KR100431582B1 - Acylate-Based Resists for Atomic Force Microscopy Lithography and a Method for Nanostructure Pattern Formation - Google Patents

Acylate-Based Resists for Atomic Force Microscopy Lithography and a Method for Nanostructure Pattern Formation Download PDF

Info

Publication number
KR100431582B1
KR100431582B1 KR10-2001-0048107A KR20010048107A KR100431582B1 KR 100431582 B1 KR100431582 B1 KR 100431582B1 KR 20010048107 A KR20010048107 A KR 20010048107A KR 100431582 B1 KR100431582 B1 KR 100431582B1
Authority
KR
South Korea
Prior art keywords
afm
lithography
present
atomic force
force microscopy
Prior art date
Application number
KR10-2001-0048107A
Other languages
Korean (ko)
Other versions
KR20030013878A (en
Inventor
이해원
김성수
손민석
Original Assignee
학교법인 한양학원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 한양학원 filed Critical 학교법인 한양학원
Priority to KR10-2001-0048107A priority Critical patent/KR100431582B1/en
Publication of KR20030013878A publication Critical patent/KR20030013878A/en
Application granted granted Critical
Publication of KR100431582B1 publication Critical patent/KR100431582B1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • G03F7/0758Macromolecular compounds containing Si-O, Si-C or Si-N bonds with silicon- containing groups in the side chains
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/281Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors

Abstract

본 발명은 AFM(Atomic Force Microscope) 리소그래피에 응용되는 다음의 화학식 1의 구조를 가지는 아크릴레이트계 3원 공중합체를 제공한다. 또한, 본 발명은 다음의 화학구조를 갖는 중합체를 반도체 또는 금속 기판 위에 회전도포법으로 초박막을 형성시킨 후, AFM 탐침(probe)을 이용하여 초박막에 국부적으로 전압을 가하여 수십 나노미터의 선폭을 갖는 나노구조물(nanostructure)을 형성하는 방법에 관한 것이다.The present invention provides an acrylate-based terpolymer having the structure of Formula 1, which is applied to atomic force microscopy (AFM) lithography. In addition, according to the present invention, a polymer having the following chemical structure is formed on a semiconductor or metal substrate by a spin coating method, and then locally applied voltage to the ultra thin film using an AFM probe to have a line width of several tens of nanometers. The present invention relates to a method for forming a nanostructure.

상기 식 중, R1및 R2, R3는 -H 및 -CH3로 이루어지는 군에서 선택된 어느 하나의 기이고, R4는 -H, -CH3또는 -CH2CH2OH로 이루어지는 군에서 선택된 어느 하나의 기이다. 또한 l+m+n = 1 이고, 0.1≤1≤0.9 이고, 0.05 ≤ m ≤ 0.8 이고, 0.05 ≤ n ≤ 0.5 이다.In the above formula, R 1 and R 2 , R 3 is any group selected from the group consisting of -H and -CH 3 , R 4 in the group consisting of -H, -CH 3 or -CH 2 CH 2 OH One of the groups selected. Furthermore, l + m + n = 1, 0.1 ≦ 1 ≦ 0.9, 0.05 ≦ m ≦ 0.8, and 0.05 ≦ n ≦ 0.5.

Description

AFM 리소그래피용 아크릴레이트계 공중합체 및 이를 이용한 미세 산화패턴 형성방법{Acylate-Based Resists for Atomic Force Microscopy Lithography and a Method for Nanostructure Pattern Formation}Acrylate-based Resists for Atomic Force Microscopy Lithography and a Method for Nanostructure Pattern Formation

본 발명은 원자현미경(Atomic Force Microscope: AFM)을 이용한 산화 구조물 패턴 형성에 사용될 수 있는 새로운 구조의 실리콘을 함유한 아크릴레이트계 3원 공중합체 및 이를 이용하여 반도체 또는 금속 기판상에 회전도포법으로 형성된 초박막 레지스트위에 AFM 리소그래피 기술을 이용하여 수십 나노미터 크기의 산화패턴(산화 구조물 패턴)을 형성하는 방법에 관한 것이다.현대인들에게 전자 정보는 이제 생활의 필수적인 요소로서 깊숙이 관여하고 있다. 이러한 전자정보들을 좀더 신속하고 빠르게 취하기 위하여 정보처리 전자 기기들은 컴퓨터가 발명된 이래로 계속적으로 발전되어 왔으며, 최근에 들어서는 언제 어디서나 많은 양의 정보를 취득할 수 있도록 전자기기의 휴대화가 가속화 되고 있다. 이러한 시대에 컴퓨터 발전의 선결과제는 그 크기는 더욱 소형화 하면서도 보다 더욱 많은 정보를 처리할 수 있도록 하는 것이며, 이러한 과제는 초집적 반도체 소자의 개발로 충족 될 수 있다. 그러나, 새로운 고집적 반도체 회로의 개발과 같이 발전해온 기존의 광리소그래피 기술은 아직 개선의 여지가 어느 정도 남아 있다고는 하나, 그 집적화의 한계점이 눈앞에 보이게 됨에 따라 새로운 미세가공 기술의 개발이 필수적이다.The present invention is an acrylate terpolymer containing a new structure of silicon that can be used to form an oxidized structure pattern using an atomic force microscope (AFM), and a spin coating method on a semiconductor or metal substrate using the same. AFM lithography is used to form oxide patterns (oxidation structure patterns) on the formed ultra-thin resists. For modern people, electronic information is now deeply involved as an essential element of life. In order to take such electronic information more quickly and quickly, information processing electronic devices have been continuously developed since the invention of the computer, and in recent years, the portableization of electronic devices is accelerating to acquire a large amount of information anytime and anywhere. In this age, the advancement of computer development is to make the size smaller and to process more information, and this task can be met by the development of super-integrated semiconductor devices. However, although the conventional photolithography technology which has been developed with the development of a new integrated semiconductor circuit still has some room for improvement, the development of new microfabrication technology is essential as the limitation of integration becomes visible.

그 동안 알려진 광리소그래피를 대체할 여러 새로운 리소그래피 기술들 중 특히 전자선(e-beam) 미세가공 기술은 0.1 ㎛ 이하의 극소형 소자를 제조하는 공정에 매우 유력한 기술로 연구되고 있다.(J. Vac. Sci. Technol.B7(6). Nov/Dec 1989, F.J. Hohn, Electron beam Lithography: Its applications, p1405) 그러나 전자선 미세가공 기술은 고진공 상태에서 수행되어야 하는 공정상의 불리함과 전자선 크기의 조절과 가속 전압의 조절 문제, 수십 킬로볼트의 전압에 의한 전자산란(high electron scattering)등의 문제로 인하여 그 동안 마스크 제작에 주로 활용되고 있으며, 반도체 소자 가공에는 직접 사용되고 있지 않는 실정이다. 수십 나노미터 크기 이하의 패턴제조에 적합한 극미세가공기술로 각광을 받고 있는 AFM은 전자선 리소장치에 비하여 훨씬 낮은 전압과 극미세 전류를 사용하므로 전자산란의 문제점을 최소화할 수가 있다.Among the many new lithography techniques that will replace known photolithography, e-beam micromachining technology has been studied as a very promising technique for the production of ultra-small devices of 0.1 μm or less ( J. Vac. Sci. Technol.B7 (6) .Nov / Dec 1989, FJ Hohn, Electron beam Lithography: Its applications, p1405). Due to problems such as control of electrons, high electron scattering due to voltages of several tens of kilovolts, etc., it is mainly used in the manufacture of masks, and it is not used directly in the processing of semiconductor devices. AFM, which has been in the spotlight for the microfabrication technology suitable for manufacturing patterns of several tens of nanometers or less, uses a much lower voltage and a very small current compared to an electron beam lithograph device, thereby minimizing the problem of electron scattering.

일반적으로 AFM은 시료의 손상 없이 시료의 표면구조를 관찰하는데 주로 활용되지만, 시료 표면과 AFM 탐침 사이에 상호 작용하는 반데스발스힘을 적당히 조절하여 시료 표면구조를 분자수분에서 조작하거나, 탐침과 시료간에 적당한 전압을 가하여 표면의 구조변화를 일으켜서 나노구조물을 제작하는 기술을 나노리소그래피(nanolithography)라 한다. 나노리소그래피를 이용한 나노구조물을 제작함으로써 전자밀도나 에너지준위가 같은 물리적인 양들을 나노차원에서 제어할 수 있다. 10 nm 이하의 영역은 전자선 리소그래피와 같은 기존의 기술이 아직 쉽게 접근하지 못하는 분야로써, 이 영역에서는 AFM만이 거의 독보적이라 할 수 있다. AFM을 이용한 나노리소그래피 연구분야로는 레지스트물질이 초박막으로 코팅된 실리콘기판, 수소 패시베이션(passivation)된 실리콘기판, 티타늄이나 알루미늄 기판 표면위에 AFM 탐침의 전계에 의한 산화막 형성 패턴을 얻는 방법 등 다양한 방법들이 진행되고 있다. 최근에는 electrostatic force microscopy(EFM)와 scanning capacitance microscopy(SCM)를 이용하여 차세대 정보저장용 극미세패턴 형성 연구도 활발히 진행되고 있다.AFM을 이용한 산화 구조물 패턴형성 기술을 간단히 기술하면, 실리콘 기판 위에 매우 얇고 균일한 두께로 유기 박막을 도포하고 AFM의 팁을 통하여 국부적으로 수~수십 볼트의 전압을 가해 주어 산화패턴을 형성된다. 이때 전압이 가해진 부분의 레지스트층이 파괴되면서 반응식 1의 반응 메카니즘(J. Vac. Sci. Technol.A14(3),1996, 1223)에 따라 Si가 공기중의 수분과 반응하여 SiOx가 형성되어 레지스트 박막위로 튀어나온다. 도 3은 본 발명에서 논하는 AFM 리소그래피의 모식도이다.In general, AFM is mainly used to observe the surface structure of the sample without damaging the sample.However, by controlling the van des Waals force interacting between the surface of the sample and the AFM probe, the surface structure of the sample can be manipulated in molecular moisture, or the probe and the sample Nanolithography is a technique for producing nanostructures by applying structural changes to the surface by applying an appropriate voltage to the liver. By fabricating nanostructures using nanolithography, physical quantities with the same electron density and energy level can be controlled at the nanodimensional level. The area below 10 nm is an area that is not easily accessible by existing technologies such as electron beam lithography, and AFM is almost unique in this area. Nanolithography research using AFM includes various methods such as obtaining an oxide film formation pattern by an electric field of an AFM probe on the surface of a silicon substrate coated with a resist material, a silicon substrate hydrogen-passivated, or a titanium or aluminum substrate. It's going on. Recently, research on the formation of ultrafine patterns for the next generation of information storage using electrostatic force microscopy (EFM) and scanning capacitance microscopy (SCM) has been actively conducted. The organic thin film is applied to a thin and uniform thickness, and an oxide pattern is formed by applying a voltage of several tens to several tens of volts locally through the tip of the AFM. At this time, the resist layer in the portion where the voltage is applied is destroyed, and according to the reaction mechanism of reaction formula ( J. Vac. Sci. Technol. A14 (3), 1996 , 1223), Si reacts with moisture in the air to form SiO x . It sticks out of the resist thin film. 3 is a schematic diagram of AFM lithography discussed in the present invention.

[반응식 1]Scheme 1

AFM 팁 (양극반응(Cathode reaction))AFM tip (Cathode reaction)

2nH2O + 2ne-→ nH2+ 2nOH- 2nH 2 O + 2ne - → nH 2 + 2nOH -

실리콘 기판 (음극반응(Anode reaction))Silicon Substrate (Anode Reaction)

Si + nH2O → SiOn+ 2nH++ 2ne- Si + nH 2 O → SiO n + 2nH + + 2ne -

이때 형성된 산화 실리콘의 구조물은 그 구조가 매우 엉성하여 식각할 때 다른 부분의 실리콘 산화막보다 식각되는 속도가 빠르게 된다. 또한, 전압이 가해지지 않은 부분의 남겨진 유기 박막이 레지스트로 작용하여 식각의 속도를 조절할 수 있다.At this time, the structure of the silicon oxide formed is very rough when the structure is etched faster than the silicon oxide film of other parts when etching. In addition, the remaining organic thin film in the portion where no voltage is applied may act as a resist to control the speed of etching.

AFM 리소그래피에서 중요하게 작용하는 요소는 인가되는 전압과 흐르는 전류, 스캔(scan) 속도, 습도 등이다. 따라서 최적 조건이 아닌 상태에서 리소그래피를 진행하면 선폭이 일정하지 않고 선이 끊기는 패턴이 형성됨을 알 수 있다. 보다 빠른 속도록 좋은 극패턴을 형성하기 위해서는 고감도 레지스트와 얇고 균일한 박막 제조법을 개발하는 것이 매우 중요하다.본 발명에서는 스핀 도포법으로 대면적 기판 위에 적용할 수 있는 초 박막 레지스트를 개발하여, 이를 이용하여 0.1 ㎛ 이하의 선폭을 갖는 패턴공정을 개발하였다. 본 레지스트 물질을 이용하여 최적 공정조건을 개선하면 수 nm 수준의 극미세 패턴형성이 가능하며, 이와 관련된 기술은 테라비트급 반도체 기억소자와 초박막 패턴 형성 기술을 응용하는 매스미디어 분야의 중요한 원천요소기술이 될 수 있다.Important factors in AFM lithography are the applied voltage and current flowing, scan speed and humidity. Therefore, it can be seen that when lithography is performed under an optimal condition, a line width is not constant and a pattern in which lines are broken is formed. It is very important to develop a high sensitivity resist and a thin and uniform thin film manufacturing method to form a good polar pattern at a faster speed. In the present invention, a super thin film resist which can be applied on a large area substrate by spin coating is developed. A pattern process having a line width of 0.1 μm or less was developed. By improving the optimal process conditions using this resist material, it is possible to form ultra-fine patterns of several nm level. The related technology is an important source element technology in the field of mass media applying terabit semiconductor memory devices and ultra-thin pattern formation technology. Can be.

AFM을 이용한 리소그라피 기술과 이에 사용되는 레지스트들은 지금 까지 본 발명자에 의해 여러 문헌(Thin Solid Films, 690,1998, Kim, J. C.; Lee, Y. M.; Kim, E. R.; Lee, H.; Park, S. W., Nanometer-scale Lithography of Langmuir-Blodgett Films with Atomic Force Microscope, p317 와Mol. Cryst. Liq. Cryst,, 7,1999, Oh, Y.; Kim, J. C.; Lee, H., Atomic Force Microscope Lithography with Octadecyl Dimethly- Methoxysilane Monolayer Resist, 337등)에 보고되었다. 그러나 상기 문헌에 발표된 레지스트들은 박막의 두께가 2㎚이하인 유기 단분자들이며, 용매에 대한 충분한 내에칭성을 갖지 못하였다.Lithography techniques using AFM and the resists used therein have been described by the present inventors in the literature ( Thin Solid Films , 690, 1998 , Kim, JC; Lee, YM; Kim, ER; Lee, H .; Park, SW, Nanometer). -scale Lithography of Langmuir-Blodgett Films with Atomic Force Microscope, p317 and Mol Cryst Liq Cryst,, 7, 1999, Oh, Y .; Kim, JC;... Lee, H., Atomic Force Microscope Lithography with octadecyl Dimethly- Methoxysilane Monolayer Resist, 337 et al. However, the resists disclosed in the above documents are organic monomolecules having a thickness of 2 nm or less, and do not have sufficient resistance to solvents.

본 발명에서 사용되는 실리콘 함유한 단량체(1,3-비스(트리메틸실릴)이소프로필 메타크릴레이트 ; BPMA)는 과거 본 발명자에 의해 미국 특허출원 (USSN 08/942,249, 1999. 9)를 통해 소개된 바 있다. 또한 상기 단량체를 이용한 레지스트는 본 발명자에 의해 문헌(J. Photopolymer. Science and Technology, No. 4, Vol. 10, 1997, Kang, Y. J., Lee, H. 외, Chamically Amplified Silicon Containing Resist for ArF Excimer Laser Lithography, p585 과Mol. Cryst. Liq. Cryst., 1999, 327, Kim, Y. D., Lee, H. 외, New Bilayer Positive Photoresists for 193 nm Photolithography, p279)와 국내 특허공고 제10-1999-230417(1999. 11. 15)를 통해 보고된 바 있다.Silicone-containing monomers (1,3-bis (trimethylsilyl) isopropyl methacrylate; BPMA) used in the present invention have been previously introduced by the inventors in the US patent application (USSN 08 / 942,249, Sep. 1999). There is a bar. In addition, the resist using the monomer is described by the inventor in J. Photopolymer.Science and Technology , No. 4, Vol. 10, 1997, Kang, YJ, Lee, H. et al., Chamically Amplified Silicon Containing Resist for ArF Excimer Laser. Lithography, p585 and Mol. Cryst. Liq. Cryst. , 1999, 327, Kim, YD, Lee, H. et al., New bilayer Positive photoresists for 193 nm Photolithography, p279) , and Korean Patent Publication No. 10-1999-230417 (1999 11.15).

또한, 상기 인용된 문헌과 특허에서 제공되는 레지스트들과 마찬가지로 본 발명에서 제공하는 공중합체는 산촉매에 의한 화학증폭형 ArF 레지스트로서 좋은 재료로 쓰일 수 있다. 본 발명에서 기술되는 BPMA의 합성예는 상기 문헌들 참고로 하였다.In addition, like the resists provided in the above cited documents and patents, the copolymer provided in the present invention can be used as a good material as a chemically amplified ArF resist by an acid catalyst. Synthesis examples of BPMA described in the present invention are referred to the above references.

본 발명의 기술적 목적은 실리콘 기판 위에 AFM을 이용하여 수 nm 수준의 미세 산화 패턴을 제조할 수 있는 감도가 뛰어나고, O2RIE에 대해 강한 내성을 갖으며, 높은 열적 안정성과 기판과의 접착특성이 우수한 아크릴레이트계 공중합체를 제공하는 것이다.본 발명의 다른 목적은 본 발명의 아크릴레이트계 고분자를 이용하여 수나노미터 크기의 미세 산화패턴(산화구조물 패턴) 형성방법을 제공하는 것이다.The technical object of the present invention is to have excellent sensitivity for producing fine oxide pattern of several nm level using AFM on silicon substrate, strong resistance to O 2 RIE, high thermal stability and adhesion to substrate. It is another object of the present invention to provide a method for forming a fine oxidation pattern (oxidation structure pattern) of several nanometers in size by using the acrylate polymer of the present invention.

도1은 본 발명의 합성예 2에서 합성된 3원 공중합체의1H-NMR 분석결과를 나타내는 그래프이다.1 is a graph showing the 1 H-NMR analysis of the terpolymer copolymer synthesized in Synthesis Example 2 of the present invention.

도2는 본 발명의 합성예 2에서 합성된 3원 공중합체의 TGA(thermogravimetric analysis) 결과를 나타낸 그래프이다.Figure 2 is a graph showing the results of thermogravimetric analysis (TGA) of the terpolymer copolymer synthesized in Synthesis Example 2 of the present invention.

도3은 본 발명에서 설명되는 AFM 리소그래피의 모식도이다. (a)는 AFM의 탑침이며 양극반응(cathode reaction)이 일어나고, (b)는 유기 고분자 레지스트층이며, (c)는 응극반응(anode reaction)이 일어나는 고체 기판이다.3 is a schematic diagram of AFM lithography described in the present invention. (a) is a top of AFM, a cathode reaction occurs, (b) is an organic polymer resist layer, and (c) is a solid substrate on which an anode reaction occurs.

도4는 본 발명에 따른 3원 공중합체를 도포한 실리콘 기판 위에 AFM 이용하여 형성시킨 산화 패턴의 AFM 이미지다.4 is an AFM image of an oxidation pattern formed using AFM on a silicon substrate coated with a terpolymer according to the present invention.

본 발명에 의하면,하기 화학식 1과 같은 구조를 가지는 3원 공중합체가 제공된다.According to the present invention, a ternary copolymer having a structure such as the following Chemical Formula 1 is provided.

상기식 중, R1및 R2, R3는 -H 및 -CH3로 이루어지는 군에서 선택된 어느 하나의 기이고, R4는 -H, -CH3또는 -CH2CH2OH로 이루어지는 군에서 선택된 어느 하나의 기이며, l+m+n = 1 이고 0.1≤ l ≤ 0.9 이고, 0.05 ≤ m ≤ 0.8 이고, 0.05 ≤ n ≤ 0.5 이다. 또한 상기 3원 공중합체의 중량 평균 분자량은 5,000 ∼ 100,000 이다.In the above formula, R 1 and R 2 , R 3 is any group selected from the group consisting of -H and -CH 3 , R 4 in the group consisting of -H, -CH 3 or -CH 2 CH 2 OH With any group selected, l + m + n = 1, 0.1 ≦ l ≦ 0.9, 0.05 ≦ m ≦ 0.8, and 0.05 ≦ n ≦ 0.5. Moreover, the weight average molecular weights of the said terpolymer are 5,000-100,000.

본 발명의 다른 견지에 의하면,상기 화학식 1의 구조식을 갖는 3원 공중합체를 반도체 또는 금속(Si, GaAs, Ti, Cr, Mn) 기판 위에 스핀 도포법으로 초박막을 형성시킨 후 AFM을 이용하여 국부적으로 전압을 가하여 미세 산화 패턴을 형성하는 방법이 제공된다.According to another aspect of the present invention, after forming an ultra-thin film on the semiconductor or metal (Si, GaAs, Ti, Cr, Mn) substrate by the spin coating method of the ternary copolymer having the structural formula of Formula 1 by using AFM A method of forming a fine oxide pattern by applying a voltage is provided.

이하, 본 발명의 바람직한 합성예와 실시예에 대하여 첨부도면을 참조하여 상세히 설명하기로 한다.Hereinafter, preferred synthesis examples and examples of the present invention will be described in detail with reference to the accompanying drawings.

[합성예 1]Synthesis Example 1

상기 화학식 1의 중합체의 합성에 사용되어질 BPMA 단량체(II)의 합성 반응은 하기의 반응식 2와 반응식 3으로 표시될 수 있다.Synthesis reaction of the BPMA monomer (II) to be used in the synthesis of the polymer of Formula 1 may be represented by the following scheme 2 and scheme 3.

(1) 1,3-비스(트리메틸실릴)-2-프로판올(BPOH)(II)의 합성(1) Synthesis of 1,3-bis (trimethylsilyl) -2-propanol (BPOH) (II)

먼저, 디에틸 에테르가 들어있는 500 ml 플라스크에 0.3 몰 마그네슘 파우더를 넣고 질소 가스하에서 교반시키면서 클로로메틸트리메틸실란을 천천히 첨가한 후, 약 6시간 동안 반응시켜 그리니아드 시약(트리메틸실릴메틸 마그네슘 클로라이드)(I)을 합성했다. 합성된 그리나드 시약(I) 용액이 들어있는 플라스크 내에 0.15 몰 에틸 포르메이트를 천천히 첨가한 후, 교반시키며 약 24시간 동안 반응시킨다. 염화암모늄 용액을 사용하여 생성물을 가수분해한 후, 디에틸 에테르로 추출하였다.First, 0.3 mol magnesium powder was added to a 500 ml flask containing diethyl ether, and chloromethyltrimethylsilane was added slowly while stirring under nitrogen gas, followed by reaction for about 6 hours to react with Grignard reagent (trimethylsilylmethyl magnesium chloride) ( I) was synthesized. 0.15 mole ethyl formate is slowly added to the flask containing the synthesized Grignard reagent (I) solution, followed by stirring for about 24 hours. The product was hydrolyzed using ammonium chloride solution and then extracted with diethyl ether.

상기 추출물을 무수 황산마그네슘 상에서 건조시킨 후, 회전 증발기로 용매를 제거하고, 감압 분별 증류법에 의하여 분리 및 정제하였다. 1 torr에서 끓는점은 35 ℃이고 수율은 70 %이다. 얻어진 합성물을1H-NMR(Nuclear Magnetic Resonace) 및 FT-IR(Fourier Transform Infrared) 분광분석법으로 분석하여 그 구조를 확인하였다.After the extract was dried over anhydrous magnesium sulfate, the solvent was removed by rotary evaporation, separated and purified by vacuum distillation. At 1 torr, the boiling point is 35 ° C. and the yield is 70%. The obtained composite was analyzed by 1 H-NMR (Nuclear Magnetic Resonace) and FT-IR (Fourier Transform Infrared) spectroscopy to confirm the structure.

1H-NMR(Acetone-d6, ppm): 0.0(18H, Si-CH3), 0.9(4H, -CH2-) 1.2(1H, -OH), 4.0(1H, -CH-) FT-IR(KBr, cm-1): 3300(-OH), 2950(C-H), 1400 및 1260(Si-H) 1 H-NMR (Acetone-d 6 , ppm): 0.0 (18H, Si-CH 3 ), 0.9 (4H, -CH 2- ) 1.2 (1H, -OH), 4.0 (1H, -CH-) FT- IR (KBr, cm -1 ): 3300 (-OH), 2950 (CH), 1400 and 1260 (Si-H)

(2) 1,3-비스(트리메틸실릴)이소프로필 메타크릴레이트(BPMA)(III)의 합성(2) Synthesis of 1,3-bis (trimethylsilyl) isopropyl methacrylate (BPMA) (III)

상기에서 합성된 BPOH(II) 0.1 몰과 0.15 몰 TEA(트리에틸아민)을 250 ml 플라스크 내에서 디에틸 에테르에 용해시킨 후, 질소 기체 하에서 0.1 몰 메타아트릴로일 크로라이드를 천천히 첨가하고, 교반시키며 약 24시간 동안 반응시켰다. 얻어진 생성물을 디에틸 에테르로 추출하고, 추출물을 무수 황산마그네슘 상에서 건조시킨 후, 회전 증발기로 용매를 제거하고, 감압 분별 증류법에 의하여 분리 및 정제하였다. 1 torr에서 끓는점은 45 ℃이고 수율은 50%이다. 얻어진 합성물을1H-NMR 및 FT-IR 분광분석법으로 분석하여 그 구조를 확인하였다.0.1 mole of BPOH (II) synthesized above and 0.15 mole TEA (triethylamine) were dissolved in diethyl ether in a 250 ml flask, and then 0.1 mole methacryloyl chromide was slowly added and stirred under nitrogen gas. And reacted for about 24 hours. The obtained product was extracted with diethyl ether, the extract was dried over anhydrous magnesium sulfate, the solvent was removed by rotary evaporation, and separated and purified by vacuum distillation. At 1 torr the boiling point is 45 ° C and the yield is 50%. The obtained compound was analyzed by 1 H-NMR and FT-IR spectroscopy to confirm its structure.

1H-NMR(Acetone-d6, ppm): 0.0(18H, Si-CH3), 1.0(4H, -CH2-), 1.9(3H, -CH3), 5.2(1H, -CH-), 5.5 및 6.0(2H,=CH2) 1 H-NMR (Acetone-d 6 , ppm): 0.0 (18H, Si-CH 3 ), 1.0 (4H, -CH 2- ), 1.9 (3H, -CH 3 ), 5.2 (1H, -CH-) , 5.5 and 6.0 (2H, = CH 2 )

FT-IR(KBr, cm-1): 2950(C-H), 1720(C=0), 1600(C=C), 1400 및 1260(Si-H)FT-IR (KBr, cm -1 ): 2950 (CH), 1720 (C = 0), 1600 (C = C), 1400 and 1260 (Si-H)

[합성예 2]Synthesis Example 2

3원 공중합체의(VI)의 합성Synthesis of (VI) of Terpolymer

폴리[비스(트리메틸실릴)이소프로필 메타아크릴레이트-코-테트라하이드로퍼퓨릴 메타아크릴레이트-코-메타아크릴릭 엑시드](VI)의 합성 반응은 하기 반응식 4로 표기될 수 있다.The synthesis reaction of poly [bis (trimethylsilyl) isopropyl methacrylate-co-tetrahydroperfuryl methacrylate-co-methacrylic acid] (VI) can be represented by the following scheme 4.

500 ml 플라스크 안에서 합성예 1에서 합성한 BPMA 단량체(III) 0.1 몰과 TPMA(테트라하이드로퍼퓨릴메타아크릴레이트) 단량체(V) 0.08 몰과 MAA(메타아크릴릭 엑시드) 단량체(VI) 0.02 몰을 AIBN(아조비스이소부틸로니트릴) 2 몰%와 함께 THF(테트라하이드로퓨란)에 녹인 후, 질소 기체로 30분 동안 불어준다. 질소 기체 하에서 약 65 ∼ 70 ℃에서 교반하며 약 24시간동안 중합시켰다.In a 500 ml flask, 0.1 mole of BPMA monomer (III) synthesized in Synthesis Example 1, 0.08 mole of TPMA (tetrahydrofurfuryl methacrylate) monomer (V) and 0.02 mole of MAA (methacrylic acid) monomer (VI) were mixed with AIBN ( It is dissolved in THF (tetrahydrofuran) with 2 mol% of azobisisobutylonitrile) and then blown with nitrogen gas for 30 minutes. The polymerization was carried out for about 24 hours with stirring at about 65 to 70 ℃ under nitrogen gas.

반응물을 과량의 n-헥산에서 침전시키고, 그 침전물을 다시 THF에 녹인 후, 다시 n-헥산에 재침전시켰다. 얻어진 침전물을 여과지로 거른 후, 약 45 ℃로 유지되는 진공 오븐 내에서 약 24시간동안 건조시켜 중합체(VI)를 얻었다. 얻어진 중합체의 수율은 70 %였으며 중량 평균 분자량은 25,000이었으며, 다분산성(polydispercity)은 1.6이었고, 이 3원 공중합체의 Si 함량은 10 중량%(이론치) 였다.The reaction was precipitated in excess n-hexane, and the precipitate was dissolved in THF again and then re-precipitated in n-hexane. The obtained precipitate was filtered through filter paper and then dried in a vacuum oven maintained at about 45 ° C. for about 24 hours to obtain Polymer (VI). The yield of the obtained polymer was 70%, the weight average molecular weight was 25,000, the polydispercity was 1.6, and the Si content of this terpolymer was 10% by weight (theoretical value).

도 1는 본 합성예에서 합성한 3원 공중합체의1H-NMR 분석 결과를 나타낸 그래프이다. 도 2는 열 안정성을 TGA(ThermoGravimetric Analysis)로 분석한 그래프이다.1 is a graph showing the results of 1 H-NMR analysis of the ternary copolymer synthesized in the present synthesis example. 2 is a graph of thermal stability analyzed by TGA (ThermoGravimetric Analysis).

[실시예]EXAMPLE

합성예 2에서 합성한 3원 공중합체(VI) 0.05 g을 PGMEA(프로필렌 글리콜 메틸 에테르 아세테이트)용액 10 g에 녹여 교반기를 이용하여 교반하여 충분히 용해시켰다. 이 레지스트 조성물을 0.2 ㎛ 멤브레인 필터를 이용하여 여과했다. 준비된 실리콘 기판을 황산과 과산화수소를 3:1의 비율로 만든 용액에 30 분 동안 담그고 탈 이온수로 충분히 세척한 후, HMDS(헥사메틸실라잔)으로 처리했다.0.05 g of the terpolymer (VI) synthesized in Synthesis Example 2 was dissolved in 10 g of a PGMEA (propylene glycol methyl ether acetate) solution, stirred using a stirrer, and dissolved sufficiently. This resist composition was filtered using a 0.2 µm membrane filter. The prepared silicon substrate was immersed in a solution made of sulfuric acid and hydrogen peroxide in a ratio of 3: 1 for 30 minutes, washed sufficiently with deionized water, and then treated with HMDS (hexamethylsilazane).

상기의 방법으로 처리된 실리콘 기판 위에 여과시킨 상기의 레지스트 조성물을 약 2,000 ∼ 40,000 rpm의 속도로 20 ∼ 40 초간 스핀하여 도포하고, 소프트베이킹하여 레지스트 박막을 제조하였다.The resist composition filtered on the silicon substrate treated by the above method was spun and applied for 20 to 40 seconds at a speed of about 2,000 to 40,000 rpm, and softbaked to prepare a resist thin film.

제조된 레지스트 박막을 엘립소미터(ellipsometer)로 측정했을 때 그 두께는 10 Å이었다. 또한 이 박막을 AFM으로 확인했을 때 표면의 평균 거칠기는 1.0 Å/ 25 ㎛2이었다.The thickness of the prepared resist thin film was 10 mm when measured with an ellipsometer. Moreover, when this thin film was confirmed by AFM, the average roughness of the surface was 1.0 GPa / 25 µm 2 .

제조한 박막 위에 AFM 탐침을 위치시키고 도 3에 나타낸 AFM 리소그래피법으로 산화 패턴을 형성시켰다. 이때 AFM 팁에 가해준 전압은 10 ∼ 15 V 이고, 습도는 50 %, 스켄 스피드는 10 ∼ 15 ㎛/s 로 5 × 5 ㎛ 의 표면에 1.5 ㎛ 간격으로 선을 그려주었다. 리소그래피의 결과 튀어나온 SiOx의 선 폭은 83 nm 였고, 높이는 20 Å 이었다.An AFM probe was placed on the prepared thin film, and an oxide pattern was formed by the AFM lithography method shown in FIG. 3. At this time, the voltage applied to the AFM tip was 10-15 V, the humidity was 50%, the scan speed was 10-15 μm / s, and lines were drawn at 1.5 μm intervals on the surface of 5 × 5 μm. As a result of lithography, the line width of the protruding SiO x was 83 nm and the height was 20 mW.

도 4에 본 실시예에서 형성시킨 선 패턴의 AFM 이미지를 나타내었다.4 shows an AFM image of the line pattern formed in this example.

이상에서 살펴본 바와 같이 본 발명의 실시예에 따르면 화학식 1 표시되는 3원 공중합체는 AFM 을 이용한 산화패턴 형성 시에 충분한 감도를 가지면서 기판 위에 도포 성능이 뛰어나며 막질에 대하여 우수한 접착 특성을 가지는 실리콘 함유의 아크릴레이트계 공중합체를 제공한다. 또한 0.1 ㎛ 이하의 미세 패턴을 형성할 수 있으므로 대용량의 반도체 소자를 제조하는 데 있어서 매우 유용한 레지스트 물질로 사용될 수 있다. 본 발명에서 제공하는 아크릴레이트계 공중합체는 충분한 함량의 실리콘을 함유하여 AFM을 이용한 산화 패턴의 형성 후 다양한 응용성이 있다.As described above, according to the embodiment of the present invention, the ternary copolymer represented by Chemical Formula 1 has sufficient sensitivity when forming an oxide pattern using AFM, and has excellent coating performance on a substrate and contains silicon having excellent adhesion to film quality. An acrylate copolymer is provided. In addition, since a fine pattern of 0.1 μm or less can be formed, it can be used as a very useful resist material for manufacturing a large capacity semiconductor device. The acrylate copolymer provided in the present invention contains a sufficient amount of silicon and has various applications after formation of an oxidation pattern using AFM.

Claims (3)

AFM 리소그라피에 응용되는 하기 화학식 1의 구조를 갖는 3원 공중합체.Ternary copolymer having the structure of Formula 1 to be applied to AFM lithography. 단, 상기 식중, R1및 R2, R3는 -H 및 -CH3로 이루어지는 군에서 선택된 어느 하나의 기이고, R4는 -H, -CH3또는 -CH2CH2OH로 이루어지는 군에서 선택된 어느 하나의 기이며, l+m+n = 1 이고, 0.1≤ 1 ≤ 0.9 이고, 0.05 ≤ m ≤ 0.8 이고, 0.05 ≤ n ≤ 0.5 이다.Provided that R 1 and R 2 and R 3 are any group selected from the group consisting of -H and -CH 3 , and R 4 is -H, -CH 3 or -CH 2 CH 2 OH. Any one group selected from l + m + n = 1, 0.1 ≦ 1 ≦ 0.9, 0.05 ≦ m ≦ 0.8, and 0.05 ≦ n ≦ 0.5. 제 1항에 있어서, 상기 화학식 1의 3원 공중합체는 중량 평균 분자량이 5,000 ∼ 100,000임을 특징으로 하는 3원 공중합체.The ternary copolymer of claim 1, wherein the ternary copolymer of Formula 1 has a weight average molecular weight of 5,000 to 100,000. 청구항 1항 또는 2항의 3원 공중합체를 이용하여 반도체 또는 금속(Si, GaAs, Ti, Cr, Mn) 기판 위에 스핀 도포법으로 초박막을 형성시킨 후, AFM을 이용하여 국부적으로 전압을 가하여 미세 산화패턴을 형성하는 방법.After forming an ultra-thin film on a semiconductor or metal (Si, GaAs, Ti, Cr, Mn) substrate using the ternary copolymer of claim 1 or 2 by a spin coating method, and locally applied voltage using AFM to finely oxidize How to form a pattern.
KR10-2001-0048107A 2001-08-09 2001-08-09 Acylate-Based Resists for Atomic Force Microscopy Lithography and a Method for Nanostructure Pattern Formation KR100431582B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0048107A KR100431582B1 (en) 2001-08-09 2001-08-09 Acylate-Based Resists for Atomic Force Microscopy Lithography and a Method for Nanostructure Pattern Formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0048107A KR100431582B1 (en) 2001-08-09 2001-08-09 Acylate-Based Resists for Atomic Force Microscopy Lithography and a Method for Nanostructure Pattern Formation

Publications (2)

Publication Number Publication Date
KR20030013878A KR20030013878A (en) 2003-02-15
KR100431582B1 true KR100431582B1 (en) 2004-05-17

Family

ID=27718593

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0048107A KR100431582B1 (en) 2001-08-09 2001-08-09 Acylate-Based Resists for Atomic Force Microscopy Lithography and a Method for Nanostructure Pattern Formation

Country Status (1)

Country Link
KR (1) KR100431582B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100645374B1 (en) * 2004-10-04 2006-11-15 한양대학교 산학협력단 High speed nanostructure fabrication with a high aspect ratio using atomic force microscope lithography

Also Published As

Publication number Publication date
KR20030013878A (en) 2003-02-15

Similar Documents

Publication Publication Date Title
US8163189B2 (en) Method for producing a nanoporous substrate
EP3812839B1 (en) Polyoxometalate and heteropolyoxometalate compositions and method using them
Rolandi et al. A new scanning probe lithography scheme with a novel metal resist
EP2657767B1 (en) Patterning process
US8481663B2 (en) Resist copolymers containing photoacid generators for lithographic applications and its method of preparation
US6042993A (en) Photolithographic structure generation process
Kuan et al. Ultrathin polymer films for microlithography
KR100431582B1 (en) Acylate-Based Resists for Atomic Force Microscopy Lithography and a Method for Nanostructure Pattern Formation
Mühl et al. Nanometer-scale lithography in thin carbon layers using electric field assisted scanning force microscopy
KR100570285B1 (en) Copolymer for oxide pattern and method for oxide pattern formation thereof
Germain et al. Sulfur as a Novel Nanopatterning Material: An Ultrathin Resist and a Chemically Addressable Template for Nanocrystal Self‐Assembly
KR100626408B1 (en) Nanopatterning of organic and metal thin films using low energy atomic force microscope system
Son et al. Nanofabrication of a methacrylate-based polymer on a silicon substrate by using atomic force microscope lithography
US20070212808A1 (en) Method of selective removal of organophosphonic acid molecules from their self-assembled monolayer on Si substrates
US20200019062A1 (en) Novel compositions and processes for self-assembly of block copolymers
KR100416916B1 (en) Silicon-containing polymer and resist composition using the same
Sugimura Nanoscopic surface architecture based on molecular self-assembly and scanning probe lithography
KR100501844B1 (en) Azo dyes and azo-metal complexes for atomic force microscope lithography
Pasini et al. Novel organic resists for nanoscale imaging: from chemically amplified cycloaliphatic resists to dendrimer monolayers
Trimble Design and synthesis of functional polymers for nanoscale electronics
Clendenning et al. Lithographic applications of highly metallized polyferrocenylsilanes
KR100547254B1 (en) Ultra-thin organic films for lithography
Oh et al. Atomic force microscope lithography with octadecyldimethyl-methoxysilane monolayer resist
Tully The design, synthesis, and evaluation of novel dendritic polymers as resist materials for next generation lithography
Park et al. Synthesis of resists containing a photoacid generator group for atomic force microscope lithography

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120406

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee