KR100437691B1 - Tread rubber composition improved conductivity - Google Patents

Tread rubber composition improved conductivity Download PDF

Info

Publication number
KR100437691B1
KR100437691B1 KR10-2001-0053834A KR20010053834A KR100437691B1 KR 100437691 B1 KR100437691 B1 KR 100437691B1 KR 20010053834 A KR20010053834 A KR 20010053834A KR 100437691 B1 KR100437691 B1 KR 100437691B1
Authority
KR
South Korea
Prior art keywords
weight
parts
rubber
carbon black
rubber composition
Prior art date
Application number
KR10-2001-0053834A
Other languages
Korean (ko)
Other versions
KR20030020146A (en
Inventor
박진영
Original Assignee
금호타이어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금호타이어 주식회사 filed Critical 금호타이어 주식회사
Priority to KR10-2001-0053834A priority Critical patent/KR100437691B1/en
Publication of KR20030020146A publication Critical patent/KR20030020146A/en
Application granted granted Critical
Publication of KR100437691B1 publication Critical patent/KR100437691B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Abstract

본 발명은 전도성이 향상된 트레드 고무조성물에 관한 것으로서 보다 상세하게는 천연고무, 스티렌 부타디엔 고무 및 부타디엔 고무가 함유된 원료고무 100 중량부와 보강충진제로서 실리카가 함유된 공지의 트레드 고무조성물에 있어서, 전도성 카본블랙 7∼12 중량부, 대전방지제 1∼10 중량부 포함하는 것을 특징으로 하는 전도성이 향상된 트레드 고무조성물에 관한 것이다.The present invention relates to a tread rubber composition with improved conductivity, and more particularly, in a known tread rubber composition containing 100 parts by weight of raw rubber containing natural rubber, styrene butadiene rubber and butadiene rubber and silica as a reinforcing filler, It relates to a tread rubber composition with improved conductivity, comprising 7 to 12 parts by weight of carbon black and 1 to 10 parts by weight of an antistatic agent.

본 발명은 실리카가 함유된 공지의 트레드 고무조성물에 있어서, 원료고무 100 중량부에 대하여 전도성 카본블랙 7∼12 중량부, 대전방지제 1∼10 중량부 포함하도록 하여 트레드 고무배합물의 전도성을 향상시키는 동시에 전도성 카본블랙의 사용량을 감소시켜 고무배합물 제조시 비용을 감소하도록 하는 것을 목적으로 한다.The present invention provides a known tread rubber composition containing silica, which contains 7 to 12 parts by weight of conductive carbon black and 1 to 10 parts by weight of an antistatic agent, based on 100 parts by weight of the raw material rubber to improve the conductivity of the tread rubber compound. An object of the present invention is to reduce the amount of conductive carbon black used to reduce the cost of producing a rubber compound.

Description

전도성이 향상된 트레드 고무조성물{Tread rubber composition improved conductivity}Tread rubber composition improved conductivity

본 발명은 전도성이 향상된 트레드 고무조성물에 관한 것으로서 보다 상세하게는 천연고무, 스티렌 부타디엔 고무 및 부타디엔 고무가 함유된 원료고무 100 중량부 및 실리카가 함유된 공지의 트레드 고무조성물에 있어서, 전도성 카본블랙 7∼12 중량부, 대전방지제 1∼10 중량부 포함하는 것을 특징으로 하는 전도성이 향상된 트레드 고무조성물에 관한 것이다.The present invention relates to a tread rubber composition with improved conductivity, and more particularly, in a known tread rubber composition containing 100 parts by weight of raw rubber containing natural rubber, styrene butadiene rubber and butadiene rubber and silica, the conductive carbon black 7 It relates to a tread rubber composition with improved conductivity, characterized in that it comprises-12 parts by weight, 1 to 10 parts by weight of the antistatic agent.

최근 저연비 타이어의 개발이 가속화되면서 보강 충진재로서의 실리카의 사용량이 나날이 증가하면서 카본블랙 대비 그 사용비중도 증가하는 추세이다. 그러나 실리카는 절연체로서 차량이 주행중 발생되는 타이어와 지면의 마찰에 의해 발생하는 전기는 외부로 방출하지 못하고 차량의 내부에 잠재하여 사람과 차량이 접촉시 정전기를 발생하여 소비자로 하여금 불쾌감을 유발하는 등 많은 문제점을 가지고 있다.Recently, as the development of low-fuel tires is accelerated, the use of silica as a reinforcing filler increases day by day, and the use ratio of carbon black is also increasing. However, silica is an insulator that does not emit electricity generated by the friction between the tires and the ground generated while the vehicle is running, but it is latent inside the vehicle, causing static electricity when a person and the vehicle come into contact with each other. There are many problems.

일반적으로 트레드 고무배합물의 보강충진제로 전도성 카본블랙을 10∼30 중량부를 사용하는 경우 체적저항이 108오옴·센티미터(Ω·cm) 이거나 그 이하인 반면 실리카를 100% 적용한 트레드의 경우 1013Ω·cm 이상의 매우 높은 전기저항성을 가져 고무배합물이 전도성을 전혀 갖지 못한다. 이러한 실리카 고무배합물의 문제점을 해결하고자 전도성 카본블랙을 사용하고 있는데 전도성 카본블랙의 가격이 매우 고가여서 비용문제에 어려움이 있다. 또한 표면적이 매우 큰 전도성 카본블랙을 사용하면 경도, 모듈러스 등의 인장물성 및 가류물성이 달라지게 되므로 고무배합물의 물성을 조절하기가 매우 어려운 문제도 있다.In general, when 10 to 30 parts by weight of conductive carbon black is used as a reinforcing filler of a tread rubber compound, the volume resistivity is 10 8 ohm centimeters (Ωcm) or less, whereas in a tread made of 100% silica, 10 13 Ω · It has very high electrical resistivity of more than cm and the rubber compound has no conductivity at all. In order to solve the problem of the silica rubber compound, conductive carbon black is used, but the cost of the conductive carbon black is very expensive, which is difficult. In addition, when the conductive carbon black having a very large surface area is used, tensile properties such as hardness and modulus and vulcanization properties are changed, thereby making it very difficult to control the physical properties of the rubber compound.

본 발명은 상기의 문제점을 해결하기 위해 실리카가 함유된 공지의 트레드 고무조성물에 있어서, 원료고무 100 중량부에 대하여 전도성 카본블랙 7∼12 중량부, 대전방지제 1∼10 중량부 포함하도록 하여 트레드 고무배합물의 전도성을 향상시키는 동시에 전도성 카본블랙의 사용량을 감소시켜 고무배합물 제조시 비용을 감소하도록 하는 것을 목적으로 한다.In order to solve the above problems, a known tread rubber composition containing silica includes 7-12 parts by weight of conductive carbon black and 1-10 parts by weight of an antistatic agent, based on 100 parts by weight of raw material rubber. The purpose of the present invention is to improve the conductivity of the blend and at the same time reduce the amount of conductive carbon black to reduce the cost of preparing the rubber blend.

본 발명의 전도성이 향상된 트레드 고무조성물은 천연고무, 스티렌 부타디엔 고무 및 부타디엔 고무가 함유된 원료고무 100 중량부 및 보강성 충진제로서 실리카가 함유된 보다 상세하게는 실리카가 50 중량부 이상 함유된 공지의 트레드 고무조성물에 있어서 고무배합물의 전도성을 부여하기 위해 전도성 카본블랙 7∼12 중량부, 대전방지제 1∼10 중량부 포함하는 것을 특징으로 한다.The improved tread rubber composition of the present invention is 100 parts by weight of raw rubber containing natural rubber, styrene butadiene rubber and butadiene rubber, and more specifically, containing silica by weight of 50 parts by weight or more, containing silica as a reinforcing filler. In the tread rubber composition, 7-12 parts by weight of conductive carbon black and 1-10 parts by weight of an antistatic agent are included to impart conductivity of the rubber compound.

전도성 카본블랙은 일반 카본블랙과는 달리 그 구조가 긴 사슬처럼 되어있어 이들을 고무에 첨가할 경우 카본블랙 입자가 연쇄구조를 형성하여 이 연쇄를 통하여 파이전자가 이동함으로써 전기가 통하게 되거나 혹은 카본블랙 입자간을 파이전자가 점프하여 고무배합물에 전도성을 띠게 되는데 카본블랙 입자간의 간격이 100Å 이하일 경우 파이전자가 점프하는 것으로 알려져 있다. 따라서 전도성 카본블랙의 입자경이 작을수록 고무 매트릭스 상에서 입자간의 거리가 짧아져 도전통로의 역할이 증가하기 때문에 전도성이 증가하며, 구조가 발달할수록 카본블랙 응집(Aggregate)의 비등축성 및 형상의 불규칙성이 강하여 전도성이 우수하다.Unlike carbon black, conductive carbon black has a long structure, and when it is added to rubber, carbon black particles form a chain structure, and the piezo electrons move through the chain, so that electricity flows or carbon black particles It is known that pi electrons jump to the liver and become conductive to the rubber compound. When the gap between the carbon black particles is 100 μs or less, the pi electrons are known to jump. Therefore, the smaller the particle diameter of the conductive carbon black, the shorter the distance between the particles on the rubber matrix, and thus the conductivity increases, and the more the structure is developed, the more the non-axiality and the irregularity of the shape of the carbon black aggregate are increased. Excellent conductivity

본 발명에서는 상기와 같은 이유로 표면적이 500∼1200mg/g, DBP 값이 150∼400ml/100g 인 전도성 카본블랙을 사용하는 것이 좋다. 만일 표면적이 500mg/g 미만이면 고무 매트릭스상에서 입자간의 거리가 멀어져 파이전자의 전도가 되지 않아 이로 인해 도전통로의 역할을 하지 못하는 문제가 있고, 1200mg/g 초과하면 배합공정에서 분산성에 문제가 있으며, 또한 DBP 값이 150ml/100g 미만이면 응집력이 약해서 도전통로 역할을 하지 못하는 문제가 있고, DBP 값이 400ml/100g 초과하면 전도성 카본블랙의 가격이 상승하여 비용이 증가하는 문제가 있어, 전도성 카본블랙의 표면적은 500∼1200mg/g, DBP 값이 150∼400ml/100g 인 것을 사용하는 것이 좋다.In the present invention, it is preferable to use conductive carbon black having a surface area of 500 to 1200 mg / g and a DBP value of 150 to 400 ml / 100 g. If the surface area is less than 500 mg / g, the distance between the particles on the rubber matrix is far away, and thus the conductivity of the pi electrons cannot be conducted. Therefore, if the surface area exceeds 1200 mg / g, there is a problem of dispersibility in the compounding process. In addition, if the DBP value is less than 150ml / 100g, there is a problem in that the cohesive force does not act as a conductive passage. If the DBP value exceeds 400ml / 100g, there is a problem that the cost of the conductive carbon black increases and the cost increases. It is recommended to use a surface area of 500 to 1200 mg / g and a DBP value of 150 to 400 ml / 100 g.

본 발명에서 대전방지제는 가소제(Plasticizer)로서 점도하락의 효과가 있어 실리카가 함유된 고무배합물의 점도를 낮춰 공정성이 개선될 수 있는 것을 사용하는 것이 좋은데 이러한 역할을 할 수 있는 다양한 대전방지제를 사용한바 폴리에틸렌 글리콜 카르복실릭 산(Carboxylix acid of polyethylene glycol) 또는 폴리에틸렌 글리콜 지방 알킬 에스테르(Fatty alkyl ester of polyethylene glycol)를 사용시 가장 효과가 우수하여 본 발명에서는 대전방지제로서 폴리에틸렌 글리콜 카르복실릭 산 또는 폴리에틸렌 글리콜 지방 알킬 에스테르를 사용하는 것이 좋다.In the present invention, the antistatic agent is a plasticizer, which has the effect of decreasing the viscosity, so that the viscosity of the rubber-containing rubber compound may be improved, so that the processability may be improved, but various antistatic agents may be used. The most effective when using a polyethylene glycol carboxylic acid (Fatty alkyl ester of polyethylene glycol) or polyethylene glycol fatty acid ester (Fatty alkyl ester of polyethylene glycol) in the present invention is the polyethylene glycol carboxylic acid or polyethylene glycol fat as antistatic agent It is preferable to use alkyl esters.

본 발명에서 대전방지제로 사용하는 폴리에틸렌 글리콜 지방 알킬 에스테르에서 알킬기는 탄소수가 C1∼C5인 것을 사용하였을 때 본 발명의 목적과 부합되어 대전방지제중 폴리에틸렌 글리콜 지방 알킬 에스테르의 알킬기는 탄소수가 C1∼C5인 것을 사용하는 것이 좋다.In the present invention, when the alkyl group has a carbon number of C1 to C5 in the polyethylene glycol fatty alkyl ester used as an antistatic agent, the alkyl group of the polyethylene glycol fatty alkyl ester in the antistatic agent has a carbon number of C1 to C5 in accordance with the object of the present invention. It is good to use that.

본 발명의 실리카가 함유된 트레드 고무조성물에 있어서 원료고무 100 중량부에 대하여 전도성 카본블랙을 7∼12 중량부 사용하고 대전방지제를 1∼10 중량부 사용하여 제조한 고무는 종래 전도성 카본블랙만을 10∼30 중량부 사용한 고무와 동등 수준의 체적저항(Volume resistivity)을 가져 소량의 전도성 카본블랙과 대전방지제를 사용하여 고무의 전도성을 향상시킬 수 있다.In the tread rubber composition containing silica of the present invention, a rubber prepared by using 7 to 12 parts by weight of conductive carbon black and 1 to 10 parts by weight of an antistatic agent based on 100 parts by weight of raw rubber is conventionally made of only 10 conductive carbon black. It has a volume resistivity equivalent to ˜30 parts by weight of the used rubber, so that a small amount of conductive carbon black and an antistatic agent may be used to improve the conductivity of the rubber.

이하 본 발명을 다음의 비교예, 실시예에 의하여 설명하고자 한다. 그러나이들이 본 발명의 권리범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described by the following comparative examples and examples. However, these do not limit the scope of the present invention.

<비교예 1>Comparative Example 1

천연고무 40 중량부, 스티렌 부타디엔 고무 30 중량부 및 부타디엔 고무 30 중량부로 구성된 원료고무 100 중량부에 대하여 실리카 80 중량부, 실란커플링제 12.8 중량부 및 통상적으로 타이어 고무조성물에 사용하는 첨가제로서 산화아연 3 중량부, 스테아린산 2 중량부, 실리카분산제 3 중량부, 황 1.8 중량부, N-시클로헥실-2-벤조티아졸설펜 아미드(N-cyclohexyl-2-benzothiazolsulfen amide, CZ) 1.95 중량부, 디페닐구아니딘(DPG) 1.5 중량부를 혼합하고 160∼165℃에서 25∼30분 동안 가류하여 고무시편을 제조하였다.80 parts by weight of silica, 12.8 parts by weight of silane coupling agent, and zinc oxide as an additive commonly used in tire rubber compositions, based on 100 parts by weight of raw rubber composed of 40 parts by weight of natural rubber, 30 parts by weight of styrene butadiene rubber and 30 parts by weight of butadiene rubber. 3 parts by weight, stearic acid 2 parts by weight, silica dispersant 3 parts by weight, sulfur 1.8 parts by weight, N-cyclohexyl-2-benzothiazolsulfen amide (CZ) 1.95 parts by weight, diphenyl Rubber parts were prepared by mixing 1.5 parts by weight of guanidine (DPG) and vulcanizing at 160-165 ° C. for 25-30 minutes.

통상적으로 체적저항 및 점도를 측정하는 방법을 이용하여 상기 고무시편의 체적저항율 및 무니점도를 측정하여 그 결과를 아래의 표 1에 나타내었다.Typically, the volume resistivity and Mooney viscosity of the rubber specimens were measured using a method of measuring volume resistance and viscosity, and the results are shown in Table 1 below.

<실시예 1><Example 1>

천연고무 40 중량부, 스티렌 부타디엔 고무 30 중량부 및 부타디엔 고무 30 중량부로 구성된 원료고무 100 중량부에 대하여 실리카 65 중량부, 실란커플링제 10.4 중량부, 표면적이 1000mg/g, DBP 값이 387ml/100g인 전도성 카본블랙 5 중량부 및 통상적으로 타이어 고무조성물에 사용하는 첨가제로서 산화아연 3 중량부, 스테아린산 2 중량부, 실리카분산제 3 중량부, 황 1.8 중량부, N-시클로헥실-2-벤조티아졸설펜 아미드(CZ) 1.95 중량부, 디페닐구아니딘(DPG) 1.5 중량부를 혼합하고 160∼165℃에서 25∼30분 동안 가류하여 고무시편을 제조하였다.65 parts by weight of silica, 100 parts by weight of styrene coupling agent, 30 parts by weight of styrene butadiene rubber and 30 parts by weight of butadiene rubber, 65 parts by weight of silica, 10.4 parts by weight of silane coupling agent, surface area of 1000 mg / g, DBP value of 387 ml / 100 g 5 parts by weight of phosphorus conductive carbon black and 3 parts by weight of zinc oxide, 2 parts by weight of stearic acid, 3 parts by weight of silica dispersant, 1.8 parts by weight of sulfur, N-cyclohexyl-2-benzothiazole as an additive used in tire rubber compositions 1.95 parts by weight of sulfen amide (CZ) and 1.5 parts by weight of diphenylguanidine (DPG) were mixed and vulcanized at 160 to 165 ° C. for 25 to 30 minutes to prepare a rubber specimen.

통상적으로 체적저항 및 점도를 측정하는 방법을 이용하여 상기 고무시편의 체적저항율 및 무니점도를 측정하여 그 결과를 아래의 표 1에 나타내었다.Typically, the volume resistivity and Mooney viscosity of the rubber specimens were measured using a method of measuring volume resistance and viscosity, and the results are shown in Table 1 below.

<실시예 2><Example 2>

실리카 60 중량부, 실란커플링제 9.6 중량부, 표면적이 1000mg/g, DBP 값이 387ml/100g인 전도성 카본블랙 10 중량부 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 고무시편을 제조한 후 이 고무시편의 체적저항 및 무니점도를 측정하여 그 결과를 아래의 표 1에 정리하여 나타내었다.A rubber specimen was prepared in the same manner as in Example 1, except that 60 parts by weight of silica, 9.6 parts by weight of silane coupling agent, 1000 mg / g of surface area, and 10 parts by weight of conductive carbon black having a DBP value of 387 ml / 100 g were used. After the volume resistance and Mooney viscosity of the rubber specimens were measured and the results are summarized in Table 1 below.

<실시예 3><Example 3>

실리카 55 중량부, 실란커플링제 8.8 중량부, 표면적이 1000mg/g, DBP 값이 387ml/100g인 전도성 카본블랙 15 중량부 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 고무시편을 제조한 후 이 고무시편의 체적저항 및 무니점도를 측정하여 그 결과를 아래의 표 1에 정리하여 나타내었다.A rubber specimen was manufactured in the same manner as in Example 1, except that 55 parts by weight of silica, 8.8 parts by weight of the silane coupling agent, 1000 mg / g of surface area, and 15 parts by weight of conductive carbon black having a DBP value of 387 ml / 100 g were used. After the volume resistance and Mooney viscosity of the rubber specimens were measured and the results are summarized in Table 1 below.

<실시예 4><Example 4>

실리카 50 중량부, 실란커플링제 8 중량부, 표면적이 1000mg/g, DBP 값이 387ml/100g인 전도성 카본블랙 20 중량부 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 고무시편을 제조한 후 이 고무시편의 체적저항 및 무니점도를측정하여 그 결과를 아래의 표 1에 정리하여 나타내었다.A rubber specimen was prepared in the same manner as in Example 1 except that 50 parts by weight of silica, 8 parts by weight of silane coupling agent, 1000 mg / g of surface area, and 20 parts by weight of conductive carbon black having a DBP value of 387 ml / 100 g were used. After the volume resistance and Mooney viscosity of the rubber specimens were measured and the results are summarized in Table 1 below.

표 1. 비교예, 실시예의 고무조성물 및 체적저항율Table 1. Comparative rubber composition and volume resistivity of the examples

항목Item 비교예 1Comparative Example 1 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 원료고무Raw material rubber 100100 100100 100100 100100 100100 실리카Silica 8080 6565 6060 5555 5050 실란커플링제Silane coupling agent 12.812.8 10.410.4 9.69.6 8.88.8 88 카본블랙Carbon black -- 55 1010 1515 2020 산화아연Zinc oxide 33 33 33 33 33 스테아린산Stearic acid 22 22 22 22 22 실리카분산제Silica dispersant 33 33 33 33 33 유황brimstone 1.81.8 1.81.8 1.81.8 1.81.8 1.81.8 CZCZ 1.951.95 1.951.95 1.951.95 1.951.95 1.951.95 DPGDPG 1.51.5 1.51.5 1.51.5 1.51.5 1.51.5 체적저항율(Ω·cm)Volume resistivity (Ωcm) 4.5055E+154.5055E + 15 6.4230E+146.4230E + 14 1.5191E+101.5191E + 10 6.522E+66.522E + 6 3.6956E+53.6956E + 5 무니점도(125℃)Mooney viscosity (125 ℃) 100100 9898 9494 9292 9090 무니점도(105℃)Mooney viscosity (105 ℃) 128128 126126 123123 122122 118118

<실시예 5>Example 5

천연고무 40 중량부, 스티렌 부타디엔 고무 30 중량부 및 부타디엔 고무 30 중량부로 구성된 원료고무 100 중량부에 대하여 실리카 65 중량부, 실란커플링제 10.4 중량부, 표면적이 1000mg/g, DBP 값이 387ml/100g인 전도성 카본블랙 7 중량부, 대전방지제 3 중량부 및 통상적으로 타이어 고무조성물에 사용하는 첨가제로서 산화아연 3 중량부, 스테아린산 2 중량부, 실리카분산제 3 중량부, 황 1.8 중량부, N-시클로헥실-2-벤조티아졸설펜 아미드(CZ) 1.95 중량부, 디페닐구아니딘(DPG) 1.5 중량부를 혼합하고 160∼165℃에서 25∼30분 동안 가류하여 고무시편을 제조하였다.65 parts by weight of silica, 100 parts by weight of styrene coupling agent, 30 parts by weight of styrene butadiene rubber and 30 parts by weight of butadiene rubber, 65 parts by weight of silica, 10.4 parts by weight of silane coupling agent, surface area of 1000 mg / g, DBP value of 387 ml / 100 g 7 parts by weight of phosphorus conductive carbon black, 3 parts by weight of antistatic agent, and 3 parts by weight of zinc oxide, 2 parts by weight of stearic acid, 3 parts by weight of silica dispersant, 1.8 parts by weight of sulfur, N-cyclohexyl as an additive commonly used in tire rubber compositions 1.95 parts by weight of 2-benzothiazolesulfenamide (CZ) and 1.5 parts by weight of diphenylguanidine (DPG) were mixed and vulcanized at 160 to 165 ° C. for 25 to 30 minutes to prepare a rubber specimen.

한편 상기에서 대전방지제는 폴리에틸렌 글리콜 카르복실릭 산(Carboxylixacid of polyethylene glycol)을 사용하였다.Meanwhile, the antistatic agent used was a polyethylene glycol carboxylic acid (Carboxylix acid of polyethylene glycol).

통상적으로 체적저항 및 점도를 측정하는 방법을 이용하여 상기 고무시편의 체적저항율 및 무니점도를 측정하여 그 결과를 아래의 표 2에 나타내었다.Typically, the volume resistivity and Mooney viscosity of the rubber specimens were measured using a method of measuring volume resistance and viscosity, and the results are shown in Table 2 below.

<실시예 6><Example 6>

실리카 60 중량부, 실란커플링제 9.6 중량부, 대전방지제 5 중량부 사용하는 것을 제외하고는 상기 실시예 5와 동일한 방법으로 고무시편을 제조한 후 이 고무시편의 체적저항 및 무니점도를 측정하여 그 결과를 아래의 표 2에 나타내었다.Except for using 60 parts by weight of silica, 9.6 parts by weight of silane coupling agent, 5 parts by weight of an antistatic agent, a rubber specimen was prepared in the same manner as in Example 5, and then the volume resistivity and Mooney viscosity of the rubber specimen were measured. The results are shown in Table 2 below.

<실시예 7><Example 7>

실리카 55 중량부, 실란커플링제 8.8 중량부, 표면적이 1000mg/g, DBP 값이 387ml/100g인 전도성 카본블랙 12 중량부, 대전방지제 3 중량부 사용하는 것을 제외하고는 상기 실시예 5와 동일한 방법으로 고무시편을 제조한 후 이 고무시편의 체적저항 및 무니점도를 측정하여 그 결과를 아래의 표 2에 나타내었다.The same method as in Example 5 except that 55 parts by weight of silica, 8.8 parts by weight of the silane coupling agent, 1000 mg / g of surface area, 12 parts by weight of conductive carbon black having a DBP value of 387 ml / 100 g, and 3 parts by weight of an antistatic agent are used. After the rubber specimens were prepared, the volume resistivity and Mooney viscosity of the rubber specimens were measured, and the results are shown in Table 2 below.

<실시예 8><Example 8>

실리카 50 중량부, 실란커플링제 8 중량부, 표면적이 1000mg/g, DBP 값이 387ml/100g인 전도성 카본블랙 12 중량부, 대전방지제 5 중량부 사용하는 것을 제외하고는 상기 실시예 5와 동일한 방법으로 고무시편을 제조한 후 이 고무시편의 체적저항 및 무니점도를 측정하여 그 결과를 아래의 표 2에 나타내었다.The same method as in Example 5, except that 50 parts by weight of silica, 8 parts by weight of silane coupling agent, 1000 mg / g surface area, 12 parts by weight of conductive carbon black having a DBP value of 387 ml / 100 g, and 5 parts by weight of an antistatic agent. After the rubber specimens were prepared, the volume resistivity and Mooney viscosity of the rubber specimens were measured, and the results are shown in Table 2 below.

표 2. 비교예, 실시예의 고무조성물 및 체적저항율Table 2. Comparative rubber composition and volume resistivity of the examples

항목Item 실시예 5Example 5 실시예 6Example 6 실시예 7Example 7 실시예 8Example 8 원료고무Raw material rubber 100100 100100 100100 100100 실리카Silica 6565 6060 5555 5050 실란커플링제Silane coupling agent 10.410.4 9.69.6 8.88.8 88 카본블랙Carbon black 77 77 1212 1212 대전방지제Antistatic agent 33 55 33 55 산화아연Zinc oxide 33 33 33 33 스테아린산Stearic acid 22 22 22 22 실리카분산제Silica dispersant 33 33 33 33 유황brimstone 1.81.8 1.81.8 1.81.8 1.81.8 CZCZ 1.951.95 1.951.95 1.951.95 1.951.95 DPGDPG 1.51.5 1.51.5 1.51.5 1.51.5 체적저항율(Ω·cm)Volume resistivity (Ωcm) 9.5698E+89.5698E + 8 1.6520E+71.6520E + 7 2.2113E+62.2113E + 6 4.0125E+44.0125E + 4 무니점도(100℃)Mooney viscosity (100 ℃) 118118 115115 110110 107107

상기 표 1에서 전도성 카본블랙을 15∼20 중량부 사용해야만 고무시편의 체적저항이 108오옴·센티미터(Ω·cm) 이하로 감소한다. 그러나 표 2에서처럼 대전방지제를 사용하는 경우 전도성 카본블랙을 7∼12 중량부 사용하여도 체적저항을 108Ω·cm 이하로 떨어짐으로써 전도성을 향상시킨다.Only 15 to 20 parts by weight of conductive carbon black is used in Table 1 to reduce the volume resistivity of the rubber specimens to 10 8 ohm-cm or less. However, in the case of using an antistatic agent, as shown in Table 2, even when using 7 to 12 parts by weight of conductive carbon black, the volume resistance drops to 10 8 Ω · cm or less to improve conductivity.

한편 전도성 카본블랙만을 사용하게 되면 물성조절 및 공정성이 매우 어려운 반면 대전방지제를 사용함으로써 소량의 카본블랙을 사용하는 경우 물성변화가 거의 없으며 또한 대전방지제는 가소제의 역할을 하여 점도하락의 효과가 있어 실리카 고무배합물의 점도도 낮출 수 있어 공정성을 개선할 수 있다.On the other hand, when only conductive carbon black is used, physical property control and fairness are very difficult.However, when a small amount of carbon black is used by using an antistatic agent, there is almost no change in physical properties, and the antistatic agent acts as a plasticizer to reduce viscosity due to silica. The viscosity of the rubber compound can also be lowered, thereby improving processability.

Claims (3)

천연고무, 스티렌 부타디엔 고무 및 부타디엔 고무가 함유된 원료고무와 보강충진제로서 실리카가 함유된 트레드 고무조성물에 있어서,In the raw rubber containing natural rubber, styrene butadiene rubber and butadiene rubber and the tread rubber composition containing silica as a reinforcing filler, 원료고무 100중량부에 대하여 표면적이 500mg/g∼1200mg/g, DBP 값이 150ml/100g∼400ml/100g인 전도성 카본블랙 7∼12중량부, 대전방지제 1∼10중량부 포함하는 것을 특징으로 하는 전도성이 향상된 트레드 고무조성물.Characterized by 100 parts by weight of the raw material rubber, including 7 to 12 parts by weight of conductive carbon black having a surface area of 500 mg / g to 1200 mg / g, a DBP value of 150 ml / 100 g to 400 ml / 100 g, and an antistatic agent of 1 to 10 parts by weight. Tread rubber composition with improved conductivity. 삭제delete 제1항에 있어서, 대전방지제는 폴리에틸렌 글리콜 카르복실릭 산 또는 폴리에틸렌 글리콜 지방 알킬 에스테르 임을 특징으로 하는 전도성이 향상된 트레드 고무조성물.The tread rubber composition with improved conductivity according to claim 1, wherein the antistatic agent is polyethylene glycol carboxylic acid or polyethylene glycol fatty alkyl ester. 상기에서 알킬기는 탄소수가 C1∼C5인 것이다.In the above, the alkyl group is C1-C5.
KR10-2001-0053834A 2001-09-03 2001-09-03 Tread rubber composition improved conductivity KR100437691B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0053834A KR100437691B1 (en) 2001-09-03 2001-09-03 Tread rubber composition improved conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0053834A KR100437691B1 (en) 2001-09-03 2001-09-03 Tread rubber composition improved conductivity

Publications (2)

Publication Number Publication Date
KR20030020146A KR20030020146A (en) 2003-03-08
KR100437691B1 true KR100437691B1 (en) 2004-06-30

Family

ID=27722219

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0053834A KR100437691B1 (en) 2001-09-03 2001-09-03 Tread rubber composition improved conductivity

Country Status (1)

Country Link
KR (1) KR100437691B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100542282B1 (en) * 2003-09-08 2006-01-11 금호타이어 주식회사 Rubber composition with silica for improved electric conductivity
CN103570991A (en) * 2013-10-15 2014-02-12 苏州市景荣科技有限公司 High abrasion-resistant antistatic rubber sole

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100531018B1 (en) * 2002-07-11 2005-11-24 금호타이어 주식회사 The tire tread rubber composition containing electric conductive carbonblack for preventing electrostatic problems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR980000849A (en) * 1996-06-24 1998-03-30 발터 라이딩거, 한스-디이터 포스 Prevention of static charge on pneumatic tires
KR19990009415A (en) * 1997-07-09 1999-02-05 남일 Antistatic Tread Rubber Composition
JPH1180435A (en) * 1997-08-29 1999-03-26 Ohtsu Tire & Rubber Co Ltd :The Tire tread rubber composition
KR20020079253A (en) * 2001-04-14 2002-10-19 금호산업 주식회사 Silica-filled Tread Rubber Compounds With Improved Conductivity for Tire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR980000849A (en) * 1996-06-24 1998-03-30 발터 라이딩거, 한스-디이터 포스 Prevention of static charge on pneumatic tires
KR19990009415A (en) * 1997-07-09 1999-02-05 남일 Antistatic Tread Rubber Composition
JPH1180435A (en) * 1997-08-29 1999-03-26 Ohtsu Tire & Rubber Co Ltd :The Tire tread rubber composition
KR20020079253A (en) * 2001-04-14 2002-10-19 금호산업 주식회사 Silica-filled Tread Rubber Compounds With Improved Conductivity for Tire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100542282B1 (en) * 2003-09-08 2006-01-11 금호타이어 주식회사 Rubber composition with silica for improved electric conductivity
CN103570991A (en) * 2013-10-15 2014-02-12 苏州市景荣科技有限公司 High abrasion-resistant antistatic rubber sole

Also Published As

Publication number Publication date
KR20030020146A (en) 2003-03-08

Similar Documents

Publication Publication Date Title
US5714533A (en) Rubber composition improved in charging property and pneumatic tire produced by making use of the same
JP3200067B2 (en) Rubber composition for tire tread
KR20120133258A (en) Rubber compositions for silica tire tread composed of carbon nanotube having high antistatic and abrasion resistance properties
KR100437691B1 (en) Tread rubber composition improved conductivity
KR20110087468A (en) Tire tread rubber composition having improved fuel efficiency and static dissipative and tire using the same
JPH11181153A (en) Rubber composition for tread
KR100513239B1 (en) Silica Tread Rubber Composition with Carbon Nano Tube
US11608430B2 (en) Electrically conductive tread chimney compound
KR100962622B1 (en) Rubber composition for tire undertread
KR101398712B1 (en) Rubber composition for tire-tread
KR20020076063A (en) Dispersion-Improved Silica-filled SBR compounds for Tire
US20060167173A1 (en) Rubber composition for pneumatic tire
KR100713075B1 (en) Rubber composition for tire tread
KR101079355B1 (en) Rubber composition of studless tire tread
KR100228868B1 (en) Anti-static rubber composition
US7820751B2 (en) Rubber composition for pneumatic tire
KR101247392B1 (en) A rubber composite
KR101896589B1 (en) Rubber composition styrene-butadiene based for outsole having excellent ground contact force and abrasion resistance
KR100310985B1 (en) Antistatic Rubber Tile Composition
KR20230014440A (en) Tread rubber composition for tires
KR100533266B1 (en) Tire tread rubber composition
KR20020079253A (en) Silica-filled Tread Rubber Compounds With Improved Conductivity for Tire
JPH1149892A (en) Tread rubber composition
KR100722206B1 (en) Rubber composition for tire tread
KR100234476B1 (en) A tread rubber composition for preventing static electricity

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070523

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee