, 305, 307 ..... denitrification tank

103, 203, 304, 306, 308..... 산소조103, 203, 304, 306, 308 ... oxygen tank

104, 204, 309..... 침전조104, 204, 309 ..... sedimentation tank

301..... 전탈질조301 ..... Denitrification tank

102-1, 103-1, 203-1, 308-1..... 내부순환라인102-1, 103-1, 203-1, 308-1 ..... Internal circulation line

104-1, 204-1, 309-1......슬러지순환라인104-1, 204-1, 309-1 ...... Sludge Circulation Line

상기 기술적 과제를 달성하기 위하여, 본 발명은In order to achieve the above technical problem, the present invention

무산소 상태에서 질산성 질소의 탈질반응이 진행되는 전탈질조;A total denitrification tank in which denitrification of nitrate nitrogen proceeds in anoxic state;

상기 전탈질조를 거친 처리수가 유입되며, 혐기성 상태에서 미생물에 의한 인방출 반응이 진행되는 혐기조;An anaerobic tank into which the treated water passing through the total denitrification tank is introduced, and the phosphorus release reaction by the microorganism in the anaerobic state proceeds;

상기 혐기조를 거친 처리수 일부와 제3 산소조로부터 내부 순환되는 처리수가 유입되며, 무산소 상태에서 탈질반응이 진행되는 제1 탈질조;A first denitrification tank into which the treated water circulated from the anaerobic tank and the treated water circulated from the third oxygen tank are introduced, and the denitrification reaction proceeds in the absence of oxygen;

상기 제1 탈질조를 거친 처리수가 유입되며, 산소가 공급되는 상태에서 미생물에 의한 과잉인섭취 반응과 질산화 반응이 진행되는 제1 산소조;A first oxygen tank into which the treated water having passed through the first denitrification tank is introduced, and the excess phosphorus intake reaction and the nitrification reaction by the microorganism in the oxygen supply state are performed;

상기 혐기조를 거친 처리수 일부와 상기 제1 산소조를 거친 처리수가 유입되며, 무산소 상태에서 탈질반응이 진행되는 제2 탈질조;A second denitrification tank into which a portion of the treated water passing through the anaerobic tank and the treated water passing through the first oxygen tank are introduced and the denitrification reaction proceeds in an oxygen-free state;

상기 제2 탈질조를 거친 처리수가 유입되며, 산소가 공급되는 상태에서 미생물에 의한 과잉인섭취 반응과 질산화 반응이 진행되는 제2 산소조;A second oxygen tank into which the treated water having passed through the second denitrification tank is introduced, and the excess phosphorus intake reaction and the nitrification reaction by the microorganisms are performed while oxygen is supplied;

상기 혐기조를 거친 처리수 일부와 상기 제2 산소조를 거친 처리수가 유입되며, 무산소 상태에서 탈질반응이 진행되는 제3 탈질조; 및A third denitrification tank into which a portion of the treated water passing through the anaerobic tank and the treated water passing through the second oxygen tank are introduced and the denitrification reaction proceeds in an oxygen-free state; And

상기 제3 탈질조를 거친 처리수가 유입되며, 산소가 공급되는 상태에서 미생물에 의한 과잉인섭취 반응과 질산화 반응이 진행되는 제3 산소조를 포함하는 것을특징으로 하는 하폐수 처리장치를 제공한다.Provided is a wastewater treatment apparatus comprising a third oxygen tank in which the treated water passed through the third denitrification tank is introduced, and the excess intake reaction by the microorganism and the nitrification reaction proceed in the state where oxygen is supplied.

본 발명에 있어서. 하폐수 처리장치는 상기 제3 탈질조를 거쳐 상기 제3 산소조로 유입된 처리수의 일부를 제1 탈질조로 순환시키는 내부순환라인을 더 포함할 수 있다.In the present invention. The wastewater treatment apparatus may further include an internal circulation line configured to circulate a portion of the treated water introduced into the third oxygen tank through the third denitrification tank to the first denitrification tank.

본 발명에 있어서, 하폐수 처리장치는 상기 제3 산소조를 거친 처리수 중 고형 성분을 침전시키는 침전조와 상기 침전조에서 발생한 슬러지의 일부를 상기 전탈질조를 순환시키는 슬러지순환라인을 더 포함할 수 있다.In the present invention, the sewage treatment apparatus may further include a sludge circulation line for circulating the total denitrification tank with a settling tank for precipitating solid components in the treated water passed through the third oxygen tank and a part of the sludge generated in the settling tank. .

본 발명에 따른 하폐수 처리장치에 있어서, 상기 전탈질조, 혐기조, 제1 탈질조, 제2 탈질조, 제3 탈질조, 제1 산소조, 제2 산소조 및 제3 산소조가 복수개의 칸막이에 의해 나누어진 하나의 반응조에 설치되어 있는 것이 바람직하다.In the wastewater treatment apparatus according to the present invention, the total denitrification tank, the anaerobic tank, the first denitrification tank, the second denitrification tank, the third denitrification tank, the first oxygen tank, the second oxygen tank, and the third oxygen tank are arranged in a plurality of partitions. It is preferable to be provided in one reactor divided | segmented by the.

상기 다른 기술적 과제를 달성하기 위하여, 본 발명은In order to achieve the above another technical problem, the present invention

(a) 처리하고자 하는 하폐수를 전탈질조와 혐기조에 분배하여 공급하는 단계;(a) distributing and supplying wastewater to be treated to a total denitrification tank and an anaerobic tank;

(b) 상기 전탈질에 유입된 하폐수에 함유된 유기물을 이용하여 질산성 질소를 탈질시키는 단계;(b) denitrifying the nitrate nitrogen using the organic matter contained in the wastewater introduced into the total denitrification;

(c) 상기 전탈질조를 거쳐 혐기조에 유입된 처리수와 상기 (a) 단계에 의해 혐기조에 직접 공급된 하폐수로부터 미생물에 의해 인을 방출시킨 후 제1 탈질조, 제2 탈질조 및 제3 탈질조로 공급하는 단계;(c) the first denitrification tank, the second denitrification tank, and the third denitrification tank and the third denitrification tank, and the third denitrification tank and the third denitrification tank after the phosphorus is released by the microorganisms from the wastewater directly supplied to the anaerobic tank by step (a). Feeding to a denitrification tank;

(d) 상기 제1 탈질조에 공급된 처리수의 질산성 질소를 탈질시킨 후 제1 산소조로 공급하는 단계;(d) denitrifying the nitrate nitrogen of the treated water supplied to the first denitrification tank and then supplying it to the first oxygen tank;

(e) 상기 제1 산소조에 공급된 처리수의 암모니아성 질소를 질산성 질소로 전환시키며, 동시에 미생물에 의한 과잉인섭취 반응에 의해 인을 제거한 후 상기 제2 탈질조로 처리수를 공급하는 단계;(e) converting the ammonia nitrogen of the treated water supplied to the first oxygen tank into nitrate nitrogen, and at the same time removing phosphorus by an excessive intake reaction by microorganisms and then supplying the treated water to the second denitrification tank;

(f) 상기 (c) 단계와 (e) 단계에 의해 공급된 처리수의 질산성 질소를 탈질 시킨 후 제2 산소조로 공급하는 단계;(f) denitrifying the nitrate nitrogen of the treated water supplied by steps (c) and (e) and then supplying it to a second oxygen bath;

(g) 상기 제2 산소조에 공급된 처리수의 암모니아성 질소를 질산성 질소로 전환시키며, 동시에 미생물에 의한 과잉인섭취 반응에 의해 인을 제거한 후 상기 제3 탈질조로 처리수를 공급하는 단계;(g) converting the ammonia nitrogen of the treated water supplied to the second oxygen tank into nitrate nitrogen, and at the same time removing phosphorus by an excessive intake reaction by microorganisms and then supplying the treated water to the third denitrification tank;

(f) 상기 (c) 단계와 (f) 단계에 의해 공급된 처리수의 질산성 질소를 탈질 시킨 후 제3 산소조로 공급하는 단계; 및(f) denitrifying the nitrate nitrogen of the treated water supplied by steps (c) and (f) and then supplying it to a third oxygen bath; And

(h) 상기 제3 산소조로 공급된 처리수의 암모니아성 질소를 질산성 질소로 전환시키며, 동시에 미생물에 의한 과잉인섭취 반응에 의해 인을 제거하는 단계를 진행시키는 단계를 포함하는 것을 특징으로 하는 하폐수 처리방법을 제공한다.(h) converting the ammonia nitrogen of the treated water supplied to the third oxygen tank into nitrate nitrogen, and at the same time, removing the phosphorus by an overingestion reaction by the microorganism. Provide sewage treatment.

본 발명에 있어서, 하폐수 처리방법은 상기 제3 산소조를 거친 처리수의 일부를 내부순환라인을 통해 상기 제1 탈질조로 내부순환시키는 단계를 더 포함할 수 있으며, 내부순환율은 40% 이하인 것이 바람직하다.In the present invention, the wastewater treatment method may further include internally circulating a portion of the treated water that has passed through the third oxygen tank to the first denitrification tank through an internal circulation line, wherein the internal circulation rate is 40% or less. desirable.

본 발명에 있어서, 하폐수 처리방법은 상기 제3 산소조를 거친 처리수의 일부를 침전조에 공급하여 침전된 슬러지의 일부를 슬러지순환라인을 통해 전탈질조로 순환시키는 단계를 더 포함할 수 있다.In the present invention, the wastewater treatment method may further include supplying a portion of the treated water that has passed through the third oxygen tank to the settling tank and circulating a portion of the precipitated sludge to the total denitrification tank through the sludge circulation line.

일반적으로 생물학적 질소 및 인 처리공정은 반응조 배열이 직렬식으로 구성되어 있는데, 본 발명은 질소제거를 위한 내부순환을 획기적으로 줄일 수 있는 선회류 방식, 즉 혐기조 전단에 전탈질조를 도입하고, 혐기조 후단에 탈질조와 산소조를 반복적으로 도입하는 방식으로 구성되어 있는 것이 특징이다.In general, the biological nitrogen and phosphorus treatment process is composed of a reaction tank arrangement in series, the present invention is a swirl flow method that can significantly reduce the internal circulation for nitrogen removal, that is to introduce a total denitrification tank in front of the anaerobic tank, anaerobic tank It is characterized by being configured in such a manner that the denitrification tank and the oxygen tank are repeatedly introduced to the rear stage.

이하에서는 첨부된 도 3을 참조하면서, 본 발명에 따른 하폐수 처리장치 및 처리방법을 상세히 설명하고자 한다.Hereinafter, with reference to the accompanying Figure 3, it will be described in detail the wastewater treatment apparatus and treatment method according to the present invention.

본 명세서에서 사용된 "하폐수"란 용어는 본 발명의 장치를 사용하여 처리하고자 하는 하폐수를 의미하는 것으로서, 전처리, 예를 들어 1차 침전지 등을 거친 것을 수도 있고, 그렇지 않은 것일 수도 있다. 그러나, 본 발명의 장치에 포함된 반응조를 하나라도 거친 것은 제외한다. 또한 본 명세서에서 사용된 "처리수"란 용어는 본 발명의 장치에 포함된 반응조를 하나 이상 거친 하폐수를 의미한다.As used herein, the term "wastewater" refers to the wastewater to be treated using the apparatus of the present invention, which may or may not have been subjected to pretreatment, for example primary sedimentation basin. However, any one of the reaction vessels included in the apparatus of the present invention is excluded. The term "treated water" as used herein also refers to sewage water that has passed through one or more reactors contained in the apparatus of the present invention.

도 3은 본 발명에 따른 하폐수 처리장치의 개략도이다. 도 3에 도시된 바와 같이, 본 발명에 하폐수 처리 장치는, 전탈질조(301), 혐기조(302), 제1 탈질조(303), 제 2 탈질조(305), 제3 탈질조(307), 제1 산소조(304), 제2 산소조(306) 및 제3 산소조(308)의 8개의 생물학적 반응조로 구성되어 있으며, 내부순환라인(308-1), 침전조(309) 및 슬러지순환라인(309-1)를 더 포함할 수 도 있다. 이러한 전탈질소(301), 혐기조(302), 탈질조들(303, 305, 307) 및 산소조들(304, 306, 308)은 각각이 하나의 반응조로 구성되거나 도 3에 도시된 바와 같이 전체적으로 하나의 반응조에 7개의 칸막이를 설치하여 8개의 단으로 구성할 수 있다. 또한, 유입되는 하폐수의 수질 및 처리수의 수질 기준에 따라 반응조의 크기를 각각 조절할 수 있다.3 is a schematic diagram of a wastewater treatment apparatus according to the present invention. As shown in FIG. 3, the wastewater treatment apparatus according to the present invention includes a total denitrification tank 301, an anaerobic tank 302, a first denitrification tank 303, a second denitrification tank 305, and a third denitrification tank 307. ), The first oxygen tank 304, the second oxygen tank 306 and the eight biological reaction tank of the third oxygen tank 308, the inner circulation line (308-1), sedimentation tank 309 and sludge It may further include a circulation line (309-1). The total denitrification 301, the anaerobic tank 302, the denitrification tanks 303, 305, and 307 and the oxygen tanks 304, 306, and 308 each consist of one reactor or as shown in FIG. 3 as a whole. Seven partitions can be installed in one reactor to form eight stages. In addition, the size of the reactor may be adjusted according to the quality of the incoming wastewater and the quality of the treated water.

각각의 반응조의 사용목적과 기능을 구체적을 살펴보면 다음과 같다.The purpose and function of each reactor are as follows.

전탈질조(301)는 혐기조(302)에 유입될 수 있는 질산성 질소를 무산소 상태에서 제거하기 위한 것으로서, 전탈질조(301)에는 처리하고자 하는 하폐수와 슬러지순환라인(309-1)을 통해 침전조(309)로부터 슬러지가 유입된다.The total denitrification tank 301 is for removing nitrate nitrogen which may flow into the anaerobic tank 302 in anoxic state, and the total denitrification tank 301 is to be treated through sewage and sludge circulation lines 309-1. Sludge flows in from the settling tank 309.

혐기조(302)에는 하폐수와 전탈질조(301)를 거친 처리수가 유입되며, 미생물에 의한 인방출 반응이 진행된다. 이러한 인방출반응이 진행되기 위해서는 용존산소와 질산성 질소가 없어야 한다.The anaerobic tank 302 is introduced into the wastewater and the treated water passed through the total denitrification tank 301, the phosphorous discharge reaction by the microorganism is in progress. In order for this phosphorus-release reaction to proceed, there must be no dissolved oxygen and nitrate nitrogen.

혐기조에 존재하는 미생물은 인을 방출하면서 세포내에 포함되어 있는 ATP를 ADP로 전환시켜 이 때 발생하는 에너지를 이용하여 유기물을 PHB(polyhydroxybutyrate) 형태로 세포내에 저장한다. 유입수내에 질산성 질소가 존재하게 되면 질산성 질소를 전자수용체로 이용하기 때문에 인방출반응이 일어나지 않게되고, 인방출반응이 일어나지 않으면 과잉인섭취반응도 일어나지 않게 되어 생물학적 인제거가 불가능해진다.Microorganisms in the anaerobic tank releases phosphorus and converts ATP contained in the cells into ADP and stores the organic matter in the cell in the form of polyhydroxybutyrate (PHB) using the energy generated at this time. When nitrate nitrogen is present in the influent, the nitrate nitrogen is used as the electron acceptor so that the phosphorus-release reaction does not occur. If the phosphorus-release reaction does not occur, the excess phosphorus intake reaction does not occur and biological removal is impossible.

탈질조(303, 305, 307)에는 혐기조(302)를 거친 처리수와 선택적으로 내부순환라인(308-1)을 통해 제 3산소조(308)로부터 처리수가 유입되며, 혐기조에서 이용되고 남은 유기물을 이용하여 탈질반응이 일어난다.The denitrification tanks 303, 305, and 307 are treated with an anaerobic tank 302 and optionally treated water from the third oxygen tank 308 through an internal circulation line 308-1, and the organic matter remaining in the anaerobic tank is used. Denitrification occurs using.

산소조(304, 306, 308)에는 탈질조(303, 305, 307)를 거친 처리수가 유입된다. 상기 처리수에는 암모니아성 질소가 많이 포함되어 있으며, 산소조에서는 이들을 질산성 질소로 전환시킨다. 또한, 혐기조(302)에서 방출된 인 및 하폐수에 포함되어 있던 인은 산소조에서 미생물이 산소를 전자수용체로 하여 인을 과잉섭취하여제거된다. 즉 미생물이 산소를 전자수용체로 새포내 저장물질을 산화시킬 떼 ATP 또는 폴리인산의 형태로 잠재 에너지를 합성하게되는데 이 때 하폐수내에 존재하는 인을 과잉으로 섭취하므로서 인이 제거되는 것이다,The treated water passing through the denitrification tanks 303, 305, 307 flows into the oxygen tanks 304, 306, 308. The treated water contains a lot of ammonia nitrogen, and the oxygen bath converts them to nitrate nitrogen. In addition, the phosphorus discharged from the anaerobic tank 302 and phosphorus contained in the wastewater are removed by the microorganisms ingesting phosphorus excessively in the oxygen tank using oxygen as the electron acceptor. That is, when microorganisms oxidize oxygen storage electrons in the cell, the potential energy is synthesized in the form of ATP or polyphosphoric acid. At this time, phosphorus is removed by excessively ingesting phosphorus present in the wastewater.

다음으로, 본 발명에 따른 하폐수 처리방법의 흐름도 도4를 참조하면서 본 발명에 따른 하폐수 처리방법을 설명하기로 한다.Next, a flow chart of the wastewater treatment method according to the present invention will be described with reference to FIG. 4.

먼저, 1차 침전지를 거친 또는 그렇지 않은 하폐수가 전탈질조(301)와 혐기조(302)로 나뉘어 유입된다. 전탈질조(301)에서는 인방출반응에 방해가 되는 질산성 질소가 제거되며, 전탈질조(301)를 거친 처리수는 혐기조(302)로 유입된다. 또한, 전탈질조(301)에는 슬러지순환라인(309-1)을 통해 침전조(309)로부터 슬러지가 일부 유입될 수 도 있다. 이러한 슬러지순환은 반응조내의 미생물의 양을 일정한 수준으로 유지하기 위한 것으로서 처리공정의 안정성을 위하여 슬러지순환율을 낮게 할 필요가 있는데, 일반적으로 슬러지순환율은 20 내지 50%의 범위이다.First, sewage water that passes through or does not flow through the primary sedimentation basin is divided into a total denitrification tank 301 and an anaerobic tank 302. In the total denitrification tank 301, the nitrate nitrogen which is hindering the phosphorus release reaction is removed, and the treated water passing through the total denitrification tank 301 is introduced into the anaerobic tank 302. In addition, the total denitrification tank 301 may be partially introduced into the sludge from the settling tank 309 through the sludge circulation line 309-1. Such sludge circulation is to maintain the amount of microorganisms in the reaction tank at a constant level, it is necessary to lower the sludge circulation rate for the stability of the treatment process, the sludge circulation rate is generally in the range of 20 to 50%.

혐기조(302)에서는 직접 유입되는 하폐수와 전탈질조(301)를 거친 처리수에 존재하는 미생물에 의한 인방출 반응이 일어나며, 혐기조(302)를 거친 처리수는 제1 탈질조(303), 제2 탈질조(305) 및 제3 탈질조(307)로 유입된다.In the anaerobic tank 302, the phosphorus-release reaction occurs by microorganisms present in the treated wastewater directly introduced into the wastewater and the total denitrification tank 301, and the treated water passing through the anaerobic tank 302 is the first denitrification tank 303, 2 is introduced into the denitrification tank 305 and the third denitrification tank 307.

제1 탈질조(303)에 유입되는 처리수는 상술한 바와 같은 혐기조(302)를 거친 처리수 뿐만 아니라 제3 산소조(308)로부터 내부순환라인(308-1)을 통해 처리수가 유입될 수 있다.The treated water flowing into the first denitrification tank 303 may be introduced into the treated water through the internal circulation line 308-1 from the third oxygen tank 308 as well as the treated water passing through the anaerobic tank 302 as described above. have.

일반적으로 하폐수내에 포함되어 있는 질소의 제거는 산소조로부터 탈질조로 처리수가 순환되는 내부순환량에 따라 제거율이 달라지게 되는데 이는 종래의 하폐수 처리장치가 직렬식이기 때문이나, 본 발명에 따른 장치는 탈질조와 산소조가 반복하는 선회류 방식이기 때문에 내부순환없이도 충분한 질소제거가 가능하며, 질소제거 효율을 높이기 위해서 내부순환율을 40%까지 높일 수 있다.In general, the removal rate of nitrogen contained in the sewage water varies depending on the internal circulation of the treated water circulated from the oxygen tank to the denitrification tank. This is because the conventional sewage treatment apparatus is in series, but the apparatus according to the present invention is a denitrification tank. Since the oxygen tank repeats the swirling flow method, sufficient nitrogen can be removed without internal circulation, and the internal circulation rate can be increased to 40% to increase the efficiency of nitrogen removal.

상기 제1 탈질조(303)를 거친 처리수는 제1 산소조(304)로 유입되며, 제1 산소조(304)에서는 제1 탈질조에서 제거되지 않고 남은 암모니아성 질소가 질산성 질소로 전환되며, 하폐수에 포함되어 있던 인과 혐기조(302)에서 방출된 인이 미생물에 의한 과잉인섭취반응에 의해 제거된다.The treated water having passed through the first denitrification tank 303 flows into the first oxygen tank 304, and in the first oxygen tank 304, the remaining ammonia nitrogen is not removed from the first denitrification tank and converted into nitrate nitrogen. The phosphorus released from the phosphorus anaerobic tank 302 contained in the sewage water is removed by the excess phosphorus intake reaction by the microorganism.

이어서, 제1 산소조(304)를 거친 처리수는 제2 탈질조(305)를 거쳐 제2 탈질조(305)에 직접 유입된 처리수와 함께 제2 산소조(306)로 공급된다. 이러한 단계는 제3 탈질조(307) 및 제3 산소조(308)에서도 동일하게 이루어지며, 제2 탈질조(305), 제3 탈질조(307), 제2 산소조(306) 및 제3 산소조(308)에서 일어나는 반응은 각각 상기 제1 탈질조(303) 및 제1 산소조(306)에서와 동일하다.Subsequently, the treated water having passed through the first oxygen tank 304 is supplied to the second oxygen tank 306 together with the treated water flowing directly into the second denitrification tank 305 via the second denitrification tank 305. This step is the same in the third denitrification tank 307 and the third oxygen tank 308, the second denitrification tank 305, the third denitrification tank 307, the second oxygen tank 306 and the third The reaction that occurs in the oxygen tank 308 is the same as in the first denitrification tank 303 and the first oxygen tank 306, respectively.

다음으로, 제3 산소조(308)를 거친 처리수 중 일부는 내부순환라인(308-1)을 통해 제1 탈질조(303)로 순환될 수 있고, 나머지는 일부는 침전조(309)로 공급될 수 있다.Next, some of the treated water that has passed through the third oxygen tank 308 may be circulated to the first denitrification tank 303 through the internal circulation line 308-1, and the other part is supplied to the settling tank 309. Can be.

상술한 바와 같이 내부순환라인(308-1)을 통한 내부순환은 본 발명에 따른 처리방법에서는 생략될 수도 있다.As described above, the internal circulation through the internal circulation line 308-1 may be omitted in the treatment method according to the present invention.

이어서, 침전조(309)에서는 유입된 처리수 중 슬러지가 침전된다. 이 슬러지 중 일부는 상술한 바와 같이 슬러지순환라인(309-1)을 통해 전탈질조(301)로 순환되고 나머지 별도의 처리공정으로 거치게 된다. 또한 슬러지가 침전되고 위에 남은상등액은 처리가 완료된 액으로서 배출되게 된다.Subsequently, in the settling tank 309, sludge in the treated water introduced is precipitated. Some of the sludge is circulated to the total denitrification tank 301 through the sludge circulation line 309-1 as described above, and is subjected to the remaining separate treatment process. In addition, the sludge is settled and the supernatant remaining above is discharged as a finished liquid.

이하 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 하며, 본 발명은 이하의 실시예에 의해 한정되지 않음은 명백하다.Hereinafter, the present invention will be described in more detail with reference to the following examples, and the present invention is not limited by the following examples.

<실시예 1><Example 1>

본 실시예은 하루 처리용량 30ℓ인 본 발명에 따른 파일롯 장치를 삼성엔지니어링(주) 기술 연구소에 설치하여 3개월 간 운전한 결과이며, 상기 파일롯 장치는 하나의 반응조가 복수개의 칸막이에 의해 8개의 단으로 나누어져 있으며, 반응조의 용량을 9.375ℓ로 하였다.In this embodiment, the pilot device according to the present invention having a processing capacity of 30 L per day is installed in Samsung Engineering Co., Ltd. for three months, and the pilot device has one reactor in eight stages by a plurality of partitions. The volume of the reactor was 9.375 L.

처리하고자 하는 하폐수를 전탈질조 및 혐기조에 각각 20%와 80% 유입시키고. 제3 산소조로부터 제1 탈질조로의 내부 순환율과 침전조로부터 전탈질소로의 슬러지순환율은 각각 40%로 하였으며, 전체 체류시간은 7.5시간으로 하여 하폐수의 처리공정을 실시하여 얻은 최종 처리수에서 총 질소 함량과 인 함량을 측정하여 그 결과를 표 1에 나타냈다.20% and 80% of the wastewater to be treated is introduced into the denitrification tank and the anaerobic tank, respectively. The internal circulation rate from the third oxygen tank to the first denitrification tank and the sludge circulation rate from the sedimentation tank to the total denitrification were 40%, respectively, and the total residence time was 7.5 hours in the final treated water obtained by the wastewater treatment process. The total nitrogen content and phosphorus content were measured and the results are shown in Table 1.

<실시예 2><Example 2>

슬러지순환율을 30%로 변화시킨 것을 제외하고는 실시예 1과 동일한 방법으로 하폐수 처리 공정을 실시하여 얻은 최종 처리수에서 총 질소 함량과 인 함량을 측정하여그 결과를 표 1에 나타냈다.Except that the sludge circulation rate was changed to 30%, the total nitrogen content and phosphorus content were measured in the final treated water obtained by performing the wastewater treatment process in the same manner as in Example 1, and the results are shown in Table 1.

<실시예 3><Example 3>

내부 순환율을 0%로 한 것을 제외하고는 실시예 1과 동일한 방법으로 하폐수 처리 공정을 실시하여 얻은 최종 처리수에서 총 질소 함량과 인 함량을 측정하여그 결과를 표 1에 나타냈다.Except that the internal circulation rate was 0%, the total nitrogen content and phosphorus content were measured in the final treated water obtained by performing the wastewater treatment process in the same manner as in Example 1, and the results are shown in Table 1.

<비교예>Comparative Example

도 2에 개략적으로 도시한 바와 같은 스펙터(spector) 등의 미국특허 제4,056,465호에 개시된 하폐수 처리장치 및 처리 공정을 이용하고, 내부순환율을 200%로 하여 하폐수를 처리하였다.The wastewater was treated using a wastewater treatment apparatus and treatment process disclosed in U.S. Patent No. 4,056,465 such as specter as schematically shown in FIG. 2, with an internal circulation rate of 200%.

하폐수 처리 공정을 실시하여 얻은 최종 처리리수에서 총 질소 함량과 인 함량을 측정하여 그 결과를 표 1에 나타냈다.The total nitrogen content and phosphorus content in the final treated water obtained by the wastewater treatment process were measured and the results are shown in Table 1.

구분division 총 질소함량(mg/ℓ)Total Nitrogen Content (mg / ℓ) 인 함량(mg/ℓ)Phosphorus content (mg / ℓ) 내부순환율(%)Internal circulation rate (%) 슬러지순환율(%)Sludge Circulation Rate (%) 유입 하폐수Influent sewage 35 - 5035-50 7 - 97-9 실시예 1Example 1 1010 1.51.5 4040 4040 실시예 2Example 2 1111 1.81.8 4040 3030 실시예 3Example 3 1212 1.51.5 00 4040 비교예Comparative example 1515 55 200200 4040

상기 표1에서 보는 바와 같이 본 발명에 의한 장치 및 방법을 사용한 실시예에 의하면 내부순환율이 0%일 때에도 내부 순환율이 200%인 비교예보다도 처리효율이 좋았다.As shown in Table 1, according to the embodiment using the apparatus and method according to the present invention, even when the internal circulation rate was 0%, the processing efficiency was better than that of the comparative example where the internal circulation rate was 200%.

상술한 바와 같이 본 발명에 의한 선회류를 이용한 하폐수 처리장치 및 방법에 의하면 산소조에서 탈질조로의 내부순환이 생략된 경우에도 질소와 인 제거율이 높고, 또한, 내부순환이 생략되거나 내부순환율이 감소되어 초기 설비투자비와 유지관리비가 저감된다.As described above, according to the wastewater treatment apparatus and method using the swirl flow according to the present invention, even when the internal circulation from the oxygen tank to the denitrification tank is omitted, the nitrogen and phosphorus removal rate is high, and the internal circulation is omitted or the internal circulation rate is high. This reduces initial capital investment and maintenance costs.

본 발명은 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본발명이 속하는 기술분야에 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 실시가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments, these are merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent implementations are possible therefrom. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

Claims (8)

무산소 상태에서 질산성 질소의 탈질반응이 진행되는 전탈질조;A total denitrification tank in which denitrification of nitrate nitrogen proceeds in anoxic state; 상기 전탈질조를 거친 처리수가 유입되며, 혐기성 상태에서 미생물에 의한 인방출 반응이 진행되는 혐기조;An anaerobic tank into which the treated water passing through the total denitrification tank is introduced, and the phosphorus release reaction by the microorganism in the anaerobic state proceeds; 상기 혐기조를 거친 처리수 일부와 제3 산소조로부터 내부 순환되는 처리수가 유입되며, 무산소 상태에서 탈질반응이 진행되는 제1 탈질조;A first denitrification tank into which the treated water circulated from the anaerobic tank and the treated water circulated from the third oxygen tank are introduced, and the denitrification reaction proceeds in the absence of oxygen; 상기 제1 탈질조를 거친 처리수가 유입되며, 산소가 공급되는 상태에서 미생물에 의한 과잉인섭취 반응과 질산화 반응이 진행되는 제1 산소조;A first oxygen tank into which the treated water having passed through the first denitrification tank is introduced, and the excess phosphorus intake reaction and the nitrification reaction by the microorganism in the oxygen supply state are performed; 상기 혐기조를 거친 처리수 일부와 상기 제1 산소조를 거친 처리수가 유입되며, 무산소 상태에서 탈질반응이 진행되는 제2 탈질조;A second denitrification tank into which a portion of the treated water passing through the anaerobic tank and the treated water passing through the first oxygen tank are introduced and the denitrification reaction proceeds in an oxygen-free state; 상기 제2 탈질조를 거친 처리수가 유입되며, 산소가 공급되는 상태에서 미생물에 의한 과잉인섭취 반응과 질산화 반응이 진행되는 제2 산소조;A second oxygen tank into which the treated water having passed through the second denitrification tank is introduced, and the excess phosphorus intake reaction and the nitrification reaction by the microorganisms are performed while oxygen is supplied; 상기 혐기조를 거친 처리수 일부와 상기 제2 산소조를 거친 처리수가 유입되며, 무산소 상태에서 탈질반응이 진행되는 제3 탈질조; 및A third denitrification tank into which a portion of the treated water passing through the anaerobic tank and the treated water passing through the second oxygen tank are introduced and the denitrification reaction proceeds in an oxygen-free state; And 상기 제3 탈질조를 거친 처리수가 유입되며, 산소가 공급되는 상태에서 미생물에 의한 과잉인섭취 반응과 질산화 반응이 진행되는 제3 산소조를 포함하는 것을특징으로 하는 하폐수 처리장치.The wastewater treatment apparatus of claim 3, further comprising a third oxygen tank in which the treated water having passed through the third denitrification tank is introduced, and the excess intake reaction by the microorganism and the nitrification reaction are performed in the state where oxygen is supplied. 제 1항에 있어서. 상기 제3 탈질조를 거쳐 상기 제3 산소조로 유입된 처리수의 일부를 제1 탈질조로 순환시키는 내부순환 라인을 더 포함하는 것을 특징으로 하는 하폐수 처리장치.The method of claim 1. And an internal circulation line for circulating a portion of the treated water introduced into the third oxygen tank through the third denitrification tank to the first denitrification tank. 제 1항에 있어서, 상기 제3 산소조를 거친 처리수 중 고형 성분을 침전시키는 침전조와 상기 침전조에서 발생한 슬러지의 일부를 상기 전탈질조를 순환시키는 슬러지순환라인을 더 포함하는 것을 특징으로 하는 하폐수 처리장치.2. The sewage wastewater according to claim 1, further comprising a sedimentation tank for precipitating solid components in the treated water passed through the third oxygen tank and a sludge circulation line for circulating the total denitrification tank with a portion of the sludge generated in the sedimentation tank. Processing unit. 제 1항에 있어서, 상기 전탈질조, 혐기조, 제1 탈질조, 제2 탈질조, 제3 탈질조, 제1 산소조, 제2 산소조 및 제3 산소조가 복수개의 칸막이에 의해 나누어진 하나의 반응조에 설치되어 있는 것을 특징으로 하는 하폐수 처리장치According to claim 1, wherein the total denitrification tank, anaerobic tank, the first denitrification tank, the second denitrification tank, the third denitrification tank, the first oxygen tank, the second oxygen tank and the third oxygen tank is divided by a plurality of partitions. Sewage water treatment apparatus, characterized in that installed in the reaction tank of (a) 처리하고자 하는 하폐수를 전탈질조와 혐기조에 분배하여 공급하는 단계;(a) distributing and supplying wastewater to be treated to a total denitrification tank and an anaerobic tank; (b) 상기 전탈질로에 유입된 하폐수에 함유된 유기물을 이용하여 질산성 질소를 탈질시키는 단계;(b) denitrifying the nitrate nitrogen using the organic matter contained in the wastewater introduced into the total denitrification furnace; (c) 상기 전탈질조를 거쳐 혐기조에 유입된 처리수와 상기 (a) 단계에 의해 혐기조에 직접 공급된 하폐수로부터 미생물에 의해 인을 방출시킨 후 제1 탈질조,제2 탈질조 및 제3 탈질조로 공급하는 단계;(c) the first denitrification tank, the second denitrification tank, and the third denitrification tank and the third denitrification tank and the third denitrification tank and the discharged phosphorus by the microorganisms from the wastewater directly supplied to the anaerobic tank by step (a) Feeding to a denitrification tank; (d) 상기 제1 탈질조에 공급된 처리수의 질산성 질소를 탈질시킨 후 제1 산소조로 공급하는 단계;(d) denitrifying the nitrate nitrogen of the treated water supplied to the first denitrification tank and then supplying it to the first oxygen tank; (e) 상기 제1 산소조에 공급된 처리수의 암모니아성 질소를 질산성 질소로 전환시키며, 동시에 미생물에 의한 과잉인섭취 반응에 의해 인을 제거한 후 상기 제2 탈질조로 처리수를 공급하는 단계;(e) converting the ammonia nitrogen of the treated water supplied to the first oxygen tank into nitrate nitrogen, and at the same time removing phosphorus by an excessive intake reaction by microorganisms and then supplying the treated water to the second denitrification tank; (f) 상기 (c) 단계와 (e) 단계에 의해 공급된 처리수의 질산성 질소를 탈질 시킨 후 제2 산소조로 공급하는 단계;(f) denitrifying the nitrate nitrogen of the treated water supplied by steps (c) and (e) and then supplying it to a second oxygen bath; (g) 상기 제2 산소조에 공급된 처리수의 암모니아성 질소를 질산성 질소로 전환시키며, 동시에 미생물에 의한 과잉인섭취 반응에 의해 인을 제거한 후 상기 제3 탈질조로 처리수를 공급하는 단계;(g) converting the ammonia nitrogen of the treated water supplied to the second oxygen tank into nitrate nitrogen, and at the same time removing phosphorus by an excessive intake reaction by microorganisms and then supplying the treated water to the third denitrification tank; (f) 상기 (c) 단계와 (f) 단계에 의해 공급된 처리수의 질산성 질소를 탈질 시킨 후 제3 산소조로 공급하는 단계;(f) denitrifying the nitrate nitrogen of the treated water supplied by steps (c) and (f) and then supplying it to a third oxygen bath; (h) 상기 제3 산소조로 공급된 처리수의 암모니아성 질소를 질산성 질소로 전환시키며, 동시에 미생물에 의한 과잉인섭취 반응에 의해 인을 제거하는 단계를 진행시키는 단계를 포함하는 것을 특징으로 하는 하폐수 처리방법.(h) converting the ammonia nitrogen of the treated water supplied to the third oxygen tank into nitrate nitrogen, and at the same time, removing the phosphorus by an overingestion reaction by the microorganism. Sewage Treatment Methods. 제 5항에 있어서, 상기 제3 산소조를 거친 처리수의 일부를 내부순환라인을 통해 상기 제1 탈질조로 내부순환시키는 단계를 더 포함하는 것을 특징으로 하는 하폐수 처리방법.6. The method of claim 5, further comprising internally circulating a portion of the treated water that has passed through the third oxygen tank to the first denitrification tank through an internal circulation line. 제 6항에 있어서, 상기 내부순환단계의 순환율이 40% 이하인 것을 특징으로 하는 하폐수 처리방법.The wastewater treatment method according to claim 6, wherein the circulation rate of the internal circulation step is 40% or less. 제 5항에 있어서, 상기 제3 산소조를 거친 처리수의 일부를 침전조에 공급하여 침전된 슬러지의 일부를 슬러지순환라인을 통해 전탈질조로 순환시키는 단계를 더 포함하는 것을 특징으로 하는 하폐수 처리방법.The wastewater treatment method according to claim 5, further comprising supplying a portion of the treated water having passed through the third oxygen tank to the settling tank and circulating a portion of the precipitated sludge to the total denitrification tank through the sludge circulation line. .
KR10-2000-0002228A 2000-01-18 2000-01-18 Apparatus for treament of waste water containing nitrogen and phosphorus and treatment process using the same KR100453453B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0002228A KR100453453B1 (en) 2000-01-18 2000-01-18 Apparatus for treament of waste water containing nitrogen and phosphorus and treatment process using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0002228A KR100453453B1 (en) 2000-01-18 2000-01-18 Apparatus for treament of waste water containing nitrogen and phosphorus and treatment process using the same

Publications (2)

Publication Number Publication Date
KR20010075776A KR20010075776A (en) 2001-08-11
KR100453453B1 true KR100453453B1 (en) 2004-10-15

Family

ID=19639356

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0002228A KR100453453B1 (en) 2000-01-18 2000-01-18 Apparatus for treament of waste water containing nitrogen and phosphorus and treatment process using the same

Country Status (1)

Country Link
KR (1) KR100453453B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020006909A (en) * 2000-07-14 2002-01-26 김형벽ㅂ Advanced wastewater treatment process with the parallel internal recycle
KR20040031359A (en) * 2002-10-04 2004-04-13 엄태경 Advanced treatment apparaters and method for removal of nitrogen and phosphorus inf sewage water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187097A (en) * 1981-05-15 1982-11-17 Ebara Infilco Co Ltd Treatment of organic waste water
KR960004233A (en) * 1994-07-15 1996-02-23 김상응 Biological Removal Methods of Nitrogen and Phosphorus
KR19980087805A (en) * 1998-09-18 1998-12-05 양영희 Sewage / wastewater treatment method and device
KR19990046813A (en) * 1999-04-29 1999-07-05 백갑종 Wastewater treatment methods using anaerobic condition and two stage altering-intermittent aerating condition
KR19990081269A (en) * 1998-04-28 1999-11-15 양인모 Wastewater Treatment System

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187097A (en) * 1981-05-15 1982-11-17 Ebara Infilco Co Ltd Treatment of organic waste water
KR960004233A (en) * 1994-07-15 1996-02-23 김상응 Biological Removal Methods of Nitrogen and Phosphorus
KR19990081269A (en) * 1998-04-28 1999-11-15 양인모 Wastewater Treatment System
KR19980087805A (en) * 1998-09-18 1998-12-05 양영희 Sewage / wastewater treatment method and device
KR19990046813A (en) * 1999-04-29 1999-07-05 백갑종 Wastewater treatment methods using anaerobic condition and two stage altering-intermittent aerating condition

Also Published As

Publication number Publication date
KR20010075776A (en) 2001-08-11

Similar Documents

Publication Publication Date Title
KR100419431B1 (en) Wastewater treatment apparatus and method for removing nitrogen and phosphorus
EP0603316B1 (en) Method and system for biologically removing nitrogen from wastewater
US5182021A (en) Biological process for enhanced removal of ammonia, nitrite, nitrate, and phosphate from wastewater
KR100235250B1 (en) Wastewater treatment device for removing nitrogen and phosphorus using multi-stage anoxic reactors
KR101294489B1 (en) Apparatus for treating a drainage containing organic sulfur compounds
KR102099380B1 (en) The Method to Remove Nitrogen and Phosphorus from Wastewater by Changing of Reactor and Recycle Method of Conventional Nutrient Removal Process and by Combining Anaerobic Ammonium Oxidation(ANAMMOX) Process
KR100231084B1 (en) Biological phosphor and nitrogen removal device and method modificating phostrip method
KR100390633B1 (en) Anoxic-anaerobic sequencing batch reactor and method for nitrogen and phosphorus removal thereby
KR100304544B1 (en) Method for removing nitrogen and phosphorus using anaerobic digestion
KR100453453B1 (en) Apparatus for treament of waste water containing nitrogen and phosphorus and treatment process using the same
JPS6190795A (en) Treatment of sewage
KR100246024B1 (en) Waste water treatment apparatus
KR100460851B1 (en) Sewage and wastewater treatment apparatus which is no need internal recycle
KR20140144859A (en) Advanced sewage treatment system using divided inflow of influent and divided inflow of endogeneous denitrified return sludge
KR100321679B1 (en) Advanced wastewater treatment method
KR100438323B1 (en) High intergated Biological Nutrient Removal System
KR20010076873A (en) Organic and nitrogen compound removal methods from landfill leachate using an anaerobic-aerobic-anoxic system
KR100423801B1 (en) Advanced waste-water treatment system
KR100235251B1 (en) Method for removing nitrogen and phosphorous biologically in wastewater
KR0129831B1 (en) A process for sewage treatment wsing denitrification and dephosphorization
KR100311342B1 (en) Wastewater treatment apparatus for removing nitrogen and phosphorus and method therefor
KR20010056058A (en) Management Unit and Method of Foul and Waste Water
KR100674364B1 (en) A nitrogenous wastewater treatment process and system is included an organic nitrogen
KR950000212B1 (en) Waste water clarifier
KR100285896B1 (en) System for removing highly-concentrated organics and nitrogen from wastewater

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130613

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140620

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150709

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160711

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170626

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20180525

Year of fee payment: 15