KR100448273B1 - Recovery Method of Cobalt from spent lithium ion battery - Google Patents

Recovery Method of Cobalt from spent lithium ion battery Download PDF

Info

Publication number
KR100448273B1
KR100448273B1 KR10-2002-0010020A KR20020010020A KR100448273B1 KR 100448273 B1 KR100448273 B1 KR 100448273B1 KR 20020010020 A KR20020010020 A KR 20020010020A KR 100448273 B1 KR100448273 B1 KR 100448273B1
Authority
KR
South Korea
Prior art keywords
cobalt
lithium
lithium ion
licoo
ion battery
Prior art date
Application number
KR10-2002-0010020A
Other languages
Korean (ko)
Other versions
KR20030070469A (en
Inventor
이철경
박제신
양동효
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to KR10-2002-0010020A priority Critical patent/KR100448273B1/en
Publication of KR20030070469A publication Critical patent/KR20030070469A/en
Application granted granted Critical
Publication of KR100448273B1 publication Critical patent/KR100448273B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

본 발명은, 폐리튬이온전지로부터 코발트를 회수하는 방법에 관한 것이다.The present invention relates to a method for recovering cobalt from a waste lithium ion battery.

이는 특히, 폐리튬이온전지에서 재활용 목표가 되는 양극활물질인 LiCoO2를 옥살산으로 처리하여 코발트 옥살산염 형태로 회수하고, 용해액중 Li은 Na2CO3나 LiOH 등을 첨가하여 리튬 탄산염 또는 리튬 수산염의 형태로 회수하는 것이다.In particular, LiCoO 2 , a cathode active material for recycling in lithium ion batteries, is treated with oxalic acid and recovered in the form of cobalt oxalate, and Li is dissolved in lithium carbonate or lithium hydroxide by adding Na 2 CO 3 or LiOH. Recovery in form.

이에 따라서, 침출과 동시에 리튬과 코발트를 분리할수 있으며, 고순도의 코발트를 선택 회수할수 있고, 유가금속을 선택적으로 전량 회수토록 하는 것이다.Accordingly, lithium and cobalt can be separated at the same time as leaching, selective recovery and recovery of high-purity cobalt, and selective recovery of valuable metals.

Description

폐리튬이온전지로부터 코발트를 회수하는 방법{Recovery Method of Cobalt from spent lithium ion battery}Recovery Method of Cobalt from spent lithium ion battery

본 발명은 옥살산을 이용하여 폐리튬이온전지로 부터 코발트를 선택회수하는 폐리튬이온전지로 부터 코발트를 회수하는 방법에 관한 것으로서 보다 상세하게는, 폐리튬이온전지의 양극활물질인 LiCoO2를 옥살산으로 처리하여 코발트 옥살산염 형태로 침전 선택회수하고, 용해액중 리튬은 Na2CO3나 LiOH 등을 첨가하여 리튬탄산염 또는 리튬 수산염 형태로 회수하는 폐리튬이온전지로 부터 코발트를 회수하는 방법에 관한 것이다.The present invention relates to a method for recovering cobalt from a waste lithium ion battery that selectively recovers cobalt from a waste lithium ion battery using oxalic acid. More specifically, LiCoO 2 , a cathode active material of waste lithium ion battery, is converted into oxalic acid. The present invention relates to a method for recovering cobalt from a waste lithium ion battery which is recovered by cobalt oxalate in the form of cobalt oxalate, and the lithium in the solution is recovered in the form of lithium carbonate or lithium hydroxide by adding Na 2 CO 3 or LiOH. .

일반적으로 리튬이온전지는, 금속중 가장 가볍고 우월한 전기화학적 위치를 고수하는 리튬을 이용한 전지로서 높은 전압과 에너지 밀도를 가질 뿐만 아니라 경량으로 구성이 가능하여 대부분의 소형 휴대장비 동력원으로 사용되고 있으며, 현재에는 이동통신 단말기의 폭발적인 증가로 LiCoO2흑연전극을 채택한 리튬이온전지의 수요가 폭발적으로 증가하고 있다.In general, lithium-ion batteries are lithium-based batteries that adhere to the lightest and most superior electrochemical position among metals, and have high voltage and energy density as well as light weight and are used as a power source for most small portable equipment. Due to the explosion of mobile communication terminals, the demand for lithium ion batteries employing LiCoO 2 graphite electrodes is exploding.

이러한 리튬이온전지는, 양극활물질과 탄소류와 유기결합제가 혼합되어 알루미늄판에 도포된 양극집전체와, 음극활물질, 흑연과 탄소류가 유기결합제와 혼합되어 구리판에 도포된 음극집전체, 유기분리막, 그리고 리튬염이 유기용매에 용해되어 있는 유기전해액으로 구성되는 단위전지가 수개 조합되는 구성으로 이루어 지고, 복수의 단위전지가 저장용기로서 포장되는 것이다.The lithium ion battery includes a positive electrode current collector coated on an aluminum plate by mixing a positive electrode active material, carbons, and an organic binder, a negative electrode current collector coated on a copper plate by mixing a negative electrode active material, graphite, and carbon with an organic binder, and an organic separator. And a unit cell composed of an organic electrolyte in which lithium salt is dissolved in an organic solvent, and a plurality of unit cells are packaged as storage containers.

그리고, 상기 리튬이온전지의 양극활물질로는 가역성이 우수하고, 낮은 자가방전율, 고용량, 고에너지밀도를 갖는 LiCoO2가 상용화되고 있으며, 이러한 리튬전지는 충방전이 가능하고, 비교적 수명이 길지만 그 수명이 대략 1년 정도인 소모품이기 때문에 사용량의 증가와 함께 폐기량도 증가하고 있는 실정이다,In addition, as a cathode active material of the lithium ion battery, LiCoO 2 having excellent reversibility, low self discharge rate, high capacity, and high energy density has been commercialized, and such a lithium battery can be charged and discharged, and its life is relatively long, but its life is long. Since it is a consumable that is about 1 year, the amount of waste also increases with the increase in the amount of use.

한편, 이러한 폐리튬이온전지는 성상이 간단하고 비교적 양극활물질에 고가인 리튬과 코발트 등의 유가금속이 다량 함유되어 있어 경제적인 가치가 있는 폐자원으로 인식되어 재활용이 요구된다.On the other hand, such a waste lithium ion battery is simple in appearance and contains a large amount of valuable metals such as lithium and cobalt expensive in the positive electrode active material is recognized as an economic value of waste resources and requires recycling.

그러나, 상기와 같은 폐리튬이온전지의 재활용은, 유가금속의 회수에만 국한되고, 과충전등의 영향에 의한 금속 리튬의 생성으로 해체시 금속리튬의 급격한 산화에 의한 폭발가능성이 있으며, 단순한 침출에 의해서는 양극활물질인 LiCoO2의 용해가 힘들게 되는 단점이 있는 것이다.However, the recycling of waste lithium ion batteries as described above is limited to the recovery of valuable metals, and there is a possibility of explosion due to rapid oxidation of metal lithium during dismantling due to the generation of metallic lithium under the influence of overcharging, etc. The disadvantage is that the dissolution of LiCoO 2 is a positive electrode active material.

이를 개선하기 위한 본 발명의 목적은, 양극활물질의 용해 침출과 동시에 리튬과 코발트를 분리회수할수 있도록 하며, 고순도의 코발트를 선택 회수할수 있도록 하고, 유가금속을 선택적으로 전량 회수할수 있도록 하는 폐리튬이온전지로 부터 코발트를 회수하는 방법을 제공하는데 있다.The purpose of the present invention for improving this, waste lithium ion to allow the separate recovery of lithium and cobalt at the same time as dissolution leaching of the positive electrode active material, to recover the high-purity cobalt, and to selectively recover the entire valuable metals To provide a method for recovering cobalt from the battery.

도 1은 본 발명에 따른 코발트 회수방법의 처리공정을 도시한 순서도1 is a flow chart showing a processing step of the cobalt recovery method according to the present invention.

도 2a,b는 각각 본 발명의 침출용액에 의한 LiCoO2의 용해거동을 도시한 그래프도Figure 2a, b is a graph showing the dissolution behavior of LiCoO 2 by the leaching solution of the present invention, respectively

도 3a,b는 각각 본 발명에 의하여 분리된 양극활물질의 침출잔사 XRD 패턴및 DTA/TGA선을 도시한 그래프Figure 3a, b is a graph showing the leaching residue XRD pattern and DTA / TGA line of the positive electrode active material separated by the present invention, respectively

도 4a,b,c는 각각 본 발명에 따른 양극활물질의 침출시 옥살산 농도의 영향과 초기 광석밀도의 영향및 온도영향을 도시한 그래프Figures 4a, b, c are graphs showing the effect of oxalic acid concentration, initial ore density and temperature effect during leaching of the positive electrode active material according to the present invention, respectively

도 5는 본 발명의 폐리튬이온전지로 부터 양극활물질의 옥살산 침출거동을 도시한 그래프5 is a graph showing the oxalic acid leaching behavior of the positive electrode active material from the waste lithium ion battery of the present invention

상기 목적들을 달성하기 위해 본 발명은, 금속리튬이 산화되어 폭발하는 것을 방지토록 1차 가열한후, 절단하여 플라스틱편을 분리하는 단계;In order to achieve the above object, the present invention, the first step to prevent the metal lithium is oxidized and exploded, and then cutting to separate the plastic pieces;

상기 부산물을 2차 가열하여 전극물질을 분말상으로 가공한다음 전극물질과 금속편을 분리하는 단계;Second heating the by-products to process the electrode material into powder and separating the electrode material and the metal piece;

상기 전극물질을 배소하여 탄소류와 유기결합제등의 불순물을 제거하고, 양극활물질인 LiCoO2만을 선별하는 단계;Roasting the electrode material to remove impurities such as carbons and organic binders and selecting only LiCoO 2 as a cathode active material;

상기 LiCoO2를 옥살산에 용해시켜 코발트와 리튬을 분리회수하는 단계를 포함하여 이루어진 폐리튬이온전지로 부터 코발트를 회수하는 방법을 제공한다.It provides a method for recovering cobalt from the waste lithium ion battery comprising the step of dissolving the LiCoO 2 in oxalic acid to recover the cobalt and lithium.

이하, 첨부된 도면에 의거하여 본 발명의 실시예를 상세하게 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도1에서와 같이 본 발명은, 100~150℃에서 10분~1시간 정도로 가열장치에서 폐리튬이온전지를 1차 열처리하고, 이때 금속리튬이 산화물형태로 되어 안정화되므로 분해작업중에 금속리튬이 산화되어 폭발되는 것이 억제된다.As shown in FIG. 1, the present invention primarily heat-treats waste lithium ion batteries in a heating apparatus at 100 to 150 ° C. for about 10 minutes to 1 hour, and at this time, metal lithium is stabilized to an oxide form, thereby oxidizing metal lithium during decomposition. The explosion is suppressed.

그리고, 1차 열처리 수행한 다음에는 폐리튬이온전지를 0.5~2㎝ 크기로 절단하고, 이때 상기 절단공정에서 폐건전지를 작게 절단하면 분리효율은 상승하나 전극물질에 불순물이 비교적 많이 혼입되게 되고, 반대로 폐건전지를 크게 절단하면 분리효율은 감소하나 불순물의 혼입이 억제되어 최종물질의 순도를 높일 수 있다.Then, after performing the first heat treatment, the waste lithium ion battery is cut to a size of 0.5 to 2 cm. At this time, if the waste battery is cut small in the cutting process, the separation efficiency is increased but impurities are mixed in the electrode material relatively. On the contrary, if the waste battery is largely cut, the separation efficiency is reduced, but the incorporation of impurities can be suppressed to increase the purity of the final material.

바람직하게로는, 불순물의 혼입억제에 초점을 맞추어 절단편의 크기를 0.5~2㎝정도의 크기로 절단하는 것이 좋고, 상대습도 10% 이내의 제습분위기에서 절단하여 금속리튬의 갑작스런 산화를 억제하는 것이 좋으며, 이와 같이 절단한 후 1차 분급하여 전지의 외장재로 사용된 플라스틱편을 분리한다.Preferably, it is preferable to cut the size of the cut pieces to a size of about 0.5 to 2 cm by focusing on the suppression of the incorporation of impurities, and to suppress the sudden oxidation of the metal lithium by cutting in a dehumidifying atmosphere of 10% relative humidity It is good, and after cutting in this way, the primary classification is used to separate the plastic pieces used as the battery exterior material.

이어서, 1차 열처리 완료된 폐리튬전지의 전극물질을 2차 열처리하는데, 이때 300~600℃에서 30분~1시간 가열장치에서 열처리하게 되고, 이와 같이 2차 열처리를 수행하면 유기결합제의 결합력이 약화되며, 전극물질이 분말화되어 분리효율이 상승된다.Subsequently, the electrode material of the spent lithium battery, which has been subjected to the first heat treatment, is subjected to a second heat treatment. At this time, the heat treatment is performed in a heating apparatus at 300 to 600 ° C. for 30 minutes to 1 hour. The electrode material is powdered to increase the separation efficiency.

그리고, 2차 분급하여 전극물질과 집전체로 사용된 구리 및 알루미늄금속편 등을 분리하게 되며, 이때 2차분급시에는 진동체방식으로 분말상의 전극물질과 각종 금속편을 분리하는 것이 바람직하며, 이와 같이 분리된 전극물질은 양극활물질인 LiCoO2, 흑연 및 탄소류 그리고 유기결합제이다.In addition, the secondary classification is used to separate the electrode material and the copper and aluminum metal pieces used as the current collector, and at this time, it is preferable to separate the powdered electrode material and the various metal pieces by the vibrating method. The separated electrode materials are LiCoO 2 , graphite and carbons, and organic binders.

이어서, 700~900℃에서 30분~1시간 배소처리 하며, 이와 같은 조건에 의하여 탄소류와 유기결합제는 연소되어 제거되며, 양극활물질인 LiCoO2만이 선택적으로 남게된다.Subsequently, roasting is carried out at 700 to 900 ° C. for 30 minutes to 1 hour. Carbon and organic binders are burned and removed by these conditions, and only LiCoO 2 , which is a cathode active material, remains selectively.

그리고, 상기 LiCoO2를 옥살산에 용해시켜 코발트와 리튬을 침출분리하며, 이를 설명하면 LiCoO2로부터 Co를 Co 옥살산염 형태로 선택적으로 회수하며, 반응 종료후 용액 중에 잔류하는 Li은 Na2CO3또는 LiOH를 첨가하여 리튬탄산염 또는 리튬수산염 형태로 침전시키도록 한다.In addition, the LiCoO 2 is dissolved in oxalic acid to leach and separate cobalt and lithium. When this is explained, Co is selectively recovered from LiCoO 2 in the form of Co oxalate, and Li remaining in the solution after the reaction is Na 2 CO 3 or LiOH is added to precipitate in the form of lithium carbonate or lithium hydrate.

상기와 같은 구성으로 이루어진 코발트 회수방법을 구체적으로 설명하면 다음과 같다.Referring to the cobalt recovery method consisting of the above configuration in detail as follows.

먼저, 양극활물질과 반응되어 침출되는 침출제의 영향을 살펴보기 위하여 황산(Sulfuric acid), 질산(Nitric acid) 및 옥살산(Oxalic acid)에 따른 LiCoO2의 용해거동을 시험하였다.First, the dissolution behavior of LiCoO 2 according to sulfuric acid, nitric acid and oxalic acid was examined to examine the effect of the leaching agent that reacts with the cathode active material.

실시예 1Example 1

침출제의 농도 1 M, 반응온도 80℃, 교반속도 300rpm, 초기 광액농도 50g/L의 조건에서 LiCoO2의 용해 실험을 수행하였으며, 시간의 진행에 따라 용액 중의 Co와 Li의 농도를 측정하였고, 그 결과를 반응률로 환산하여 도 2a,b에 도시하였다.The dissolution of LiCoO 2 was carried out under the conditions of 1 M of leaching agent, reaction temperature of 80 ° C., stirring speed of 300 rpm, and initial concentration of mineral solution of 50 g / L, and the concentration of Co and Li in the solution was measured as time progressed. The results are shown in Figures 2a and b in terms of reaction rates.

그리고 도 2a,b에서와 같이, 침출제에 따른 LiCoO2의 용해거동을 살펴보면황산과 질산의 경우 각각 아래의 화학식1및 화학식2와 같은 형태로 용해가 이루어지 진다.2A and 2B, the dissolution behavior of LiCoO 2 according to the leaching agent is determined in the case of sulfuric acid and nitric acid in the form of Formula 1 and Formula 2, respectively.

2LiCoO2(s) + 4H2SO4(l) → Co2(SO4)3(l) + Li2SO4(l) + 4H2O2LiCoO 2 (s) + 4H 2 SO 4 (l) → Co 2 (SO 4 ) 3 (l) + Li 2 SO 4 (l) + 4H 2 O

LiCoO2(s) + 4HNO3(l) → Co(NO3)3(l) + LiNO3(l) + 2H2O(l)LiCoO 2 (s) + 4HNO 3 (l) → Co (NO 3 ) 3 (l) + LiNO 3 (l) + 2H 2 O (l)

즉, 폐리튬이온전지의 양극활물질인 LiCoO2는, 강산 용액에서 Co와 Li은 각각 황산염(sulfate)과 질산염(nitrate) 형태로 용해가 이루어짐을 알 수 있었고, 이를 침출제로 사용되는 황산과 질산에 따라 구체적으로 살펴보면 Li은 10분 이내에 70% 용해되고 시간이 증가할수록 용해율이 약간 상승된다.In other words, LiCoO 2 , a cathode active material of spent lithium-ion batteries, was found to dissolve Co and Li in the form of sulfate and nitrate, respectively, in a strong acid solution. Specifically, Li dissolves in 70% within 10 minutes, and the dissolution rate slightly increases with time.

또한, Co의 경우는 10분의 경과시간에 약 40%의 낮은 침출율을 보이는데 이는 Co가 과산화 상태인 Co(Ⅲ)로 존재하기 때문이고, 과산화수소를 황산용액에 첨가한 후 용해반응을 한 결과를 보면 Li의 침출율은 큰 변화가 없는 반면에 Co의 침출율은 40%에서 80%로 크게 상승함을 알수 있으며, 이는 과산화수소가 산 용액에서 불안정한 Co(Ⅲ)를 안정한 Co(Ⅱ)로 환원시켜 LiCoO2의 황산 침출을 용이하게 하기 때문이다.In addition, Co has a low leaching rate of about 40% at the elapsed time of 10 minutes because Co is present as Co (III), which is a peroxide state, and as a result of dissolution reaction after adding hydrogen peroxide to sulfuric acid solution It can be seen that the leaching rate of Li does not change much, while the leaching rate of Co increases significantly from 40% to 80%, which is due to the reduction of Co (III), which is unstable in hydrogen peroxide acid solution, to stable Co (II). This is because sulfuric acid leaching of LiCoO 2 is facilitated.

반면에, 옥살산에 의한 LiCoO2의 용해거동을 살펴보면 Li의 용해는 90분 정도에서 용해반응이 거의 이루어져 99.9%의 침출율을 보이고 있으나 Co의 침출율은4% 이내로 거의 침출이 이루지지 않음을 알수 있고, 상기와 같이 옥살산에 의한 LiCoO2의 용해 반응은 화학식3과 같다.On the other hand, when looking at the dissolution behavior of LiCoO 2 by oxalic acid, the dissolution of Li was almost 99.9% due to the dissolution reaction in about 90 minutes, but the leaching rate of Co was less than 4%. As described above, the dissolution reaction of LiCoO 2 by oxalic acid is the same as that of Chemical Formula 3.

LiCoO2(s) + C2O4H2(s) →Co(COO)2(s) + LiOH(l)LiCoO 2 (s) + C 2 O 4 H 2 (s) → Co (COO) 2 (s) + LiOH (l)

즉, 상기 옥살산을 침출제로 사용할 경우 Li은 용해되지만 Co는 용해 후 옥살산염(oxalate) 형태로 재침전이 이루어지는 것을 알 수 있고, 이는 반응 종료 후 침전물을 세척-건조시켜 X선 회절로 상분석한 결과 도3a에서와 같이 그 침전물이 Co 옥살산염임을 확인할 수 있었다.That is, when oxalic acid is used as a leaching agent, Li is dissolved, but Co is dissolved, and it can be seen that reprecipitation occurs in the form of oxalate, which is analyzed by X-ray diffraction by washing-drying the precipitate after completion of the reaction. As a result, as shown in FIG. 3a, the precipitate was confirmed to be Co oxalate.

따라서, 옥살산을 침출제로 이용하는 경우 LiCoO2로부터 Co를 Co 옥살산염 형태로 선택적으로 회수할 수 있었고, 반응의 종료후 용액 중에 잔류하는 Li은 Na2CO3혹은 LiOH를 첨가하여 탄산염(carbonate) 혹은 수산화물(LiOH) 형태로 침전시키므로서 유가금속을 선택적으로 전량 회수할 수 있음을 알 수 있다.Therefore, when oxalic acid was used as a leaching agent, Co could be selectively recovered from LiCoO 2 in the form of Co oxalate, and Li remaining in the solution after completion of the reaction was added with Na 2 CO 3 or LiOH to form carbonate or hydroxide. It can be seen that the entire amount of valuable metals can be selectively recovered by precipitation in the form of (LiOH).

그리고, 회수된 Co을 전극원료로서의 가능성에 대하여 알아보기 위하여 열분석을 수행하였으며, 그 결과는 도 3b에 도시한 바와같이 Co 옥살산염은 196℃, 290℃ 및 896℃에서 각각 상 변화가 일어남을 알 수 있는데 이는 화학식 4내지 6에 나타난 바와같이 결정수 탈착, 옥살산염 분해 및 Co 산화물의 변태로 추정된다.In addition, thermal analysis was performed to investigate the recovered Co as an electrode material. As a result, as shown in FIG. 3B, Co oxalate showed a phase change at 196 ° C, 290 ° C, and 896 ° C, respectively. It can be seen that it is estimated by crystal water desorption, oxalate decomposition and transformation of Co oxide, as shown in formulas (4) to (6).

Co(COO)2·2H2O(s) → Co(COO)2(s) + 2H2O(g)Co (COO) 2 2H 2 O (s) → Co (COO) 2 (s) + 2H 2 O (g)

3Co(COO)2(s) → Co3O4(s) + 4CO(g) + 2CO2(g)3Co (COO) 2 (s) → Co 3 O 4 (s) + 4CO (g) + 2CO 2 (g)

Co3O4(s) → 3CoO(s) + ½O2(g)Co 3 O 4 (s) → 3CoO (s) + ½O 2 (g)

실시예 2Example 2

도4b에서와 같은 온도에 따른 무게감량을 나타내는 TGA 결과에서 보면 200℃, 300℃ 및 900℃에서의 무게감량이 각각 16%, 51% 및 58%으로 나타났으며, 이는 이론값과 유사함을 알 수 있다.In the TGA results showing weight loss with temperature as shown in FIG. 4b, weight loss at 200 ° C., 300 ° C. and 900 ° C. was found to be 16%, 51% and 58%, respectively, which is similar to the theoretical value. Able to know.

또한, 200℃, 300℃ 및 500℃에서 침전물을 공기 중에서 1시간 하소한 다음, X선 분석에 의한 존재상태를 침전물의 열 거동에 의해 확인할 수 있으며, 옥살산에 의하여 회수한 Co 옥살산염을 전극재료, 안료등의 용도로 사용하기 위해서는 산화물상이 필요하고, 이때 옥살산염으로의 분해는 500℃의 저온 하소로 가능함을 알 수 있다.In addition, the precipitate was calcined in air at 200 ° C., 300 ° C. and 500 ° C. for 1 hour, and then the presence state by X-ray analysis was confirmed by the thermal behavior of the precipitate. In order to use it for the use of a pigment, etc., an oxide phase is needed, and it can be understood that decomposition | disassembly to an oxalate is possible by low temperature calcination of 500 degreeC.

따라서, 폐리튬이온이차전지 재활용 목표가 되는 Co의 회수율 향상 및 불순물 혼입을 억제하기 위한 방법으로 침출제로 옥살산을 사용하면 우수한 특성을 가짐을 알 수 있으며, 이에따라 용액 중에 잔류하는 Li은 탄산염 형태로 100% 침전회수가 가능하고, Li 탄산염은 금속 Li을 제조하기 위한 용융염 전해의 원료로 사용토록 된다.Therefore, it can be seen that oxalic acid is used as a leaching agent to improve the recovery rate of Co, which is the target for recycling lithium ion secondary batteries, and to suppress the incorporation of impurities. Precipitation recovery is possible, and Li carbonate is used as a raw material for molten salt electrolysis for producing metal Li.

실시예 3Example 3

반응온도 80℃, 교반속도 300rpm, 초기 광액농도 50g/L 조건에서 옥살산의 농도에 따른 LiCoO2의 침출율을 시험하였다.The leaching rate of LiCoO 2 according to the concentration of oxalic acid was tested at a reaction temperature of 80 ° C., agitation speed of 300 rpm, and initial liquid concentration of 50 g / L.

그 결과 도 4a에 도시한 바와같이, 옥살산의 농도가 1M에서 3M로 증가할수록 Li의 침출에 미치는 영향은 미미하였지만 Co의 침출율은 감소하였고, 이는 옥살산의 농도가 증가할수록 용해된 Co 옥살산염의 용해도가 감소하기 때문이다.As a result, as shown in Fig. 4a, as the concentration of oxalic acid increased from 1M to 3M, the effect of Li leaching was insignificant, but the leaching rate of Co decreased. Because decreases.

그리고, 상기 옥살산의 농도가 1M에서 3M로 증가시키면 Co의 침출율은 4.7%에서 0.6%로 감소하는 것을 볼 수 있으며, 이는 Co의 회수율을 높이기 위해서는 옥살산의 농도를 증가시켜야 함을 의미하고, 이에의하여 옥살산의 최적 농도는 3M로 하는 것이 바람직하다.In addition, when the concentration of oxalic acid is increased from 1M to 3M, the leaching rate of Co can be seen to decrease from 4.7% to 0.6%, which means that the concentration of oxalic acid must be increased to increase the recovery of Co. Therefore, the optimal concentration of oxalic acid is preferably 3M.

실시예 4Example 4

옥살산 농도 3M, 반응온도 80℃, 교반속도 300rpm 조건에서 LiCoO2의 양(초기 광액농도)을 10g/L∼100g/L로 변화시키면서 침출을 수행하여 광액농도에 따른 Co와 Li의 침출율 변화를 시험하였다.Leaching was carried out by changing the amount of LiCoO 2 (initial photoliquid concentration) from 10g / L to 100g / L at oxalic acid concentration of 3M, reaction temperature of 80 ℃, and stirring speed of 300rpm to change the leaching rate of Co and Li according to the photoliquid concentration. Tested.

그 결과, 도4b에서와 같이 반응시간 90분에서 Co와 Li의 침출율을 살펴보면, 초기 광액농도 10g/L∼20g/L의 범위에서 Li의 침출율이 거의 100% , 광액농도가 50 g/L에서는 95%, 100 g/L에서는 50%로 감소하는 것을 볼 수 있었으며, 반면에 Co는 광액농도 10g/L∼50g/L의 범위에서 용해율은 1% 미만, 100 g/L에서는 2.2%로 상승하는 것을 볼 수 있다.As a result, as shown in Fig. 4b, the leaching ratios of Co and Li at the reaction time of 90 minutes are as follows: the leaching ratio of Li is almost 100% and the concentration of the liquid solution is 50 g / In the case of L, it was found to decrease to 95% and to 50% at 100 g / L, while Co had a dissolution rate of less than 1% in the range of 10g / L to 50g / L mineral solution and 2.2% at 100 g / L. You can see the rise.

따라서, Co의 회수량, 순도 및 처리량을 고려한다면 초기 광액농도의 최적량은 50g/L인 것이 바람직하다.Therefore, considering the recovery amount, purity, and throughput of Co, the optimum amount of initial liquid concentration is preferably 50 g / L.

실시예 5Example 5

옥살산의 농도 3M, 초기 광액농도 50g/L, 교반속도 300rpm 조건에서 반응온도를 25℃∼80℃로 변화시키면서 침출을 수행하여 반응온도가 Co와 Li의 침출에 미치는 영향을 시험하였다.Leaching was carried out at 25 ° C. to 80 ° C. at a concentration of 3M of oxalic acid, an initial mineral solution concentration of 50 g / L, and a stirring speed of 300 rpm to test the effect of the reaction temperature on leaching of Co and Li.

그 결과 도4c에서와 같이, 반응시간 90분에서 Co와 Li의 침출율을 살펴보면, 반응온도 25℃일 때 Li은 45%, Co는 3%의 침출율을 보였으나, 반응온도 50℃일 때 Li은 55%, Co는 0.2%의 침출율을 보였으며, 이에따라 반응온도를 더욱 높일수록 Li의 침출율은 증가하고 Co의 용해율은 감소함을 알수 있었고, 80℃일 때 Li는 95% 이상 용해되었으나 Co는 0.2% 이하로 용해율이 감소하는 것을 알수있다.As a result, as shown in Figure 4c, when looking at the leaching rate of Co and Li in the reaction time 90 minutes, when the reaction temperature of 25 ℃ showed a leaching rate of 45%, Co 3%, but when the reaction temperature 50 ℃ The leaching rate of Li was 55% and Co was 0.2%. Therefore, as the reaction temperature was increased, the leaching rate of Li increased and the dissolution rate of Co decreased. At 80 ° C, Li was dissolved more than 95%. Co, however, can be seen that the dissolution rate is reduced to less than 0.2%.

이에따라서, 국내에서 발생된 폐리튬이차전지로서 코발트 및 리튬함량이 각각 5-15%, 2-7% 함유된 폐리튬전지로부터 회수한 양극활물질 분말을 상기에서 언급한 최적의 옥살산 침출조건(반응 온도 80℃, 교반 속도 300rpm, 옥살산 3 M, 초기 광액 농도 50g/L)에서 침출하였으며, 그 결과 도5에서와 같이 Li의 침출율이 99% 이었으며, Co의 용해율은 0.25%로 매우 낮음을 알 수 있다.Accordingly, the above-mentioned optimum oxalic acid leaching conditions (reaction) of the positive electrode active material powder recovered from spent lithium batteries containing 5-15% and 2-7% of cobalt and lithium, respectively, as waste lithium secondary batteries produced in Korea Temperature 80 ° C, stirring speed 300rpm, oxalic acid 3M, initial mineral solution concentration 50g / L), as a result, as shown in Figure 5 Li leaching rate of 99%, Co dissolution rate of 0.25% was found to be very low Can be.

상기와 같은 결과에 의해 폐리튬이온이차전지 재활용 목표가 되는 양극활물질인 LiCoO2를 옥살산으로 용해 처리한다면 Li을 선택적으로 용해함과 아울러 Co를 옥살산염의 형태로 침전하는 방법에 의해 고 순도의 Co를 분리 회수할 수 있다.According to the above results, if LiCoO 2 , a positive electrode active material for recycling lithium ion secondary batteries, is dissolved and treated with oxalic acid, Li is selectively dissolved and Co is precipitated in the form of oxalate to separate high purity Co. It can be recovered.

그리고, 회수한 Co 옥살산염은 저온 하소에 의하여 산화물 형태로 변화시켜여러 용도로 사용이 가능하며, 용액중에 잔류하는 Li은 Na2CO3나 LiOH 등의 첨가하여 고순도 Li 탄산염 혹은 Li 수산염 형태로 회수가 가능하다.In addition, the recovered Co oxalate can be used for various purposes by converting it into an oxide form by low temperature calcination, and the remaining Li in the solution is recovered in the form of high purity Li carbonate or Li oxalate by adding Na 2 CO 3 or LiOH. Is possible.

더하여, 본발명의 방법은 폐리튬이온전지의 재활용에만 국한 되는 것이 아니라 전지생산공정에서 산출되는 양극재료 슬러리, 전극재료 스크랩, 전지 불량품등에 적용이 가능토록 되는 것이다.In addition, the method of the present invention is not limited to the recycling of waste lithium ion batteries, but can be applied to the cathode material slurry, electrode material scrap, and battery defective products produced in the battery production process.

이와 같이 본 발명에 의하면, 침출과 동시에 리튬과 코발트를 분리할수 있으며, 고순도의 코발트를 선택 회수할수 있고, 유가금속을 선택적으로 전량 회수토록 하는 우수한 효과가 있는 것이다.As described above, according to the present invention, lithium and cobalt can be separated at the same time as leaching, and high-purity cobalt can be selectively recovered and the valuable metal can be recovered selectively.

본 발명은 특정한 실시예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 정신이나 분야를 벗어나지 않는 한도내에서 본 발명이 다양하게 개량 및 변화될수 있다는 것을 당업계에서 통상의 지식을 가진자는 용이하게 알수 있음을 밝혀 두고자 한다.While the invention has been shown and described with respect to specific embodiments thereof, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit or scope of the invention as provided by the following claims. I would like to clarify that those who have knowledge of this can easily know.

Claims (4)

삭제delete 삭제delete 폐리튬이온전지를 가열 절단하여 플라스틱편을 분리하고, 상기 부산물을 2차 가열하여 전극물질과 금속편을 분리하며, 상기 전극물질을 배소하여 양극활물질인 LiCoO2만을 선택 분리하고, 상기 LiCoO2를 옥살산에 용해시켜 코발트와 리튬을 회수하는 폐리튬이온전지로부터 코발트를 회수하는 방법에 있어서,The waste lithium ion battery is heat-cut to separate the plastic pieces, the by-product is heated second to separate the electrode material and the metal pieces, and the electrode material is roasted to selectively separate only LiCoO 2 , the positive electrode active material, and the LiCoO 2 is oxalic acid. In the method for recovering cobalt from a waste lithium ion battery dissolved in to recover cobalt and lithium, LiCoO2로부터 Co를 반응 온도 25~80℃, 교반 속도 300rpm, 옥살산 1~3M, 초기 광액 농도 10~100g/L에서 침출시켜 Co 옥살산염 형태로 선택 회수하며, 반응 종료후 용해액에 Na2CO3또는 LiOH를 첨가하여 Li를 리튬탄산염 또는 리튬수산염 형태로 회수하는 것을 특징으로 하는 폐리튬이온전지로부터 코발트를 회수하는 방법.Co is extracted from LiCoO 2 at a reaction temperature of 25 to 80 ° C., agitation speed of 300 rpm, oxalic acid 1 to 3 M, initial mineral solution concentration of 10 to 100 g / L, and recovered in the form of Co oxalate. After completion of the reaction, Na 2 CO A method for recovering cobalt from a spent lithium ion battery, wherein Li is recovered in the form of lithium carbonate or lithium hydroxide by adding 3 or LiOH. 제3항에 있어서, 상기 Co 옥살산염은, 전극재료로 사용되는 산화물상을 얻도록 500℃의 온도로 하소되는 것을 특징으로 하는 폐리튬이온전지로부터 코발트를 회수하는 방법.4. The method of claim 3, wherein the Co oxalate is calcined at a temperature of 500 DEG C so as to obtain an oxide phase used as an electrode material.
KR10-2002-0010020A 2002-02-25 2002-02-25 Recovery Method of Cobalt from spent lithium ion battery KR100448273B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0010020A KR100448273B1 (en) 2002-02-25 2002-02-25 Recovery Method of Cobalt from spent lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0010020A KR100448273B1 (en) 2002-02-25 2002-02-25 Recovery Method of Cobalt from spent lithium ion battery

Publications (2)

Publication Number Publication Date
KR20030070469A KR20030070469A (en) 2003-08-30
KR100448273B1 true KR100448273B1 (en) 2004-09-10

Family

ID=32222533

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0010020A KR100448273B1 (en) 2002-02-25 2002-02-25 Recovery Method of Cobalt from spent lithium ion battery

Country Status (1)

Country Link
KR (1) KR100448273B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010104659A (en) * 2000-05-11 2001-11-26 게르트 켈러 standard for a nanotopography unit, and a method for producing the standard
KR100796369B1 (en) 2007-04-26 2008-01-21 주식회사 리싸이텍코리아 Recovery method of high purity cobalt, copper and recycled plastics from wasted lithium ion batteryes
KR20220086862A (en) 2020-12-17 2022-06-24 대진대학교 산학협력단 Method for recovering lithium hydroxide and sulfuric acid from lithium sulfate waste solution

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100473641B1 (en) * 2002-06-03 2005-03-10 한국지질자원연구원 Recovery Device and Method of Lithium Cobalt Oxide from Spent Lithium Battery
JP4492222B2 (en) * 2004-06-21 2010-06-30 トヨタ自動車株式会社 Lithium battery treatment method
KR101314635B1 (en) * 2011-08-01 2013-10-04 한국생산기술연구원 Method of recycling cobalt from cobalt containing wastes
KR101331836B1 (en) * 2012-06-11 2013-11-22 (주)리사이텍 Dissolution of thermoelectric materials containing te with oxalic acid
KR102269326B1 (en) * 2018-12-20 2021-06-25 동우 화인켐 주식회사 Pretreatment method for recycling lithium secondary battery
KR102349767B1 (en) 2019-03-27 2022-01-11 에스케이이노베이션 주식회사 Method of regenerating lithium precursor
CN110010991A (en) * 2019-04-22 2019-07-12 北京化工大学 The technique of cobalt acid lithium in a kind of recycling and regenerating waste used cobalt acid lithium battery
CN111430829B (en) * 2020-03-11 2021-06-29 中南大学 Method for recycling and regenerating waste lithium battery anode material under assistance of biomass waste
KR20210158233A (en) * 2020-06-23 2021-12-30 주식회사 엘지에너지솔루션 Reuse method of active material of positive electrode scrap
CN113117637A (en) * 2021-04-19 2021-07-16 重庆大学 Method for preparing carbon dioxide adsorbing material by using waste lithium cobaltate battery as raw material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116020A (en) * 1997-06-18 1999-01-12 Nisso Kinzoku Kagaku Kk Method for recovering high-purity cobalt compound from scrap lithium ion battery
JPH11185834A (en) * 1997-12-25 1999-07-09 Matsushita Electric Ind Co Ltd Positive electrode active material recovering method of lithium ion secondary battery
KR20000055084A (en) * 1999-02-03 2000-09-05 윤대근 Transition metal recovering method from positive active materials of lithium ion cell
KR20010106562A (en) * 2000-05-22 2001-12-07 김인석 recycling method of lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116020A (en) * 1997-06-18 1999-01-12 Nisso Kinzoku Kagaku Kk Method for recovering high-purity cobalt compound from scrap lithium ion battery
JPH11185834A (en) * 1997-12-25 1999-07-09 Matsushita Electric Ind Co Ltd Positive electrode active material recovering method of lithium ion secondary battery
KR20000055084A (en) * 1999-02-03 2000-09-05 윤대근 Transition metal recovering method from positive active materials of lithium ion cell
KR20010106562A (en) * 2000-05-22 2001-12-07 김인석 recycling method of lithium ion secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010104659A (en) * 2000-05-11 2001-11-26 게르트 켈러 standard for a nanotopography unit, and a method for producing the standard
KR100796369B1 (en) 2007-04-26 2008-01-21 주식회사 리싸이텍코리아 Recovery method of high purity cobalt, copper and recycled plastics from wasted lithium ion batteryes
KR20220086862A (en) 2020-12-17 2022-06-24 대진대학교 산학협력단 Method for recovering lithium hydroxide and sulfuric acid from lithium sulfate waste solution

Also Published As

Publication number Publication date
KR20030070469A (en) 2003-08-30

Similar Documents

Publication Publication Date Title
Zou et al. A novel method to recycle mixed cathode materials for lithium ion batteries
US20220251681A1 (en) Process for the recovery of lithium and other metals from waste lithium ion batteries
CN101831548B (en) Method for recovering valuable metals from waste lithium manganese oxide battery
US20210324495A1 (en) Process for the recycling of spent lithium ion cells
US20220274841A1 (en) Process for the recovery of lithium from waste lithium ion batteries
TWI805730B (en) Process for the recovery of lithium and transition metal using heat
KR100448273B1 (en) Recovery Method of Cobalt from spent lithium ion battery
KR100358528B1 (en) recycling method of lithium ion secondary battery
CN108933308B (en) Comprehensive recycling method for anode and cathode of scrapped lithium battery
CN110092398A (en) A kind of method of waste and old lithium ion battery baking tail gases resource utilization
KR100448272B1 (en) Method for recycling of spent lithium ion battery
Rostami et al. Recovery of lithium, cobalt, nickel, and manganese from spent lithium-ion batteries through a wet-thermal process
JP2022542637A (en) Relithiation under oxidizing conditions
JP7271833B2 (en) Lithium recovery method
Feng et al. Recovery of LiCoO2 and graphite from spent lithium-ion batteries by molten-salt electrolysis
Apriliyani et al. Li-ion Batteries Waste Processing and Utilization Progress: A Review
JP2002075358A (en) Positive electrode material for lithium ion secondary battery and manufacturing method of the material
CN115744857B (en) Method for preparing lithium iron phosphate positive electrode material by directional circulation of waste lithium iron phosphate battery
Amalia Recycling Spent Cylindrical Lithium-ion Batteries–Hydrometallurgy Approach with Pre-treatments
KR20230161987A (en) Method for dissolving anode material
CN117185319A (en) Method for recovering lithium iron phosphate battery through sulfate air roasting
CN116435640A (en) Recycling method of lithium iron phosphate waste batteries
CN112242577A (en) Recycling method of lithium ion battery anode material
KR20210039555A (en) Method of recycling lithium precursor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130710

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140703

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20141001

Year of fee payment: 18