KR100431159B1 - Method for producing Ti-based implant having bioactive surface as substitute for bone tissue - Google Patents

Method for producing Ti-based implant having bioactive surface as substitute for bone tissue Download PDF

Info

Publication number
KR100431159B1
KR100431159B1 KR10-2001-0014893A KR20010014893A KR100431159B1 KR 100431159 B1 KR100431159 B1 KR 100431159B1 KR 20010014893 A KR20010014893 A KR 20010014893A KR 100431159 B1 KR100431159 B1 KR 100431159B1
Authority
KR
South Korea
Prior art keywords
titanium
heat treatment
temperature
bioactive
hydroxyapatite
Prior art date
Application number
KR10-2001-0014893A
Other languages
Korean (ko)
Other versions
KR20020074843A (en
Inventor
김철생
Original Assignee
김철생
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김철생 filed Critical 김철생
Priority to KR10-2001-0014893A priority Critical patent/KR100431159B1/en
Publication of KR20020074843A publication Critical patent/KR20020074843A/en
Application granted granted Critical
Publication of KR100431159B1 publication Critical patent/KR100431159B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00293Ceramics or ceramic-like structures containing a phosphorus-containing compound, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Abstract

본 발명은 열확산방법으로 생체활성 표면을 갖는 Ti-소재 경조직 대체재료의 제조방법에 관한 것으로서, 상기 방법은 진공소결로 내에서 티타늄 또는 티타늄합금을 기재로 하여 하이드록시애퍼타이트 분말로 매몰시킨 다음, 불활성가스 또는 질소 분위기 하에서 열처리하여 Ca, P를 기재층으로 침투시키는 단계를 포함한다. 본 발명의 방법은 고가의 설비에 의한 코팅방법에 비해 진공열처리 설비만으로도 제조할 수 있고, 또한 기재 내부로 Ca 또는 P가 침투하기 때문에 마모에 의해 Ti-Ca 또는 Ti-P층이 떨어져 나가지 않아 안정된 생체활성 피막을 제조할 수 있다.The present invention relates to a method for preparing a Ti-material hard tissue substitute material having a bioactive surface by thermal diffusion method, which is buried with hydroxyapatite powder based on titanium or titanium alloy in a vacuum sintering furnace, Heat-treating in an inert gas or nitrogen atmosphere to infiltrate Ca and P into the base layer. The method of the present invention can be manufactured only by the vacuum heat treatment equipment compared to the coating method by the expensive equipment, and because the Ca or P penetrates into the substrate, the Ti-Ca or Ti-P layer does not fall off due to abrasion and is stable. Bioactive coatings can be prepared.

Description

생체활성 표면을 갖는 Ti-소재 경조직 대체재료의 제조방법{Method for producing Ti-based implant having bioactive surface as substitute for bone tissue}Method for producing Ti-based implant having bioactive surface as substitute for bone tissue

본 발명은 생체활성 표면을 갖는 Ti-소재 경조직 대체재료의 제조방법에 관한 것으로, 보다 상세하게는 인공치근, 골수복재, 인공관절 등 경조직 대체 소재로서 생체활성 표면을 갖는 Ti-소재 경조직 대체재료를 열확산법에 의해 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a Ti-material hard tissue substitute material having a bioactive surface, and more particularly, to a Ti-material hard tissue substitute material having a bioactive surface as a hard tissue substitute material such as artificial tooth root, bone marrow restoration, and artificial joint. It relates to a method of producing by thermal diffusion method.

현재 경조직 대체재료로 금속재료 중에서 가장 널리 사용되고 있는 티타늄 및 그의 합금은 안정된 산화막의 형성과 우수한 재부동태화(repassivation)능 때문에 골내 매식시 금속성분이 직접 골조직과 닿지 않기 때문에 생체 내에서의 적합성과 부식 저항이 높은 재료로 알려져 있다. 그러나 이 소재는 내마모성 및 전단강도가 낮아 매식체 표면으로부터 용출된 금속이온이나 마모된 입자들이 인접조직으로 이동함으로써 낮은 농도에서도 주위 조직에 독성반응을 일으킬 수 있다. 이러한 금속이온의 유리는 다공성 또는 거친 표면을 갖는 매식체에서 크게 증가되고 마모 파편(wear debris)이 형성될 때 더욱 증가되며 순수 티타늄에 비해 높은 기계적 강도를 갖는 티타늄합금의 경우도 알루미늄, 바나듐과 같은 합금원소 이온이 용출되어 거부반응을 일으키는 것으로 알려져 있다. 생체용 금속재료의 독성을 방지하기 위하여 생체 불활성 산화물과 열분해 탄소 질화물, 탄화물과 같은 생체 불활성 비산화물 등 다양한 세라믹들이 개발되어 임플란트 소재로 응용되고 있다. 생체재료로서 세라믹스의 기초연구는 1960년대 초부터 시작되어 다양한 바이오 세라믹스들이 개발되어 오늘날에는 인공치근, 골수복재, 인공관절 등 골대체용 소재로 이미 실용화되어 있다. 1980년대 초부터 열분해 탄소(Pyrolytic carbon), 알루미나(Al2O3), 지르코니아(ZrO2)와 같은 산화물 또는 TiN, ZrN, CrN 등과 같은 질화물 등 고밀도의생체 불활성 세라믹스들이 생체재료로 연구되어 왔으나 대부분의 세라믹스는 충격에 약하여 큰 하중을 갖는 임플란트 소재로는 사용이 제한되어 왔다.Titanium and its alloys, which are currently the most widely used alternative materials for hard tissues, are suitable for in vivo compatibility and corrosion because metals do not come into direct contact with bone tissue during bone ingrowth due to the formation of stable oxide films and excellent repassivation ability. It is known as a material with high resistance. However, the material has low abrasion resistance and shear strength, which can cause toxic reactions to surrounding tissues even at low concentrations as metal ions or worn-out particles eluted from the surface of the media move to adjacent tissues. The glass of these metal ions is greatly increased in the media having porous or rough surfaces, and is increased when wear debris is formed, and even in the case of titanium alloys having higher mechanical strength than pure titanium, such as aluminum and vanadium It is known that alloy element ions elute to cause rejection. In order to prevent the toxicity of the metal material for biotechnology, various ceramics such as bioinert oxide, pyrolytic carbon nitride, and bioinert non-oxide such as carbide have been developed and applied as an implant material. Basic research of ceramics as a biomaterial began in the early 1960s, and various bio ceramics have been developed and are now practically used as bone substitute materials such as artificial tooth roots, bone marrow restorations, and artificial joints. Since the early 1980s, high-density bioinert ceramics such as pyrolytic carbon, alumina (Al 2 O 3 ), zirconia (ZrO 2 ) or nitrides such as TiN, ZrN, CrN have been studied as biomaterials Ceramics have been limited to use as an implant material having a large load because they are weak to impact.

생체용 금속재료의 문제점들을 해결하기 위하여 생체재료의 모체는 요구되는 기계적 강도를 갖고, 생체적합한 표면을 갖는 매식체들을 개발하기 위한 다양한 특수 표면처리기술들이 응용되어 내마모성과 조직적합성을 향상시키려는 연구가 진행되어 왔다. 그 중 바이오세라믹 코팅은 생체조직과의 반응관점에서 크게 생체불활성 세라믹코팅과 생체활성 세라믹코팅으로 구분될 수 있다. 생체활성 세라믹스는 정상적인 골조직의 성장을 촉진시켜 줄 수 있는 소재로서 하이드록시애퍼타이트(hydroxyapatite, HA)와 임플란트 소재로는 인공치근 또는 인공관절 스템 표면 등에 적용되어 주로 골유도성 재료로 사용되어 왔다. 생체 흡수성 세라믹스는 저결정성 애퍼타이트, TCP(Tricalcium phosphate) 등이 포함되며 주로 골수복재로서 고결정도의 하이드록시애퍼타이트와 일정 비율로 혼합하여 인체 내에서 용해속도를 조절하여 사용하는 연구가 진행되어 왔다.In order to solve the problems of the metal material for biomaterials, a study is being conducted to improve wear resistance and tissue compatibility by applying various special surface treatment techniques to develop a medium having a required mechanical strength and having a biocompatible surface. It has been going on. Among them, the bioceramic coating may be classified into bioinert ceramic coating and bioactive ceramic coating in view of reaction with biological tissue. Bioactive ceramics are materials that can promote normal bone tissue growth, and are applied to hydroxyapatite (HA) and implant materials such as artificial roots or artificial stem stem surfaces. Bioabsorbable ceramics include low crystalline apatite and TCP (Tricalcium phosphate), and are mainly used as bone marrow restoratives and mixed with high crystalline hydroxyapatite at a constant ratio to control the dissolution rate in the human body. come.

이러한 생체활성 세라믹 코팅은 임플란트 매식시 초기 거부반응을 줄일 수 있으나 장기간 안정성에는 문제가 있는 것으로 알려져 있다. 또한 코팅과정 중에 발생하는 화학적 조성 또는 결정도(crystallinity)의 변화 때문에 골내에서 일정 기간 내에 흡수되어 티타늄의 모재가 노출되고 또한 고밀도의 하이드록시애퍼타이트(HA) 코팅층을 얻는데는 기술적인 어려움이 있어 코팅층이 인체 내에서 쉽게 분리되는 문제점을 갖고 있다.Such bioactive ceramic coatings can reduce initial rejection during implant implantation, but are known to have long-term stability problems. In addition, due to the change in chemical composition or crystallinity that occurs during the coating process, it is absorbed within a certain period of time in the bone to expose the base metal of titanium and there is a technical difficulty in obtaining a high density hydroxyapatite (HA) coating layer. There is a problem that is easily separated in the human body.

따라서 이러한 생체재료들의 문제점들을 해결하기 위해 다음과 같이 크게 두가지 측면에서 선택적으로 사용할 수 있는 생체재료들의 개발이 요구되어 왔다: 1) 생체재료의 모체는 요구되는 기계적 강도를 갖고 모체에 강한 결합력을 갖는 생체활성 표면을 갖는 매식체, 2) 매식체의 부위 중 내마모성과 생체불활성을 갖는 표면개질기술을 응용한 초경표면특성을 갖는 매식체.Therefore, in order to solve these problems of biomaterials, development of biomaterials that can be selectively used in two aspects has been required: 1) The mother material of the biomaterial has the required mechanical strength and strong bonding force to the mother material. A medium having a bioactive surface, 2) A medium having a carbide surface property by applying a surface modification technology having wear resistance and bioinertness in a portion of the medium.

현재 널리 사용되고 있는 방법은 하이드록시애퍼타이트(HA)라는 인체의 뼈구성물과 가장 유사한 물질을 티타늄에 코팅하는 방법으로 고온증착방법, 스프레이코팅방법(티타늄 타겟을 고진공 챔버에 세워놓고 하이드록시애퍼타이트(HA)가 티타늄표면에 달라붙도록 하는 방법) 등이 있는데 이 방법들은 고가의 설비가 있어야만 할 수 있는 방법들이다. 즉, 티타늄 표면에 코팅하는 방법으로 티타늄 표면에 코팅하여 인체 내에 삽입하였을 경우 지속적인 마모에 의해 쉽게 떨어져 나가는 단점을 가지고 있다.Currently widely used method is hydroxyapatite (HA) to coat the most similar substance to the bone composition of human body on titanium, high temperature deposition method, spray coating method (Titanium target in a high vacuum chamber and hydroxyapatite (HA) ) To stick to the titanium surface). These are methods that can only be expensive equipment. In other words, when coated on the titanium surface by the method of coating on the titanium surface and inserted into the human body has a disadvantage that easily fall off due to continuous wear.

본 발명자들은 종래의 코팅방법에 의한 생체재료의 제조시 문제점들을 해결하기 위해 예의 연구한 결과, 티타늄의 상변태 온도에서 티타늄조직이 서로 일정한 간격유지를 하지 않고 조직이 느슨해지는 틈 사이로 뼈의 성분과 유사한 인과 칼슘이 티타늄 조직 사이로 침투함으로써 티타늄 조직에 삽입되면 마모에 의해 떨어져나가지 않고, 또한 간단한 설비에 의해 쉽게 제조할 수 있음을 발견하고 본 발명에 이르렀다.The present inventors earnestly studied to solve the problems in the production of biomaterials by the conventional coating method, the result is similar to the bone component between the gaps where the tissues loosen without maintaining a constant gap between the titanium tissues at the phase transformation temperature of titanium The present invention has found that phosphorus and calcium penetrate between titanium tissues so that they do not fall off due to abrasion and can be easily manufactured by simple equipment.

따라서, 본 발명의 목적은 경조직 대체 소재로서 생체활성 표면을 갖는 Ti-소재 경조직 대체재료를 열확산법에 의해 제조하는 방법을 제공하는데 있다.Accordingly, it is an object of the present invention to provide a method for producing a Ti-material hard tissue substitute material having a bioactive surface as a hard tissue substitute material by thermal diffusion method.

도 1은 각각 열처리 전과 본 발명의 실시예 1 및 2에서 열처리(800℃, 850℃, 900℃)된 후의 Ti과 Ti6Al4V 표면의 SEM 사진(×20,000)이다.1 is an SEM image (× 20,000) of Ti and Ti 6 Al 4 V surfaces before heat treatment and after heat treatment (800 ° C., 850 ° C., 900 ° C.) in Examples 1 and 2 of the present invention, respectively.

도 2는 열처리온도에 따라 AES를 이용한 Ti 표면층의 화학적 조성분석(depth profile)을 나타낸 그래프이다.2 is a graph showing a chemical composition analysis (depth profile) of the Ti surface layer using AES according to the heat treatment temperature.

도 3은 열처리온도에 따라 AES를 이용한 Ti6Al4V 표면층의 화학적 조성분석을 나타낸 그래프이다.3 is a graph showing the chemical composition analysis of the Ti6Al4V surface layer using AES according to the heat treatment temperature.

도 4(a) 및 (b)는 각각 상변태온도 이전(도 2b) 및 이후(도 2d)에서의 Ca과 P의 확산정도를 비교하기 위한 그래프이다.4 (a) and 4 (b) are graphs for comparing the diffusion degrees of Ca and P before and after the phase transformation temperature (FIG. 2B) and FIG. 2D, respectively.

도 5는 열처리온도에 따라 하이드록시애퍼타이트(HA)내에서 열처리된 Ti에 대한 AES 스펙트럼이다.5 is an AES spectrum of Ti heat treated in hydroxyapatite (HA) according to the heat treatment temperature.

본 발명의 생체활성 표면을 갖는 Ti-소재 경조직 대체재료의 제조방법은 진공소결로 내에서 티타늄 또는 티타늄합금을 기재로 하여 하이드록시애퍼타이트 분말로 매몰시킨 다음, 불활성가스 또는 질소 분위기하에서 열처리하여 Ca, P를 기재층으로 침투시키는 것을 특징으로 한다.In the method of preparing a Ti-material hard tissue substitute material having a bioactive surface of the present invention, the titanium-titanium alloy is embedded in a sintered hydroxyapatite powder in a vacuum sintering furnace, followed by heat treatment under an inert gas or nitrogen atmosphere, and Ca , P is infiltrated into the base layer.

상기 기재재료로서 생체친화성의 관점에서는 순수 티타늄이 좋으나, 기계적 강도나 성형성의 관점에서는 Ti6Al4V, Ti5Al2.5Sn, Ti3Al13V11Cr, Ti15Mo5Zr3Tl, Ti6Al2NbTa와 같은 티타늄합금을 사용할 수도 있다. 본 발명에서는 기재로서 순수 티타늄 또는 Ti6Al4V을 사용하나 이들에 한정되는 것은 아니다.Pure titanium is preferable from the viewpoint of biocompatibility as the base material, but a titanium alloy such as Ti6Al4V, Ti5Al2.5Sn, Ti3Al13V11Cr, Ti15Mo5Zr3Tl, Ti6Al2NbTa may be used from the viewpoint of mechanical strength or formability. In the present invention, pure titanium or Ti 6 Al 4 V is used as the substrate, but is not limited thereto.

진공소결로의 진공도는 10-3토르 이상이 적당하며, 불활성 가스로는 아르곤 또는 네온을 사용하며, 열처리 온도는 800∼1000℃, 바람직하게는 티타늄의 상변태온도(약 882℃) 또는 티타늄합금의 상변태온도 이상이다. 800℃ 미만에서는, 티타늄 또는 티타늄합금 조직의 느슨해진 틈사이로 하이드록시애퍼타이트(HA)로부터의 Ca, P 등 특정원소의 확산이 만족스럽지 못하며, 1000℃를 넘으면, 기재로 사용되고 있는 티타늄 또는 티타늄합금의 기계적 강도가 열화하기 쉽다.The vacuum degree of the vacuum sintering furnace is appropriately 10 -3 Torr or more, inert gas is used as argon or neon, the heat treatment temperature is 800 ~ 1000 ℃, preferably the phase transformation temperature of titanium (about 882 ℃) or phase transformation of titanium alloy Above the temperature. Below 800 ° C, diffusion of certain elements such as Ca and P from hydroxyapatite (HA) is not satisfactory between the loosened gaps in the titanium or titanium alloy structure, and above 1000 ° C, titanium or titanium alloys used as substrates The mechanical strength of it is easy to deteriorate.

그리고, 열처리에 소요되는 시간은 Ca, P 등이 충분히 기재층으로 확산할 수 있는 범위내에서 적절히 조절가능하며, 통상 1∼3시간이 소요된다.The time required for heat treatment can be appropriately adjusted within the range in which Ca, P, and the like can sufficiently diffuse into the base layer, and usually takes 1 to 3 hours.

상기 방법과 같이, 매식체 표면에 뼈 등의 생체 경조직 중의 무기성분의 주요 구성화합물인 애퍼타이터와 같은 생체친화성이 우수한 물질을 피복시키면, 매식체와 뼈와의 초기고정이 촉진된다. 또한 열처리에 의해 표면층 뿐 아니라, 티타늄 또는 티타늄합금 조직이 느슨해지는 틈 사이로 Ca, P와 같은 뼈 유사성분이 침투하기 때문에 마모에 의해 Ti-Ca 또는 Ti-P층이 떨어져 나가지 않아 안정된 생체활성 피막으로의 사용이 가능하다.As described above, when the surface of the carcass is coated with a material having excellent biocompatibility such as an aperiter, which is a major constituent of inorganic components in living hard tissue such as bone, the initial fixation between the carcass and the bone is promoted. In addition, since bone-like components such as Ca and P penetrate into the gap between the surface layer and the titanium or titanium alloy tissue by the heat treatment, the Ti-Ca or Ti-P layer does not fall off due to abrasion, which leads to a stable bioactive coating. Can be used.

이하, 하기 실시예를 통해 본 발명을 구체적으로 설명하지만, 본 발명이 이들에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following examples, but the present invention is not limited thereto.

실시예Example

<제조예 1> 하이드록시애퍼타이트(HA)의 제조Preparation Example 1 Preparation of Hydroxy Apatite (HA)

시약급 질산칼슘 4수화물(Ca(NO3)2·4H2O, 덕산), 인산수소암모늄((NH4)2HPO4, 오사까, 일본)을 Ca/P 몰비가 1.67인 조건에서 암모니아수를 이용하여 pH를 7로 만든 후, 30℃를 유지하면서 10시간 동안 교반시켰다. 얻어진 분말을 감압여과하면서 3회 이상 세척한 후, 100℃ 건조기에서 24시간 건조시켜 하이드록시애퍼타이트를 제조하였다.Reagent-grade calcium nitrate tetrahydrate (Ca (NO 3 ) 2 4H 2 O, Deoksan) and ammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 , Osaka, Japan) were used with ammonia water at a Ca / P molar ratio of 1.67. After the pH was adjusted to 7, the mixture was stirred for 10 hours while maintaining the temperature at 30 ° C. The obtained powder was washed three times or more under filtration under reduced pressure, and then dried in a 100 ° C. dryer for 24 hours to prepare hydroxyapatite.

제조된 하이드록시애퍼타이트를 FT-IR(니콜렛, 프랑스), XRD(리가꾸, D/MAX-ⅢA, 일본)를 이용하여 상용화된 하이드록시애퍼타이트(와꼬, 일본)와 비교한 결과, 하이드록시애퍼타이트(HA) 고유의 피크들을 확인할 수 있었다.The prepared hydroxyapatite was compared with hydroxyapatite (Wako, Japan) commercialized using FT-IR (Nicolet, France) and XRD (Rigaku, D / MAX-IIIA, Japan). Peaks inherent in hydroxyapatite (HA) were identified.

<제조예 2> 진공소결로 제작Preparation Example 2 Fabrication by Vacuum Sintering

하이드록시애퍼타이트(HA) 내에 매몰된 티타늄 소재의 상변태온도 이상으로 열처리(1200℃ 이상)가 가능하고, 진공, 아르곤 및 질소 가스 투입이 가능하며, 설정된 온도까지 상승시간과 그 온도 유지시간을 변경할 수 있는 온도제어장치를 구비한 진공소결로를 제작하였다. 가열로는 원통형의 알루미나를, 시편용기는 카본을 사용하여 열처리시 노내 분위기에서 발생할 수 있는 화학적 변화를 최소화하였다.Heat treatment (above 1200 ℃) is possible above the phase transformation temperature of titanium material buried in hydroxyapatite (HA), vacuum, argon and nitrogen gas can be injected, and the rising time and the temperature holding time can be changed up to the set temperature. A vacuum sintering furnace with a temperature control device was fabricated. The furnace uses cylindrical alumina and the specimen container uses carbon to minimize chemical changes that can occur in the furnace atmosphere during heat treatment.

<실시예 1> 순수티타늄-기재 매식체의 제조Example 1 Preparation of Pure Titanium-Based Medium

순수티타늄을 기재로 하여 하이드록시애퍼타이트(HA) 분말에 매몰시키고, 진공소결로에서 10-3토르까지 진공형성 후, 아르곤 가스 분위기하에서, 800℃, 850℃, 900℃에서 각각 1시간 동안 열처리하여 순수티타늄-기재 매식체를 제조하였다.Buried in hydroxyapatite (HA) powder based on pure titanium, vacuum formed to 10 -3 Torr in a vacuum sintering furnace, and heat treated at 800 ° C, 850 ° C, and 900 ° C for 1 hour under argon gas atmosphere. Pure titanium-based media were prepared.

<실시예 2> 티타늄합금-기재 매식체의 제조Example 2 Preparation of Titanium Alloy-Based Medium

티타늄합금으로 Ti6Al4V를 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 Ti6Al4V-기재 매식체를 제조하였다.A Ti 6 Al 4 V-based medium was prepared in the same manner as in Example 1, except that Ti 6 Al 4 V was used as the titanium alloy.

<시험예><Test Example>

<시험예 1> 온도에 따른 티타늄 또는 티타늄합금의 표면조직 관찰(SEM)Test Example 1 Surface Structure Observation of Titanium or Titanium Alloy According to Temperature (SEM)

상기 실시예 1 및 2에서 열처리된 Ti과 Ti6Al4V 매식체 표면을 주사 전자 현미경(SEM)으로 각각 관찰하였으며, 그 결과를 도 1에 나타내었다[도 1의 (a)는 열처리전 티타늄의 SEM 사진이고, 도 1의 (b), (c) 및 (d)는 티타늄을 800℃, 850℃ 및 900℃에서 열처리한 SEM 사진을 각각 도시한 것이다. 도 1의 (e)는 열처리전 Ti6Al4V의 SEM 사진이고, 도 1의 (f), (g) 및 (h)는 Ti6Al4V를 800℃, 850℃ 및 900℃에서 열처리한 SEM 사진을 각각 도시한 것이다]. 도 1에서 알 수 있는 바와 같이, 온도가 상승함에 따라 침상의 표면조직이 성장하였고, 특히 상변태온도(약882℃) 후 900℃에서 열처리한 티타늄 표면에서 더욱 거대해지고 성장된 결정 사이의 공간이 커짐을 확인할 수 있다(도 1의 (d)). Ti6Al4V(상변태온도 882.5℃)의 경우도 역시 동일한 양상을 나타내었다(도 1의 (h)).The surfaces of Ti and Ti6Al4V media treated in Examples 1 and 2 were observed by scanning electron microscopy (SEM), respectively, and the results are shown in FIG. 1 (FIG. 1A is a SEM photograph of titanium before heat treatment). 1 (b), (c) and (d) show SEM images obtained by heat treating titanium at 800 ° C., 850 ° C. and 900 ° C., respectively. Figure 1 (e) is a SEM image of Ti6Al4V before heat treatment, Figure 1 (f), (g) and (h) is a SEM image of the Ti6Al4V heat-treated at 800 ℃, 850 ℃ and 900 ℃, respectively. ]. As can be seen in Figure 1, as the temperature increases, the needle-like surface texture grew, especially on the titanium surface heat-treated at 900 ℃ after the phase transformation temperature (about 882 ℃), the space between the grown crystals becomes larger It can be confirmed (Fig. 1 (d)). Ti 6 Al 4 V (phase transformation temperature of 882.5 ° C.) also showed the same aspect (FIG. 1 (h)).

이러한 표면처리 온도에 따라 달라지는 티타늄표면의 구조적 변화는 Ca, P 등 특정원소의 확산(diffusion)특성에 크게 영향을 미친다.The structural change of the titanium surface depending on the surface treatment temperature greatly affects the diffusion characteristics of specific elements such as Ca and P.

<시험예 2> 티타늄 소재 표면층의 화학적 조성 분석(AES)Test Example 2 Chemical Composition Analysis (AES) of the Titanium Material Surface Layer

원자번호가 낮은 원소분석에 유용한 오제 전자분광기(Auger electron spectroscopy, VG ESCALAB 210, 영국)를 이용하였다. 양이온화된 아르곤의 포격(bombardment)에 의하여 주기적으로 건식(dry etching)하면서 얻어진 곡선(depth profile)으로부터 화학적 조성비를 조사하였다.Auger electron spectroscopy (VG ESCALAB 210, UK) was used to analyze elements with low atomic number. The chemical composition ratio was investigated from a depth profile obtained by periodically dry etching by bombardment of cationized argon.

AES 분석의 실험조건과 원자농도(atomic concentration)계산방법은 다음과 같다:The experimental conditions and the atomic concentration calculation method of the AES analysis are as follows:

① 실험조건① Experimental conditions

진공도: 6×10-11토르Vacuum degree: 6 × 10 -11 Torr

전자빔 에너지: 6keVElectron Beam Energy: 6keV

아르곤빔 전류밀도: 0.3㎂/500×500㎛2 Argon beam current density: 0.3: / 500 × 500㎛ 2

아르곤빔 이온에너지: 5keVArgon Beam Ion Energy: 5keV

스퍼터링속도: 탄탈에 대해 160Å/분Sputtering rate: 160 kW / min for tantalum

② 원자농도 계산방법② Method of calculating atomic concentration

AES의 스펙트럼으로부터 각 원소의 화학적 조성을 계산하는데 사용한 원소들의 각 원자로부터 전이되어 발생된 오제 전자와 오제 운동에너지는 하기 표 1과 같다. 이 특정 운동에너지를 갖는 각 원소의 스펙트럼의 피크-대-피크 높이(Peak-to-Peak Height)로부터 원자농도를 계산하여 표면층의 화학적 조성비를 구하였다.The Auger electrons and Auger kinetic energy generated by transferring from each atom of the elements used to calculate the chemical composition of each element from the spectrum of AES are shown in Table 1 below. The atomic concentration was calculated from the peak-to-peak height of the spectrum of each element having this specific kinetic energy to determine the chemical composition ratio of the surface layer.

원 소element TiTi AlAl VV PP CaCa NN OO CC 오제 전이Auger transition LMMLMM KVVKVV LMMLMM LMMLMM LMMLMM KVVKVV KVVKVV KVVKVV 운동에너지(eV)Kinetic energy (eV) -418-418 -1388-1388 -469-469 -110-110 -291-291 -380-380 -510-510 -270`-270`

하이드록시애퍼타이트(HA)와 함께 진공도 10-3토르 이상으로 진공형성 후 아르곤 분위기에서 800℃, 850℃, 900℃에서 열처리한 후 AES를 이용한 티타늄 소재 표면층의 화학적 조성 분석결과를 도 2∼4에 나타내었다. 도 2 및 4는 순수티타늄 표면층의 곡선(depth profile)을 보여주고 있으며, 도 2에서 볼 수 있듯이 하이드록시애퍼타이트(HA)로부터 티타늄 표면으로 확산되어 침투된 Ca, P의 원자농도(Atomic concentration)가 열처리온도에 따라 크게 달라졌다. 도 1의 SEM의 표면조직에서 관찰되었듯이 열처리온도가 증가할수록 많은 양의 Ca, P의 확산을 유도할 수 있었다. 상변태온도 이전의 온도에서는 Ca보다 P이 "게터링효과(gettering effect)"에 의하여 다량 확산됨을 확인할 수 있었고(도 4a), P의 낮은 오제 에너지 수준(Auger energy level)에서 다량의 티타늄 포스파이드(P2 피크: 약 120eV)가 형성되었음을 확인할 수 있었다. 이러한 현상은 도 5b 및 5c의 AES 스펙트럼에서도 확인할 수 있다.After forming vacuum with hydroxyapatite (HA) at a vacuum degree of 10 -3 Torr or above, heat treatment at 800 ° C, 850 ° C, and 900 ° C in an argon atmosphere, and the chemical composition analysis results of the titanium material surface layer using AES. Shown in 2 and 4 show the depth profile of the pure titanium surface layer, and as shown in FIG. 2, atomic concentrations of Ca and P diffused and infiltrated from the hydroxyapatite (HA) to the titanium surface. The temperature varies greatly depending on the heat treatment temperature. As observed in the surface texture of the SEM of FIG. 1, as the heat treatment temperature was increased, a large amount of Ca and P diffusion could be induced. At the temperature before the phase transformation temperature, it was confirmed that P was diffused much more than Ca by the "gettering effect" (FIG. 4A), and at a low Auger energy level of P, a large amount of titanium phosphide ( P2 peak: about 120eV) was confirmed to be formed. This phenomenon can also be confirmed in the AES spectra of FIGS. 5B and 5C.

Ti6Al4V의 경우는 850℃에서 양호한 Ca, P의 이동이 있었으나, 900℃에서는순수티타늄과 같은 양상을 보이지 않고 적은 양의 하이드록시애퍼타이트(HA) 원소들의 확산만이 볼 수 있었다. 이것은 곡선에서 볼 수 있듯이 매우 두터운 산화막 층이 형성되어 실험 중 초기 티타늄 피막의 산화에 의한 것으로 생각된다.In the case of Ti6Al4V, there was good Ca and P movement at 850 ° C, but at 900 ° C, only a small amount of diffusion of hydroxyapatite (HA) elements was observed. This is thought to be due to the formation of a very thick oxide layer, as shown by the curve, which results from the oxidation of the initial titanium film during the experiment.

이러한 표면 분석결과로 볼 때 코팅을 하지 않고 안정되고 Ca 또는 P가 확산된 티타늄 표면층을 확보할 수 있었고, 그 농도를 조절할 수 있음을 확인하였다.As a result of the surface analysis, it was confirmed that the titanium surface layer stabilized without coating and diffused Ca or P, and its concentration could be controlled.

<시험예 3> 표면경도 측정(Hv)Test Example 3 Surface Hardness Measurement (Hv)

열처리온도에 따른 티타늄 소재 표면의 경도를 비커스 경도계(마쓰자와 세이끼사 제, 도쿄, 일본)를 사용하여 Ti-HA와 Ti6Al4V-HA 각 시편 당 10회씩 무작위로 측정하여 통계처리하였다. 소재 표면에 가한 하중은 300g으로 15초간 정지 후 측정하였다. 그 결과를 하기 표 2에 나타내었다.The hardness of the surface of the titanium material according to the heat treatment temperature was randomly measured 10 times for each sample of Ti-HA and Ti6Al4V-HA using a Vickers hardness tester (manufactured by Matsuzawa Seiki, Tokyo, Japan). The load applied to the surface of the material was measured after stopping for 15 seconds at 300 g. The results are shown in Table 2 below.

물질온도(℃)Material temperature (℃) Ti-HATi-HA Ti6Al4V-HATi6Al4V-HA N.T1) NT 1) 333.2(20.3)2) 333.2 (20.3) 2) 323.2(10.2)323.2 (10.2) 800800 443.5(20.6)443.5 (20.6) 374.3(16.1)374.3 (16.1) 850850 572.9(16.6)572.9 (16.6) 559.4(79.4)559.4 (79.4) 900900 749.9(27.5)749.9 (27.5) 805.3(71.3)805.3 (71.3)

※ 1): no treatment의 약자, 즉 미처리를 나타냄. 2): 괄호안은 표준편차※ 1): Abbreviation for no treatment, that is, untreated. 2): The parentheses in the standard deviation

상기 표 2에서 알 수 있듯이, 열처리 온도가 증가함에 따라 800∼900℃에서 경도가 선형적으로 증가함을 알 수 있다. 이것은 잔류되어 있는 산소와의 결합에 의한 표면 산화막 형성 때문으로 열처리 온도가 증가할수록 그 산화막 층의 두께가 증가하기 때문이다.As can be seen in Table 2, it can be seen that the hardness increases linearly at 800 to 900 ° C as the heat treatment temperature increases. This is because the thickness of the oxide layer increases as the heat treatment temperature increases due to the surface oxide film formation by bonding with the remaining oxygen.

본 발명의 열확산방법에 따라 제조된 Ti-소재 경조직 대체재료는 고가의 설비에 의한 코팅방법에 비해 진공열처리 설비만으로도 제조할 수 있고, 기재 내부로 Ca 또는 P이 침투하기 때문에 마모에 의해 Ti-Ca 또는 Ti-P층이 떨어져 나가지 않아 안정된 생체활성 피막으로의 사용이 가능하다. 또한 열처리온도에 따라 기재 표면층으로 확산되는 Ca 또는 P의 농도를 조절할 수 있다.The Ti-material hard tissue substitute material prepared according to the thermal diffusion method of the present invention can be produced only by vacuum heat treatment equipment, compared to the coating method by expensive equipment, and because Ti or Ca penetrates into the base material due to abrasion, Ti-Ca Alternatively, since the Ti-P layer does not fall off, it can be used as a stable bioactive coating. In addition, the concentration of Ca or P diffused to the substrate surface layer may be adjusted according to the heat treatment temperature.

Claims (6)

진공소결로 내에서 티타늄 또는 티타늄합금을 기재로 하여 하이드록시애퍼타이트 분말로 매몰한 다음, 불활성가스 또는 질소 분위기 하에서 800∼1000℃의 온도로 열처리하여 Ca, P를 기재층으로 침투시키는 것을 특징으로 하는 생체활성 표면을 갖는 Ti-소재 경조직 대체재료의 제조방법.It is embedded in a vacuum sintering furnace with a titanium or titanium alloy as a base and buryed with hydroxyapatite powder, and then heat-treated at a temperature of 800 to 1000 ° C. under an inert gas or nitrogen atmosphere to infiltrate Ca and P into the base layer. Method for producing a Ti-material hard tissue substitute material having a bioactive surface. 삭제delete 제 1항에 있어서, 상기 열처리 온도가 티타늄 또는 티타늄 합금의 상변태온도∼900℃인 것을 특징으로 하는 제조방법.The method according to claim 1, wherein the heat treatment temperature is a phase transformation temperature of titanium or a titanium alloy to 900 ° C. 제 1항에 있어서, 열처리에 소요되는 시간이 1∼3시간인 제조방법The method according to claim 1, wherein the time required for heat treatment is 1 to 3 hours. 제 1항에 있어서, 상기 불활성 가스가 아르곤 또는 네온인 것을 특징으로 하는 제조방법.The method according to claim 1, wherein the inert gas is argon or neon. 제 1항에 있어서, 상기 티타늄 합금이 Ti6Al4V, Ti5Al2.5Sn, Ti3Al13V11Cr, Ti15Mo5Zr3Tl 또는 Ti6Al2NbTa인 것을 특징으로 하는 제조방법.The method of claim 1, wherein the titanium alloy is Ti6Al4V, Ti5Al2.5Sn, Ti3Al13V11Cr, Ti15Mo5Zr3Tl or Ti6Al2NbTa.
KR10-2001-0014893A 2001-03-22 2001-03-22 Method for producing Ti-based implant having bioactive surface as substitute for bone tissue KR100431159B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0014893A KR100431159B1 (en) 2001-03-22 2001-03-22 Method for producing Ti-based implant having bioactive surface as substitute for bone tissue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0014893A KR100431159B1 (en) 2001-03-22 2001-03-22 Method for producing Ti-based implant having bioactive surface as substitute for bone tissue

Publications (2)

Publication Number Publication Date
KR20020074843A KR20020074843A (en) 2002-10-04
KR100431159B1 true KR100431159B1 (en) 2004-05-12

Family

ID=27698288

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0014893A KR100431159B1 (en) 2001-03-22 2001-03-22 Method for producing Ti-based implant having bioactive surface as substitute for bone tissue

Country Status (1)

Country Link
KR (1) KR100431159B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101082657B1 (en) 2009-09-02 2011-11-14 인하대학교 산학협력단 Preparation method of poruos metal by evaporation
KR101242333B1 (en) 2011-01-11 2013-03-11 인하대학교 산학협력단 Method for Metal liver transplantation
KR101363724B1 (en) 2005-02-25 2014-02-14 발데마르 링크 게엠베하 운트 코.카게 Method for producing a medical implant made of a beta-titanium molybdenum alloy, and a corresponding implant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2383654C1 (en) 2008-10-22 2010-03-10 Государственное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Nano-structural technically pure titanium for bio-medicine and method of producing wire out of it

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR880004790A (en) * 1986-10-20 1988-06-27 마루노 시게오 Biocompatible Composites and Manufacturing Methods Thereof
WO1995013100A1 (en) * 1993-11-09 1995-05-18 The Foundation For The Promotion Of Ion Engineering Bone substitute material and process for producing the same
US5478237A (en) * 1992-02-14 1995-12-26 Nikon Corporation Implant and method of making the same
US5543019A (en) * 1993-04-23 1996-08-06 Etex Corporation Method of coating medical devices and device coated thereby
JPH10130112A (en) * 1996-10-31 1998-05-19 Agency Of Ind Science & Technol Composite material inhibiting propagation of various saprophytes
JPH11130412A (en) * 1997-10-24 1999-05-18 Advance Co Ltd Calcium phosphate composite material and its production
KR20010018331A (en) * 1999-08-18 2001-03-05 정태섭 Development of Bioactive Implant by Alkali Treatment
KR20010021578A (en) * 1998-05-08 2001-03-15 우노 마사야스 Hydroxyapatite, composite, processes for producing these, and use of these

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR880004790A (en) * 1986-10-20 1988-06-27 마루노 시게오 Biocompatible Composites and Manufacturing Methods Thereof
US5478237A (en) * 1992-02-14 1995-12-26 Nikon Corporation Implant and method of making the same
US5543019A (en) * 1993-04-23 1996-08-06 Etex Corporation Method of coating medical devices and device coated thereby
WO1995013100A1 (en) * 1993-11-09 1995-05-18 The Foundation For The Promotion Of Ion Engineering Bone substitute material and process for producing the same
JPH10130112A (en) * 1996-10-31 1998-05-19 Agency Of Ind Science & Technol Composite material inhibiting propagation of various saprophytes
JPH11130412A (en) * 1997-10-24 1999-05-18 Advance Co Ltd Calcium phosphate composite material and its production
KR20010021578A (en) * 1998-05-08 2001-03-15 우노 마사야스 Hydroxyapatite, composite, processes for producing these, and use of these
KR20010018331A (en) * 1999-08-18 2001-03-05 정태섭 Development of Bioactive Implant by Alkali Treatment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101363724B1 (en) 2005-02-25 2014-02-14 발데마르 링크 게엠베하 운트 코.카게 Method for producing a medical implant made of a beta-titanium molybdenum alloy, and a corresponding implant
KR101082657B1 (en) 2009-09-02 2011-11-14 인하대학교 산학협력단 Preparation method of poruos metal by evaporation
KR101242333B1 (en) 2011-01-11 2013-03-11 인하대학교 산학협력단 Method for Metal liver transplantation

Also Published As

Publication number Publication date
KR20020074843A (en) 2002-10-04

Similar Documents

Publication Publication Date Title
Qadir et al. Ion-substituted calcium phosphate coatings by physical vapor deposition magnetron sputtering for biomedical applications: A review
Xue et al. In vivo evaluation of plasma sprayed hydroxyapatite coatings having different crystallinity
Da Silva et al. Transformation of monetite to hydroxyapatite in bioactive coatings on titanium
Izman et al. Surface modification techniques for biomedical grade of titanium alloys: oxidation, carburization and ion implantation processes
NO310060B1 (en) Material for bone replacement and manufacture thereof
Rajesh et al. Pulsed laser deposition of hydroxyapatite on nanostructured titanium towards drug eluting implants
Choi et al. Formation and characterization of hydroxyapatite coating layer on Ti-based metal implant by electron-beam deposition
EP2827915B1 (en) A coating comprising strontium for body implants
Fouziya et al. Surface modifications of titanium implants–The new, the old, and the never heard of options
Kim et al. Highly adhesive hydroxyapatite coatings on alumina substrates prepared by ion-beam assisted deposition
Pogrebjak et al. Research of the relief and element composition of the surface coatings based on hydroxyapatite implants from titanium alloys
KR20070063114A (en) Metal implants and manufacturing method thereof
KR100431159B1 (en) Method for producing Ti-based implant having bioactive surface as substitute for bone tissue
Zheng et al. Characterization of plasma-sprayed hydroxyapatite/TiO 2 composite coatings
Rajesh et al. Preparation and analysis of chemically gradient functional bioceramic coating formed by pulsed laser deposition
Babu et al. Bioactive coatings on 316L stainless steel implants
CN110624128B (en) Degradable magnesium-based bone repair material calcium-phosphorus strontium-doped functional coating and preparation thereof
US20090187253A1 (en) Method of making a coated medical bone implant and a medical bone implant made thereof
Lo et al. Hydroxyapatite thin films deposited onto uncoated and (Ti, Al, V) N‐coated Ti alloys
CA2546238A1 (en) Method of producing endosseous implants or medical prostheses by means of ion implantation, and endosseous implant or medical prosthesis thus obtained
Lin et al. Characterization and bond strength of electrolytic HA/TiO 2 double layers for orthopaedic applications
Park et al. Bioactive Calcium Phosphate Coating on Sodium Hydroxide‐Pretreated Titanium Substrate by Electrodeposition
Abdel-Aal Electrodeposition of calcium phosphate coatings on titanium alloy implant at different Ca/P ratios and different times
EP3195825B1 (en) Dental implant
García et al. Advanced surface treatments for improving the biocompatibility of prosthesis and medical implants

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee