KR100415660B1 - A method of manufacturing steel wire for bead wire - Google Patents

A method of manufacturing steel wire for bead wire Download PDF

Info

Publication number
KR100415660B1
KR100415660B1 KR10-1998-0057632A KR19980057632A KR100415660B1 KR 100415660 B1 KR100415660 B1 KR 100415660B1 KR 19980057632 A KR19980057632 A KR 19980057632A KR 100415660 B1 KR100415660 B1 KR 100415660B1
Authority
KR
South Korea
Prior art keywords
wire
less
heat treatment
steel wire
steel
Prior art date
Application number
KR10-1998-0057632A
Other languages
Korean (ko)
Other versions
KR20000041678A (en
Inventor
배철민
김재환
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1998-0057632A priority Critical patent/KR100415660B1/en
Priority to JP29451899A priority patent/JP3409055B2/en
Priority to US09/418,620 priority patent/US6264759B1/en
Priority to CN99121842A priority patent/CN1102180C/en
Publication of KR20000041678A publication Critical patent/KR20000041678A/en
Application granted granted Critical
Publication of KR100415660B1 publication Critical patent/KR100415660B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 비드 와이어용 강선의 제조방법에 관한 것이며, 그 목적하는 바는 신선도중 소재의 연성을 부여하기 위하여 실시되는 중간열처리 없이 원하는 선경까지 신선가공한 후 연신율회복을 위하여 저온소둔 만을 행하여 강선을 제조하는 방법을 제공하는데 있다.The present invention relates to a method for producing a bead wire steel wire, and its purpose is to draw the steel wire only by low temperature annealing to recover the elongation after drawing to the desired wire diameter without intermediate heat treatment to give ductility of the material during drawing. It is to provide a method of manufacturing.

상기 목적을 달성하기 위한 본 발명은 중량%로, C:0.4-0.65%, Mn:0.1-1.0%, Si:0.1-1.0%가 함유되고, 여기에 Cr:0.3%이하, B:100ppm이하, Ti:0.02%이하, Nb:0.02%이하, V:0.02%이하로 이루어진 그룹중에서 선택된 1종이상이 함유되며, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 강괴를 열간압연후 10-30℃/sec의 냉각속도로 연속 냉각하여 초석 페라이트 분율이 10%이하로 제어되고, 세멘타이트 분율이 6-10%로 제어된 선재를 얻은 다음, 얻어진 선재를 열처리 없이 신선하고, 450-550℃의 온도에서 블루잉처리를 행하는 비드 와이어용 강선의 제조방법에 관한 것을 그 요지로 한다.The present invention for achieving the above object by weight, C: 0.4-0.65%, Mn: 0.1-1.0%, Si: 0.1-1.0% is contained, Cr: 0.3% or less, B: 100ppm or less, At least one selected from the group consisting of Ti: 0.02% or less, Nb: 0.02% or less, and V: 0.02% or less, and the steel ingot composed of the remaining Fe and other unavoidable impurities is subjected to hot rolling at a temperature of 10-30 ° C / sec. Continuous cooling at cooling rate yields wire rods with controlled cornerstone ferrite fraction below 10% and cementite fractions with 6-10%, then the obtained wire is fresh without heat treatment and blueing at a temperature of 450-550 ° C. The summary relates to the manufacturing method of the bead wire steel wire which performs a process.

Description

비드 와이어용 강선의 제조방법{A METHOD OF MANUFACTURING STEEL WIRE FOR BEAD WIRE}Manufacturing method of steel wire for bead wire {A METHOD OF MANUFACTURING STEEL WIRE FOR BEAD WIRE}

본 발명은 타이어 등에 사용되는 비드와이어용 강선 제조방법에 관한 것으로, 보다 자세하게는 신선 도중 소재의 연성을 부여하기 위하여 실시되는 중간열처리(페이텐팅, patenting)없이 원하는 선경까지 신선가공한 후 연신율회복을 위하여 저온소둔(이하, "블루잉(blueing)"이라 한다)만을 행하여 강선을 제조하는 방법에 관한 것이다.The present invention relates to a steel wire manufacturing method for bead wires used in tires, etc. More specifically, after drawing to the desired diameter without intermediate heat treatment (patenting, patenting) carried out to impart ductility of the material during drawing, the elongation recovery The present invention relates to a method for producing a steel wire by performing only low temperature annealing (hereinafter referred to as "blueing").

종래 비드와이어는 0.7-0.8%C의 탄소강을 신선가공, 페이텐팅, 신선가공을 하고 납조에서 블루잉 한 후 다시 구리, 철등을 도금하여 제품화한다. 블루잉을 하는 목적은 비드와이어 제품 특성에 있는데, 즉 연신율 5%이상을 확보하기 위해서이다. 이러한 블루잉 도중 다른 특징중의 하나는 연신율의 회복에 동반된 강선의 강도 저하이다. 즉, 통상의 제조방법에서 블루잉을 하면 연신율은 회복되지만 인장강도가 약 20kg/mm2정도 저하한다. 따라서, 신선선의 강도가 250kg/mm2인 강선은 블루잉 이후 230kg/mm2정도가 된다. 따라서, 비드와이어의 강도 200kg/mm2을 얻기 위하여서는 적어도 220kg/mm2이상의 강도가 확보되어야 한다.Conventional bead wire is 0.7-0.8% C of carbon steel is processed by drawing, pattening, drawing, drawing and blueing in a lead bath, and then plated copper, iron, etc. to commercialize. The purpose of bluing is in the characteristics of bead wire products, that is, to secure an elongation of 5% or more. One of the other features during this bluing is a drop in the strength of the wire accompanied by the recovery of the elongation. In other words, when bluing in the conventional manufacturing method, the elongation is recovered, but the tensile strength is lowered by about 20 kg / mm 2 . Therefore, the steel wire having a strength of 250 kg / mm 2 of fresh wire is about 230 kg / mm 2 after bluing. Therefore, in order to obtain the strength of the bead wire 200kg / mm 2 It should be secured at least 220kg / mm 2 strength.

한편, 통상 신선도중 실시되는 중간 열처리는 최종 제품의 선경까지 신선가공이 가능하도록 신선을 어느 정도 실시한 후 생긴 변형 조직을 제어하기 위하여 실시되는 관계로, 강선의 제조시 거의 필수적인 공정이라 할수 있으며, 비드와이어 제조공정에서는 최종제품의 선경과 강도를 고려하여 2차 신선시 대략 ε= 2.3-2.6정도의 가공량을 확보하는 선경에서 열처리를 실시한다.On the other hand, the intermediate heat treatment that is usually performed during drawing is performed to control the deformed structure formed after the drawing is carried out to some extent so that drawing can be processed to the diameter of the final product, and thus, it is almost an essential process in the production of steel wire. In the wire manufacturing process, heat treatment is performed at the wire diameter to secure the processing amount of approximately ε = 2.3-2.6 in the secondary drawing considering the wire diameter and strength of the final product.

따라서, 최종제품의 물성을 만족시킬 수 있으면 이러한 열처리 공정은 생략할 수 있다. 즉, 소재의 연성이 우수하면 상기한 바와 같은 중간 열처리를 생략하여 소재 상태에서 최종 제품선으로 직접 신선이 가능하다. 이와 같이 소재의 연성이 우수하여 중간열처리 없이 최종 제품선으로 직접 신선하게 되면 열처리공정, 열처리 과정에서 발생하는 스케일을 제거하기 위한 산세공정 및 추후 신선가공을 위한 윤활제 코팅공정의 생략이 가능할 뿐 아니라 신선량이 증대되어 강선의 강도를 향상시킬 수 있는 잇점도 있다.Therefore, this heat treatment step can be omitted if the physical properties of the final product can be satisfied. In other words, if the ductility of the material is excellent, the intermediate heat treatment as described above can be omitted and the wire can be directly drawn to the final product line in the state of the material. Thus, if the material is excellent in ductility and directly drawn to the final product line without intermediate heat treatment, the pickling process to remove scale generated during the heat treatment process, and the lubricant coating process for later drawing can be omitted. There is also an advantage that the amount can be increased to improve the strength of the steel wire.

그러나, 통상적인 탄소강의 경우 신선가공량이 95%이상되면 블루잉시 연신율이 5%이상 회복되지 않고, 연신율을 회복하기 위하여 고온에서 블루잉을 실시하면 인장강도가 매우 저하한다고 알려져 있으며(Materials Letter,(1997)p241), 소재 상태에서 연성이 매우 우수한 저탄소강의 경우는 신선 가공후 연신율의 회복이 잘안된다고 알려져 있다(CAMP-ISIJ vol 8 (1995)p1373). 또한, 통상의 신선가공량에서 소재의 탄소량이 0.6%이하에서는 블루잉시 5%이상의 연신율을 얻기 어렵다고 알려져 있다(CAMP-ISIJ,vol11,(1998)p347).However, in the case of conventional carbon steel, the elongation does not recover more than 5% when the drawing process is more than 95%, and the tensile strength is known to be very low when bluing at high temperature to recover the elongation (Materials Letter, (1997) p241), it is known that low-carbon steels with very good ductility in the material condition do not recover well after elongation (CAMP-ISIJ vol 8 (1995) p1373). In addition, it is known that elongation of 5% or more during bluing is difficult to be obtained when the carbon content of the raw material is 0.6% or less in the normal drawing amount (CAMP-ISIJ, vol 11, (1998) p347).

따라서, 타이어 비드와이어용 강선의 일반적인 제조 기술은 신선도중 페이텐팅 열처리후 다시 신선하는 공정의 변화보다는 고강도 제품을 제조하기 위하여 고탄소에 합금 원소를 첨가하거나 블루잉 방법을 변화시키는 방법들이 제시되고 있다. 예를들면, 일본 공개 특허 평5-105966는 0.9-1.1%의 탄소강에 Cr, Mn등을 첨가한 소재를 페이텐팅 조건을 변화시켜 미세조직을 베이나이트로 하여 250kg/mm2, 연신율 8%이상의 비드와이어를 제조하였으며, 일본 공개특허 평1-165795는 신선가공후 블루잉을 실시하지 않고 도금후 타이어 장착 방법의 개선에 의하여 블루잉을 생략하는 방법등이 제시되어 있다.Therefore, the general manufacturing technology of the steel wire for tire bead wire has been proposed a method of adding an alloying element to high carbon or changing the bluing method in order to manufacture a high-strength product rather than a change in the process of re-freshing after the patten heat treatment during drawing. . For example, Japanese Laid-Open Patent No. Hei 5-105966 is to the material by the addition of Cr, Mn, etc. in the 0.9-1.1% carbon steel changes a page tenting conditions, the microstructure to a bainite 250kg / mm 2, an elongation greater than 8% Bead wire was manufactured, and Japanese Unexamined Patent Publication No. Hei 1-65795 proposes a method of omitting bluing by improving the tire mounting method after plating without performing bluing after fresh processing.

이에, 본 발명자들은 기존의 페이턴팅 처리시의 문제점을 해결하기 위하여 연구와 실험을 거듭하고 그 결과에 근거하여 본 발명을 제안하게 된 것으로, 본 발명은 일차적으로 열처리 생략을 위하여 펄라이트강에서의 신선 도중 균열의 발생위치로 작용하는 세멘타이트 분율을 감소시키기 위하여 공석강에 비하여 탄소함량을 낮추고, 압연후 냉각하는 도중에 페라이트 변태를 적극 억제하기 위하여 합금 원소 첨가에 의한 소재의 경화능을 향상시켜 가열온도나 권취기 온도의 상승없이 펄라이트 분율을 90%이상으로 제어하여 신선성을 향상시키고, 최종 강선의 강도를 향상시킬 수 있는 펄라이트 충간간격의 미세화 및 고용강화에 의한 고강도 고연성 신선용으로 선재를 제조한후, 적절한 온도에서 블루잉을 실시하여 강도 200kg/mm2이상, 연신율 5%이상의 강도와 신율을 확보하여, 궁극적으로 신선 도중 열처리를 생략하여 비드와이어를 제조하고자 하는데, 그 목적이 있다.Accordingly, the present inventors have repeatedly conducted research and experiments to solve the problems in the existing patenting process and propose the present invention based on the results, and the present invention primarily draws in pearlite steel to omit the heat treatment. In order to reduce the fraction of cementite acting as the location of cracking during the process, the carbon content is lowered compared to the vacancy steel, and the hardening ability of the material by the addition of alloying elements is improved to suppress the ferrite transformation during cooling after rolling. B. Wire rod is manufactured for high strength ductility drawing by miniaturization and solid solution of pearlite interlayer spacing which can improve the freshness by controlling the pearlite fraction to 90% or more without increasing the winder temperature. After bluing at the appropriate temperature, the strength is over 200kg / mm 2 and the elongation is over 5%. In order to secure the strength and elongation, and ultimately to eliminate the heat treatment during the drawing, to produce the bead wire, the purpose is.

도 1은 블루잉 처리하여 얻어진 강선의 인장강도와 연신율과의 관계를 보이는 그래프1 is a graph showing the relationship between tensile strength and elongation of a steel wire obtained by bluing

상기 목적을 달성하기 위한 본 발명은 비드와이어용 강선을 제조하는 방법에 있어서, 중량%로, C:0.4-0.65%, Mn:0.1-1.0%, Si:0.1-1.0%가 함유되고, 여기에 Cr:0.3%이하, B:100ppm이하, Ti:0.02%이하, Nb:0.02%이하, V:0.02%이하로 이루어진 그룹중에서 선택된 1종이상이 함유되며, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 강괴를 열간압연후 10-30℃/sec의 냉각속도로 연속 냉각하여 초석 페라이트 분율이 10%이하로 제어되고, 세멘타이트 분율이 6-10%로 제어된 선재를 얻은 다음, 얻어진 선재를 열처리 없이 신선하고, 450-550℃의 온도에서 블루잉처리를 행하는 것을 특징으로 하는 비드 와이어용 강선의 제조방법에 관한 것이다.The present invention for achieving the above object in the method for producing a steel wire for bead wire, by weight, C: 0.4-0.65%, Mn: 0.1-1.0%, Si: 0.1-1.0%, Ingots containing at least one selected from the group consisting of Cr: 0.3% or less, B: 100 ppm or less, Ti: 0.02% or less, Nb: 0.02% or less, V: 0.02% or less, and are composed of the remaining Fe and other unavoidable impurities After hot rolling, the wire was continuously cooled at a cooling rate of 10-30 ° C / sec to obtain a wire rod having a cornerstone ferrite fraction of 10% or less and a cementite fraction of 6-10%. And a bluing treatment at a temperature of 450-550 ° C., to a method for producing a bead wire steel wire.

이하, 본 발명을 상세히 설명하는데, 먼저 강성분 조성 및 수치한정 이유에 대하여 설명한다.Hereinafter, the present invention will be described in detail. First, the composition of steel components and the reason for numerical limitation will be described.

상기 C는 강도 상승에 가장 효과적인 원소로 사용 용도에 따라 그 첨가량이 변화하나, 0.4%미만의 경우 기지조직이 페라이트로 되어 펄라이트 분율을 증대시키는 것보다는 페라이트 분율을 증대시키는 것이 휠씬 용이하고 고강도를 확보하는데 곤란하다. 또한, 0.65wt%를 초과하는 경우에서는 합금원소의 첨가없이 펄라이트 분율이 95%이상이 되나 세멘타이트 분율의 증대에 의하여 신선량이 증대하면 디라미네이숀이 발생한다. 따라서, 본 발명에서는 C의 함량을 0.4-0.65wt%로 제한하는 것이 바람직하다.The C is the most effective element to increase the strength, depending on the purpose of use, the amount of addition changes, but less than 0.4% of the base structure becomes ferrite, rather than increasing the perlite fraction, it is much easier to increase the ferrite fraction and secure high strength Difficult to do In addition, when the content exceeds 0.65 wt%, the pearlite fraction is 95% or more without addition of alloying elements, but when the freshness increases due to the increase in the cementite fraction, delamination occurs. Therefore, in the present invention, it is preferable to limit the content of C to 0.4-0.65wt%.

상기 Si은 강의 탈산에 필요한 원소이기 때문에 그 함유량이 너무 작을 경우 탈산효과가 충분하지 않으므로 0.1%이상 첨가되어야 한다. 또한, 효과적인 페라이트 고용강화 원소로 연속냉각시에는 펄라이트 층간간격이 미세하고 시선재의 열처리시 강도 저하의 효과가 있다. 그러나, 1%를 초과하여 첨가하면 열간압연을 위해 가열하는 도중 탈탄의 발생 및 신선을 위한 스케일 제거가 어려워진다. 따라서, 본 발명에서는 Si의 함량을 0.1-1%로 제한하는 것이 바람직하다.Since Si is an element necessary for deoxidation of steel, if the content thereof is too small, deoxidation effect is not sufficient, so it should be added at least 0.1%. In addition, as an effective ferrite solid solution strengthening element in the continuous cooling, the pearlite interlayer spacing is fine, there is an effect of reducing the strength during heat treatment of the eye material. However, addition of more than 1% makes it difficult to generate decarburization and descale for freshness during heating for hot rolling. Therefore, in the present invention, it is preferable to limit the content of Si to 0.1-1%.

상기 Mn은 강의 제조시 탈산 효과 뿐만아니라 소재내의 황과 더불어 유화망간(MnS)을 형성시켜 황에 의한 적열 취성을 방지하므로 0.1%이상은 첨가되어야 한다. 또한, Mn은 소재의 강도 상승과 펄라이트 층간간격을 미세화시키는데는 매우 효과적인 원소이다. 하지만, 1.0%를 초과하는 경우 편석이 발생할 가능성이 높고, 마르텐사이트가 발생하는 임계 냉각속도를 낮춘다. 또한, 신선한계를 다른 원소에 비하여 현저히 저하시킨다. 따라서, 본 발명에서는 Mn의 함량을 0.1-1.0%로 제한하는 것이 바람직하다.The Mn forms a manganese emulsifier (MnS) together with sulfur in the material as well as the deoxidation effect in the manufacture of steel, and thus prevents red brittleness due to sulfur. In addition, Mn is a very effective element to increase the strength of the material and to refine the pearlite interlayer spacing. However, if it exceeds 1.0%, segregation is more likely to occur, and the critical cooling rate at which martensite occurs is lowered. In addition, the fresh system is significantly lowered than other elements. Therefore, in the present invention, it is preferable to limit the content of Mn to 0.1-1.0%.

상기 Cr은 강의 경화능을 증대시켜 펄라이트를 미세화하여 강도 및 연성을 증가시키는데 매우 효과적인 원소이나 많이 첨가될 경우 소재 냉각시 마르텐사이트가 발생할 염려가 있어, 본 발명에서는 상한을 0.3%로 제한한다.The Cr is an element that is very effective in increasing the hardenability of the steel to refine the pearlite to increase the strength and ductility, but when a large amount is added, martensite may be generated during material cooling, and thus the upper limit is limited to 0.3% in the present invention.

상기 B은 소재의 경화능을 증대시켜 페라이트 형성을 억제하는 효과가 있으며, 펄라이트 내의 세멘타이트 성장을 촉진시켜 신선도를 페라이트/세멘타이트 계면에 발생되는 미소 결함을 억제하는 역할을 한다. 그러나, 0.10%를 초과하여 첨가하는 경우 질소와 결합하여 질화물을 형성하여 열간압연시 터짐이 발생하고, 또한 소재의 경화능의 향상에 있어서도 크게 개선되지 않는다. 따라서, 본 발명에서는 B의 함량을 0.01%이하로 제한하는 것이 바람직하다.The B has an effect of suppressing the formation of ferrite by increasing the hardenability of the material, promotes the growth of cementite in the pearlite serves to suppress the micro-defects generated in the ferrite / cementite interface. However, when the content is added in excess of 0.10%, bursting occurs during hot rolling due to the formation of a nitride in combination with nitrogen, and the improvement of the hardenability of the material is not greatly improved. Therefore, in the present invention, it is preferable to limit the content of B to 0.01% or less.

상기 Ti, Nb, V은 탄소 질소와 결합하여 탄질화물을 형성하여 B의 효과를 극대화하는 효과가 있으나, 0.02%를 초과하여 첨가하면 다량의 석출물에 의하여 페라이트의 연성을 저하하고 고용강화에 의하여 마르텐사이트등 저온 조직이 발생할 가능성이 있다. 따라서, 본 발명에서는 Ti, Nb, V은 각각 0.02%이하로 제한한다.The Ti, Nb, and V are combined with carbon nitrogen to form carbonitrides to maximize the effect of B. However, when added in excess of 0.02%, the ductility of ferrite is reduced by a large amount of precipitates and martensite by solid solution strengthening. Low temperature tissue such as sites may occur. Therefore, in the present invention, Ti, Nb, and V are each limited to 0.02% or less.

본 발명에서 상기한 바와같은 합금성분계를 갖도록 강을 조성한 후 이를 빌렛으로 제조하고, 열간압연후 10-30℃/sec의 냉각속도로 연속 냉각하여 초석 페라이트 분율이 10%이하로 제어되고, 세멘타이트 분율이 6-10%로 제어된 선재를 제조한다.In the present invention, after the steel is formed to have the alloying system as described above, it is manufactured as a billet, and after hot rolling, it is continuously cooled at a cooling rate of 10-30 ° C./sec to control the cornerstone ferrite fraction to 10% or less, and cementite Wire rods with a controlled fraction of 6-10% were produced.

상기 냉각속도가 10℃/sec미만에서는 합금원소 첨가에도 불구하고 초석 페라이트 석출이 과도하여 최종 선경에서 강도의 저하 및 디라미네이션 발생이 용이하며, 30℃/sec를 초과하면 마르텐사이트가 석출하여 신선가공 도중 단선이 발생한다.When the cooling rate is less than 10 ℃ / sec, despite the addition of alloying elements, the excessive precipitation of ferrite is easy to reduce the strength and generation of delamination at the final wire diameter, and if it exceeds 30 ℃ / sec, martensite precipitates and fresh processing A disconnection occurs on the way.

상기 초석 페라이트 분율이 10%이하로 제어되도록 하고, 세멘타이트 분율이 6-10%로 제어되도록 하여, 열처리를 생략한 펄라이트강에서의 신선도중 균열 발생을 저감시키는 것이다. 이같은 초석페라이트 분율 및 세멘타이트 분율은 일반적으로 상기한 압연조건 및 냉각조건 등에 의해 제어가 가능하다.The cementitious ferrite fraction is controlled to 10% or less, and the cementite fraction is controlled to 6-10% to reduce cracking in the freshness in pearlite steel without heat treatment. Such saltpeter ferrite fraction and cementite fraction can generally be controlled by the rolling conditions and cooling conditions described above.

상기 초석 페라이트의 분율이 10%를 초과하면 신선성이 감소하게 된다. 또한, 상기 세멘타이트의 분율이 6% 미만이면 초석 페라이트를 10% 이하로 관리하기 어려우며, 10%를 초과하면 압연효과가 감소된다.If the fraction of the cornerstone ferrite exceeds 10%, the freshness is reduced. In addition, when the fraction of cementite is less than 6%, it is difficult to manage the cornerstone ferrite to 10% or less, and when it exceeds 10%, the rolling effect is reduced.

또한, 본 발명에서는 상기 선재를 열처리 없이 신선하고, 450-550℃의 온도에서 블루잉처리를 행한다.In the present invention, the wire is drawn without heat treatment, and the bluing treatment is performed at a temperature of 450-550 ° C.

상기 신선은 디라미네이션이 발생하거나 블루잉처리시 연신율이 회복되지 않을 가능성이 있기 때문에 적절하게 행하는 것이 바람직하다. 이때, 바람직한 변형량은 3.5이하로 하는 것이 좋다. 상기 신선 변형량이 3.5를 초과하면 디라미네이션이 발생된다.It is preferable to perform the drawing properly because delamination may occur or the elongation may not recover during the bluing process. At this time, it is preferable that the amount of deformation is 3.5 or less. Delamination occurs when the fresh strain exceeds 3.5.

상기 블루잉처리는 통상적인 방법인 450-550℃에서 납조등에서 행하는 것이 바람직하다. 상기 블루잉처리는 상기 온도범위에서 2-60sec동안 행하는 것이 보다 바람직하다. 상기 블루잉처리 시간이 2sec 미만이면 연신율이 회복되지 않으며, 60sec를 초과하면 강도가 확보되지 않는다.The bluing treatment is preferably performed in a lead bath at 450-550 ° C. which is a common method. The bluing treatment is more preferably performed for 2 to 60 sec in the temperature range. If the bluing treatment time is less than 2 sec, the elongation is not recovered. If the bluing treatment time is more than 60 sec, the strength is not secured.

한편, 이와같이 제조된 강선을 450-550℃로 2-60초 동안 유지하면 인장강도 200kg/mm2이상, 연신율이 6%이상인 비드와이어를 제조할 수 있다.On the other hand, by maintaining the steel wire thus prepared at 450-550 ℃ for 2 to 60 seconds can be produced bead wire with a tensile strength of 200kg / mm 2 or more, elongation of 6% or more.

이하, 실시예를 통하여 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

실시예 1Example 1

하기 표1과 같은 화학성분을 갖는 강괴들을 160x160mm 강편(billet)으로 연속주조한 후 1050℃ 도는 1150℃에서 가열한 다음, 열간 압연하고 25℃/sec로 연속냉각하여 직경 5.5mm의 선재를 제조하였다.The steel ingots having the chemical composition shown in Table 1 were continuously cast into 160x160mm billets, heated at 1050 ° C or 1150 ° C, hot rolled and continuously cooled at 25 ° C / sec to prepare wire rods of 5.5 mm in diameter. .

제조된 선재의 초석 페라이트 및 기계적 성질을 조사하여 그 결과를 하기 표2에 나타내었다.The cornerstone ferrite and mechanical properties of the prepared wire rods were investigated and the results are shown in Table 2 below.

상기 표2에서 알 수 있는 바와 같이, 발명예는 가열온도가 낮음에도 불구하고 초석 페라이트 분율이 10%이하로 제어되었으나 비교재(5)의 경우 초석 페라이트 양을 10%이하로 제어하기 위하여서는 1150℃이상의 고온 가열이 필요하다. 또한, 발명예는 비교예 (7)(8)과 비교하여 보면 소재의 강도는 낮으나 소재의 연성을 평가할 수 있는 단면 감소율이 현저히 증가되고 있음을 알 수 있다.As can be seen in Table 2, the invention example, although the heating temperature is low, although the cornerstone ferrite fraction was controlled to 10% or less, in the case of the comparative material (5) to control the amount of the cornerstone ferrite to 10% or less 1150 High temperature heating above ℃ is required. In addition, the inventive example shows that the strength of the material is lower than that of the comparative example (7) (8), but the rate of reduction of the cross section which can evaluate the ductility of the material is significantly increased.

한편, 발명예의 경우 소재의 강도는 비교예(7),(8)에 비하여 낮으나 변형량 증가에 의한 가공경화를 최대한 이용하게 되므로 고강도 강선을 얻을 수 있는 것이다.On the other hand, in the case of the invention example, the strength of the material is lower than the comparative examples (7), (8), but because the work hardening by the increase in the amount of deformation is maximized, high strength steel wire can be obtained.

실시예 2Example 2

상기 실시예 1에서 얻어진 선재를 하기 표3과 같은 조건으로 5.5mmø에서 0.96mmø로 신선가공하고, 신선 선의 강도 및 디라미네이션 발생 여부를 측정하였다. 측정된 결과치는 하기 표3에 나타내었다. 이때, 상기 비교예 (7),(8)에 의해 얻어진 선재를 이용하여 신선가공하는 경우는 동일 선경의 제품을 제조하는데 공업적으로 사용하고 있는 방법인 중간 열처리후 신선가공하는 방법을 적용하여 강선을 제조하기도 하였으며, 이들의 강도 및 디라미네이션 발생 여부도 측정하여 그 결과를 하기표 3에 나타내었다.The wire rod obtained in Example 1 was drawn to 5.56mm to 0.96mm ° under the conditions as shown in Table 3 below, and the strength and the delamination of the drawn wire were measured. The measured results are shown in Table 3 below. At this time, in the case of drawing the wire using the wire rods obtained in Comparative Examples (7) and (8), the wire is applied by applying the method of drawing after the intermediate heat treatment, which is an industrially used method for producing products of the same diameter. It was also prepared, and the strength and whether or not the occurrence of delamination was measured and the results are shown in Table 3 below.

여기서, 신선 변형량은 ε=2ln(Do/D)로 계산한 값이며 Do는 신선소재의 선경, D는 신선후의 선경을 의미한다.Here, the wire deformation amount is calculated by ε = 2ln (D o / D), D o is the wire diameter of the fresh material, D is the wire diameter after drawing.

상기 표3에서 알 수 있는 바와 같이, 발명예(b-d)는 상기 실시예 1에서 얻어진 비교예(7),(8)의 선재를 이용하여 중간열처리한 비교예 (h, j)와 마찬가지로 변형량 3.5에서 디라미네이션이 발생하지 않고 보다 고강도의 강선을 제조할 수 있으나, 본 발명예의 경우 비교예에 비하여 고강도 및 연성이 우수하며 또한 중간 열처리 생략이 가능하다.As can be seen from Table 3, the invention example (bd) is a deformation amount 3.5 similar to the comparative examples (h, j) subjected to the intermediate heat treatment using the wire rods of Comparative Examples (7) and (8) obtained in Example 1 above. In the present invention, the high strength steel wire can be manufactured without delamination, but in the case of the present invention, high strength and ductility are superior to those of the comparative example, and intermediate heat treatment can be omitted.

비교예(g)(i)는 중간 열처리 없이 변형량 3.5까지 신선시 고강도는 얻을 수 있어나 디라미네이션(delamination)이 발생하여 제품화하기 불가능하였다.In Comparative Example (g) (i), high strength was obtained when the strain amount was up to 3.5 without intermediate heat treatment, but delamination occurred, and thus it was impossible to commercialize.

비교예(e)의 경우 중간 열처리 없이 변형량 3.5까지 신선하여 디라미네이션이 없이 230kg/mm2의 인장강도를 확보하였으나 발명예(b-d)에 비하여 강도가 낮으며 이러한 제품을 제조하기 위하여서는 가열온도상승이 필수적이다. 또한 가열온도가 낮을 경우 신선가공후 강도 저하 및 디라미네이션이 발생하여 열처리 생략이 불가능하다.In the case of Comparative Example (e), the tensile strength of 230kg / mm 2 was obtained without any delamination by drawing up to 3.5 deformation without intermediate heat treatment, but the strength was lower than that of Inventive Example (bd). This is essential. In addition, if the heating temperature is low, strength reduction and delamination occurs after the fresh processing, it is impossible to omit the heat treatment.

실시예3Example 3

상기 실시예 2에서와 같이 제조된 강선 중 디라미네이션이 발생하지 않은 강을 이용하여 400-550℃의 온도로 유지된 납조에 3-300sec 동안 침적하는 방법으로 불루잉을 실시하였다. 그 결과 납조의 온도가 높아지거나 시간이 길어질수록 강도가 낮아지는 경향은 동일하였다.Blowing was performed by depositing for 3-300 sec in a lead bath maintained at a temperature of 400-550 ° C. using a steel having no delamination among the steel wires prepared as in Example 2. As a result, the tendency for the strength to decrease with increasing temperature or longer time of the bath was the same.

이때, 블루잉 후 강선의 인장강도와 연신율과의 관계를 도 1에 나타내었다. 즉, 비교예(a)와 비교예(e)는 전 온도범위시간에서 연신율 5%를 확보하지 못하였으나 본 발명예 (b-d)는 인장강도 200kg/mm2이상, 연신율 5%이상의 기계적 성질을 확보할 수 있었다. 이때, 온도범위는 450-550℃에서 2-60sec이었다. 이러한 품질은 통상 제품으로 사용하고 있는 비교예(h),(j)등 상기 표3에서와 같이 중간 열처리후불루잉한후 인장강도 200-230kg/mm2, 연신율 7%의 기계적 성질과 대등하여, 본 발명에 의해 얻어진 강선의 경우 신선 도중 실시하는 열처리를 생략하고도 비드와이어를 제조할 수 있었다.At this time, the relationship between the tensile strength and the elongation of the steel wire after bluing is shown in FIG. That is, Comparative Example (a) and Comparative Example (e) did not secure an elongation of 5% over the entire temperature range time, but Example (bd) of the present invention secures mechanical properties of tensile strength of 200 kg / mm 2 or more and elongation of 5% or more. Could. At this time, the temperature range was 2-60 sec at 450-550 ° C. This quality is comparable to the mechanical properties of tensile strength 200-230kg / mm 2 and elongation 7% after blowing after intermediate heat treatment as shown in Table 3, such as Comparative Examples (h) and (j), which are usually used as products. In the case of the steel wire obtained by the present invention, the bead wire could be manufactured even if the heat treatment carried out during the drawing was omitted.

상술한 바와같이 본 발명은 강의 합금 성분계, 열간 압연후 냉각속도 그리고 신선가공시의 변형량을 적절히 제어하여 블루잉을 450-550℃에서 2-60sec동안 실시하여 신선 도중 중간 열처리를 생략하고 비드와이어를 제조할 수 있다.As described above, the present invention performs the blueing at 450-550 ° C. for 2-60 sec by appropriately controlling the alloy component system of steel, the cooling rate after hot rolling, and the amount of deformation during drawing, thereby eliminating the intermediate heat treatment during drawing and removing the bead wire. It can manufacture.

상기와 같이 본 발명에 의하면 화학성분을 적절히 조절하고 열간압연후 냉각속도를 제어하여 페라이트 분율을 10%이하로 제어하면 신선가공성이 우수한 선재를 제조할수 있어 이러한 선재를 이용하여 신선 변형량 3.5까지 열처리를 생략하고 비드와이어를 제조할 수 있어 신선가공 도중 실시되는 열처리, 산세, 윤활제 코팅 공정을 생략할 수 있는 효과가 있다.As described above, according to the present invention, if the ferrite fraction is controlled to 10% or less by appropriately adjusting the chemical composition and controlling the cooling rate after hot rolling, the wire can be manufactured with excellent drawability. The bead wire can be omitted and the heat treatment, pickling, and lubricant coating process performed during the drawing process can be omitted.

Claims (3)

비드와이어용 강선을 제조하는 방법에 있어서,In the method for producing a steel wire for bead wire, 중량%로, C:0.4-0.65%, Mn:0.1-1.0%, Si:0.1-1.0%가 함유되고, 여기에 Cr:0.3%이하, B:100ppm이하, Ti:0.02%이하, Nb:0.02%이하, V:0.02%이하로 이루어진 그룹중에서 선택된 1종이상이 함유되며, 나머지 Fe 및 기타 불가피한 불순물로 조성되는 강괴를 열간압연후 10-30℃/sec의 냉각속도로 연속 냉각하여 초석 페라이트 분율이 10%이하로 제어되고, 세멘타이트 분율이 6-10%로 제어된 선재를 얻은 다음, 얻어진 선재를 열처리 없이 신선하고, 450-550℃의 온도에서 블루잉처리를 행하는 것을 특징으로 하는 비드 와이어용 강선의 제조방법By weight%, C: 0.4-0.65%, Mn: 0.1-1.0%, Si: 0.1-1.0% are contained, Cr: 0.3% or less, B: 100 ppm or less, Ti: 0.02% or less, Nb: 0.02 Containing at least one selected from the group consisting of% or less, V: 0.02% or less, and ingot formed from the remaining Fe and other unavoidable impurities by continuously cooling at a cooling rate of 10-30 ° C / sec after hot rolling Bead wire, characterized in that the wire rod is controlled to 10% or less and the cementite fraction is controlled to 6-10%, and then the obtained wire rod is drawn without heat treatment and subjected to bluing at a temperature of 450-550 ° C. Manufacturing method of molten steel wire 제 1 항에 있어서,The method of claim 1, 상기 신선은 변형량 3.5이하로 행하는 것임을 특징으로 하는 비드 와이어용 강선의 제조방법The drawing method is a method for producing a bead wire steel wire, characterized in that the deformation amount is less than 3.5. 제 1 항에 있어서,The method of claim 1, 상기 블루잉처리는 2-60sec동안 행하는 것임을 특징으로 하는 비드 와이어용 강선의 제조방법The bluing process is a method for producing a bead wire for use, characterized in that for 2-60sec.
KR10-1998-0057632A 1998-10-16 1998-12-23 A method of manufacturing steel wire for bead wire KR100415660B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR10-1998-0057632A KR100415660B1 (en) 1998-12-23 1998-12-23 A method of manufacturing steel wire for bead wire
JP29451899A JP3409055B2 (en) 1998-10-16 1999-10-15 Wire for high-strength steel wire with excellent drawability and method for producing high-strength steel wire
US09/418,620 US6264759B1 (en) 1998-10-16 1999-10-15 Wire rods with superior drawability and manufacturing method therefor
CN99121842A CN1102180C (en) 1998-10-16 1999-10-18 Wire materials with high drawable property and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0057632A KR100415660B1 (en) 1998-12-23 1998-12-23 A method of manufacturing steel wire for bead wire

Publications (2)

Publication Number Publication Date
KR20000041678A KR20000041678A (en) 2000-07-15
KR100415660B1 true KR100415660B1 (en) 2004-03-31

Family

ID=19564920

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0057632A KR100415660B1 (en) 1998-10-16 1998-12-23 A method of manufacturing steel wire for bead wire

Country Status (1)

Country Link
KR (1) KR100415660B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100471807B1 (en) * 2001-11-14 2005-03-08 현대자동차주식회사 Method of heat treatment of steel wire for car wire clamp
KR101726129B1 (en) 2016-03-03 2017-04-12 주식회사 포스코 Wire rod and steel wire having excellent elongation and method for manufacturing thereof
CN110153223A (en) * 2019-05-17 2019-08-23 江苏胜达科技有限公司 The rough production line of steel bead wire and its rough technique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122219A (en) * 1976-04-06 1977-10-14 Kobe Steel Ltd Production of high tensile steel wire and steel rod from low carbon tempered martensite steel
JPH083640A (en) * 1994-06-21 1996-01-09 Nippon Steel Corp Production of high-tensile non-heat treated bolt
JPH0995733A (en) * 1995-10-02 1997-04-08 Kobe Steel Ltd Production of high strength non-heat treated wire rod for bolt

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122219A (en) * 1976-04-06 1977-10-14 Kobe Steel Ltd Production of high tensile steel wire and steel rod from low carbon tempered martensite steel
JPH083640A (en) * 1994-06-21 1996-01-09 Nippon Steel Corp Production of high-tensile non-heat treated bolt
JPH0995733A (en) * 1995-10-02 1997-04-08 Kobe Steel Ltd Production of high strength non-heat treated wire rod for bolt

Also Published As

Publication number Publication date
KR20000041678A (en) 2000-07-15

Similar Documents

Publication Publication Date Title
JP3409055B2 (en) Wire for high-strength steel wire with excellent drawability and method for producing high-strength steel wire
KR950001906B1 (en) Method of producing ultrafine high-strength/high ductility steel wire
US4406711A (en) Method for the production of homogeneous steel
JPH0432514A (en) Production of soft wire rod free from surface abnormal phase in as-rolled state
JP3536684B2 (en) Steel wire with excellent wire drawing workability
JP3572993B2 (en) Steel wire, steel wire, and method of manufacturing the same
KR20190055097A (en) A method of producing hot or cold strip and / or flexible rolled flat steel products made of high strength manganese steel and flat steel products produced by the method
JP3153618B2 (en) Manufacturing method of hypereutectoid steel wire
JP3456455B2 (en) Steel wire rod, steel wire, and method for producing them
US5662747A (en) Bainite wire rod and wire for drawing and methods of producing the same
JP3554506B2 (en) Manufacturing method of hot-rolled wire and bar for machine structure
KR100415660B1 (en) A method of manufacturing steel wire for bead wire
JPH11131187A (en) Rapidly graphitizable steel and its production
KR20190020694A (en) METHOD FOR MANUFACTURING COOLED ROLLED STEEL STRIP WITH TRIP CHARACTERISTICS CONTAINING HIGH-STRENGTH MANGEN-CONTAINING RIG
KR100384629B1 (en) A high strength wire-rod having superior wire drawability and a method therefor
JPH02213416A (en) Production of steel bar with high ductility
JP3300932B2 (en) Manufacturing method of high strength steel wire
US5647918A (en) Bainite wire rod and wire for drawing and methods of producing the same
KR100435460B1 (en) A method for manufacturing steel wire for steel cord
US5658399A (en) Bainite wire rod and wire for drawing and methods of producing the same
JPH07268463A (en) Production of drawability-strengthened wire rod for high strength steel wire
KR100352607B1 (en) Manufacturing method of high stress spring steel wire
JPH04272134A (en) Production of high strength bead wire
KR100554748B1 (en) Method for manufacturing wire rods having superior strength for drawing
JP3487957B2 (en) Wire with excellent wire drawing processability

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130104

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140106

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150107

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20160106

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20170104

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20180103

Year of fee payment: 15

EXPY Expiration of term