KR100411177B1 - Oxidation catalyst and the production of hydrocarbon compounds thereby - Google Patents

Oxidation catalyst and the production of hydrocarbon compounds thereby Download PDF

Info

Publication number
KR100411177B1
KR100411177B1 KR10-2001-0023814A KR20010023814A KR100411177B1 KR 100411177 B1 KR100411177 B1 KR 100411177B1 KR 20010023814 A KR20010023814 A KR 20010023814A KR 100411177 B1 KR100411177 B1 KR 100411177B1
Authority
KR
South Korea
Prior art keywords
phenol
catalyst
type
hydrogen peroxide
oxidation
Prior art date
Application number
KR10-2001-0023814A
Other languages
Korean (ko)
Other versions
KR20020084500A (en
Inventor
박상언
황진수
이철위
장종산
김지만
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR10-2001-0023814A priority Critical patent/KR100411177B1/en
Publication of KR20020084500A publication Critical patent/KR20020084500A/en
Application granted granted Critical
Publication of KR100411177B1 publication Critical patent/KR100411177B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7057Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • B01J29/605Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/60Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by oxidation reactions introducing directly hydroxy groups on a =CH-group belonging to a six-membered aromatic ring with the aid of other oxidants than molecular oxygen or their mixtures with molecular oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 산화반응용 촉매 및 이를 이용한 탄화수소 화합물의 산화물 제조방법에 관한 것으로서, 더욱 상세하게는 기존의 티타늄실리케이트 촉매에 비해 제조방법이 매우 간단하며, 가격도 저렴하고, 또한 종래 산화반응 보다 반응성 및 선택성이 우수한 납이 함유된 신규 산화반응용 촉매를 제조하고, 이러한 신규 촉매와 함께 과산화수소를 산화제로 사용하여 각종 탄화수소 화합물의 산화물을 제조하는 방법에 관한 것이다.The present invention relates to an oxidation reaction catalyst and a method for producing an oxide of a hydrocarbon compound using the same, and more particularly, the production method is very simple, inexpensive, and more reactive than conventional oxidation reactions. The present invention relates to a method for preparing a novel oxidation catalyst containing lead having excellent selectivity, and producing oxides of various hydrocarbon compounds using hydrogen peroxide as an oxidant together with such a novel catalyst.

Description

산화반응용 촉매 및 이를 이용한 탄화수소 화합물의 산화물 제조방법{Oxidation catalyst and the production of hydrocarbon compounds thereby}Oxidation catalyst and the production of hydrocarbon compounds hence

본 발명은 산화반응용 촉매 및 이를 이용한 탄화수소 화합물의 산화물 제조방법에 관한 것으로서, 더욱 상세하게는 기존의 티타늄실리케이트 촉매에 비해 제조방법이 매우 간단하며, 가격도 저렴하고, 또한 종래 산화반응 보다 반응성 및 선택성이 우수한 납이 함유된 신규 산화반응용 촉매를 제조하고, 이러한 신규 촉매와 함께 과산화수소를 산화제로 사용하여 각종 탄화수소 화합물의 산화물을 제조하는 방법에 관한 것이다.The present invention relates to an oxidation reaction catalyst and a method for producing an oxide of a hydrocarbon compound using the same, and more particularly, the production method is very simple, inexpensive, and more reactive than conventional oxidation reactions. The present invention relates to a method for preparing a novel oxidation catalyst containing lead having excellent selectivity, and producing oxides of various hydrocarbon compounds using hydrogen peroxide as an oxidant together with such a novel catalyst.

환경친화적인 관점에서 유기화합물의 액상 산화반응에 사용되는 선택적 산화제로는 분자산소(molecular oxygen)나 유기물 퍼옥사이드(Peroxide) 대신 환경에 무해한 과산화수소의 사용이 요구되고 있다. 산소를 산화제로 이용하면 여러 가지 부반응에 의한 낮은 선택성과 유기 하이드로퍼옥사이드(Hydroperoxide) 및 퍼옥사이드를 산화제 사용할 경우 분해 후 유기물이 부생되어 환경오염의 문제를 야기시킬 뿐만 아니라 폭발의 위험성도 있다. 그러나, 과산화수소를 산화제로 사용할 경우 분해 후, 활성 산소종과 물이 생성되기 때문에 산화반응에 매우 선택적일 뿐만 아니라 환경문제가 없다. 이런 이유로 인하여 최근 액상 산화반응과 폐수처리 분야에 과산화수소를 활용하려는 연구가 많이 추진되고 있다.From the environmentally friendly point of view, the selective oxidizing agent used in the liquid phase oxidation of organic compounds requires the use of hydrogen peroxide, which is harmless to the environment, instead of molecular oxygen or organic peroxide. When oxygen is used as an oxidant, low selectivity due to various side reactions and organic hydroperoxide and peroxide when oxidant is used, organic matters are produced by decomposition and cause environmental pollution as well as a risk of explosion. However, when hydrogen peroxide is used as an oxidizing agent, since reactive oxygen species and water are produced after decomposition, they are not only very selective to the oxidation reaction but also have no environmental problems. For this reason, a lot of researches are recently underway to utilize hydrogen peroxide in the field of liquid oxidation and wastewater treatment.

산화제로서 산소(O2)를 이용하여 벤젠의 직접 산화반응에 의한 페놀 제조방법이 공지되어 있는 바, 예컨대 팔라듐이 담지된 헤테로다중산 촉매가 존재하는 가압 반응기에 산소 60 기압을 주입한 후 130 ℃에서 4시간 반응시킨 결과, 벤젠 전환율이 15 중량%이고 페놀의 선택도가 약 70%인 것으로 보고되어 있다[J. Mol. Catal. A.,120, 117(1997)]. 그러나, 상기 공정은 공업적으로 사용 가능한 농도의 페놀을 생산하기 위하여 산소를 고압으로 주입해야 하므로 매우 위험하여 상업화되지 못하고 있는 실정이다.A method for producing phenol by direct oxidation of benzene using oxygen (O 2 ) as an oxidizing agent is known. For example, after injecting 60 atmospheres of oxygen into a pressurized reactor containing a palladium-containing heteropolyacid catalyst, 130 ° C. It was reported that the reaction was carried out for 4 hours at 15% by weight of benzene and about 70% selectivity of phenol [ J. Mol. Catal. A. , 120 , 117 (1997)]. However, the process is very dangerous because it is necessary to inject oxygen at high pressure in order to produce industrially usable concentration of phenol, which is not commercialized.

그리고, 산화제로서 큐멘 등의 유기 과산화물을 사용하는 공정이 널리 활용되고 있으나, 공정이 여러 단계로 이루어져 있어 비경제적이며 아세톤 등과 같은 부산물이 발생하여 환경친화적인 측면에서 바람직하지 못하다.In addition, a process using an organic peroxide such as cumene as an oxidizing agent is widely used, but the process is composed of several steps, which is uneconomical, and byproducts such as acetone are generated, which is not preferable in terms of environment friendliness.

따라서, 유기화합물의 산화제로서는 분자산소 또는 유기 과산화물을 사용하기보다는 과산화수소의 사용을 선호하는 바, 과산화수소는 분해 후 활성 산소종과 물이 생성되기 때문에 산화반응에 매우 선택적일 뿐만 아니라 환경오염을 유발하지 않는다.Therefore, the use of hydrogen peroxide rather than molecular oxygen or organic peroxide is preferred as an oxidizing agent of organic compounds. Hydrogen peroxide is not only highly selective for oxidation reactions and does not cause environmental pollution because active oxygen species and water are generated after decomposition. Do not.

Fe(Ⅱ)과 과산화수소로 이루어진 펜톤(Fenton) 시약을 사용하여 벤젠의 수산화반응에 의해 페놀로 전환하는 방법이 공지되어 있으며[C. Walling and R.A. Johnson,J. Am. Chem. Soc.,97, 363(1975)], 이때 펜톤 시약에서의 활성종은 반응동안에 생성된 수산기 라디칼인데 수율이 낮아 실용화되지 못하였다. 과산화수소를 사용하여 벤젠, 페놀 및 그들의 알킬화 유도체를 수산화시키는 방법으로는 페로센(Ferrocene) 및 그의 유도체를 촉매로 사용하여 50 ∼ 100 ℃ 에서 16 ∼ 30%의 전환율과 77 ∼ 98%의 선택도를 얻었다[M. Okihama and M. Yamamoto 일본특허 공개 평10-236,997호, 1998]. 또한, 최근 공지된 바에 의하면 벤젠을 과산화수소로 산화시켜 페놀을 제조할 때 철(Ⅱ 혹은 Ⅲ)의 염화물, 황화물, 질화물 등과 카르복실산을 함유한 방향족 화합물을 촉매로 사용하면 3 ∼ 8%의 벤젠전환율과 94 ∼ 96%의 페놀선택도를 보여준다[유럽특허 공개 제 00861688 호]. Fe(Ⅱ), 아스코르브산(Ascorbic acid) 및 EDTA가 공존하는 반응조건에서 방향족 화합물을 실온에서 수산화 반응시키는 방법이 공지되어 있으나[S. Udenfriend, C.T. Clark, J. Axelrod and B.B. Brodie, J. Biol. Chem.,208, 731(1954)], 이 반응은 수율이 매우 낮아서 합성법으로 적용하기에는 적절치 못하다.A method for converting benzene into phenol by the hydroxylation of benzene using a Fenton reagent consisting of Fe (II) and hydrogen peroxide is known [C. Walling and RA Johnson, J. Am. Chem. Soc. , 97 , 363 (1975), wherein the active species in the Fenton's reagent is a hydroxyl radical produced during the reaction, but the yield is not practical. Hydrogen peroxide was used to hydroxylate benzene, phenols and their alkylated derivatives using ferrocene and its derivatives as catalysts to obtain 16-30% conversion and 77-98% selectivity at 50-100 ° C. [M. Okihama and M. Yamamoto Japanese Patent Application Laid-open No. Hei 10-236,997, 1998]. In addition, according to the recently known, when preparing phenol by oxidizing benzene with hydrogen peroxide, 3-8% of benzene is used when an aromatic compound containing iron (II or III) chloride, sulfide, nitride and carboxylic acid is used as a catalyst. Conversion and phenol selectivity between 94 and 96% [European Patent Publication 00861688]. A method of hydroxylating an aromatic compound at room temperature under a reaction condition in which Fe (II), ascorbic acid and EDTA coexist is known [S. Udenfriend, CT Clark, J. Axelrod and BB Brodie , J. Biol. Chem. , 208 , 731 (1954)], the yields are very low and therefore not suitable for synthesis.

Cu(Ⅰ), Sn(Ⅱ), Ti(Ⅲ), Fe(Ⅱ)-EDTA 등과 같이 표준 산화/환원 전극전위(Eo)가 0.15 V인 금속이온이 공존하는 조건에서 방향족 탄화수소 화합물은 산소(O2)에 의해 수산화반응이 이루어질 수 있다고 알려져 있다. Cu-Pd가 담지된 실리카 촉매도 벤젠을 수산화시키는데 매우 효과적인 것으로 알려졌다[A. Kunai, T. Kitano, Y. Kurota, J. Li-Fen and K. Sasaki,Catal. Lett.,4,139(1990)]. 이때 반응 생성물은 페놀과 히드로퀴논이며, 반응원리는 산성 조건에서 Cu(Ⅰ)와 산소가 반응하여 과산화수소가 형성되고, 일단 생성된 과산화수소는 수산기 라디칼로 환원되며, 반응물 중에 벤젠이 존재하면 수산기 라디칼에 의해 페놀로 전환된다. 이러한 반응을 촉매반응에 활용하기 위해서는 Cu(Ⅱ)를 Cu(Ⅰ)로 환원시켜야 하는데, 팔라듐이 담지된 실리카 촉매를 이용하면 수소 환원 반응을 이룰 수 있다.Aromatic hydrocarbon compounds are oxygen (or oxygen) under the conditions in which metal ions having a standard oxidation / reduction electrode potential (E o ) of 0.15 V coexist such as Cu (I), Sn (II), Ti (III), Fe (II) -EDTA, etc. It is known that the hydroxide reaction can be carried out by O 2 ). Cu-Pd-supported silica catalysts are also known to be very effective for benzene hydration [A. Kunai, T. Kitano, Y. Kurota, J. Li-Fen and K. Sasaki, Catal. Lett. , 4, 139 (1990)]. At this time, the reaction product is phenol and hydroquinone, and the reaction principle is Cu (I) and oxygen under acidic conditions to form hydrogen peroxide, and once formed hydrogen peroxide is reduced to hydroxyl radical, and when benzene is present in the reactant, Converted to phenol. In order to utilize this reaction in the catalytic reaction, Cu (II) should be reduced to Cu (I), and the hydrogen reduction reaction can be achieved by using a silica catalyst loaded with palladium.

최근 티타늄실리케이트(TS-1 계열 제올라이트) 등과 같은 티타늄이 골격 위치에 치환된 분자체가 과산화수소 존재와 온화한 조건에서 벤젠 등과 같은 방향족 화합물 및 포화탄화수소류의 수산화반응에 매우 유용한 촉매로 등장하였다[A. Thangaraj, R. Kumar, and P. Ratnasamy,Appl. Catal.57, L1(1990); A. Tuel, S. Moussa-Khouzami, Y. Ben Taarit and C. NaccacheJ. Mol. Catal.,68, 45(1991)]. TS-1 제올라이트는 실리콘 함량이 매우 높은 ZSM-5 구조의 제올라이트로서 불과 0.1 ∼ 2.5 몰% 함량의 Ti(Ⅳ)종이 구조 내에 사면체로 배위하고 있다. 이와 같이 낮은 티타늄 함량은 촉매의 활성점을 고분산시키기 때문에 산화반응의 선택성을 크게 높일 수 있다. TS-1 제올라이트 관련 반응은 20 ∼ 100 ℃의 매우 온화한 조건에서 30% 과산화수소 수용액에 의해 수행될 수 있다. 그러나, 티타늄 등이 골격위치에 치환된 분자체를 재현성 있게 합성하기는 용이하지 않다.Recently, molecular sieves in which titanium, such as titanium silicate (TS-1 series zeolite), are substituted at the skeleton position have emerged as very useful catalysts for the hydroxylation of aromatic compounds and saturated hydrocarbons such as benzene in the presence of hydrogen peroxide and in mild conditions [A. Thangaraj, R. Kumar, and P. Ratnasamy, Appl. Catal . 57 , L1 (1990); A. Tuel, S. Moussa-Khouzami, Y. Ben Taarit and C. Naccache J. Mol. Catal. , 68 , 45 (1991). TS-1 zeolite is a ZSM-5 structured zeolite with a very high silicon content and is coordinated tetrahedral within the Ti (IV) paper structure of only 0.1 to 2.5 mol%. Such a low titanium content can greatly increase the selectivity of the oxidation reaction because of high dispersion of the active site of the catalyst. TS-1 zeolite related reactions can be carried out with 30% aqueous hydrogen peroxide solution at very mild conditions of 20-100 ° C. However, it is not easy to reproducibly synthesize molecular sieve substituted at the skeleton position with titanium or the like.

구리 아세트산염의 이합체가 담지된 여러 종류의 다공성 분자체(Y, MCM-22, VPI-5) 상에서 분자 산소를 활성화시켜 산화제로 사용하여 페놀의 수산화반응을 수행하면 구리 아세트산염 그 자체를 촉매로 사용했을 때 보다 활성도가 6 ∼ 10배정도 증가하여 TON(전환빈도수, 반응물 또는 생성물의 몰수/구리의 몰수) = 19 ∼ 35을 보여 준다[R. Robert, P. RatnasamyJ. Mol. Catal. A. 100, 93(1995)]. 이는 촉매활성을 갖는 금속착물이 분자체의 동공에 균일하게 분산되어 있기 때문으로 해석된다. 이와 유사한 연구결과로서 구리 아세트산염의 이합체를 Al-MCM-48 등과 같은 메조세공 분자체에 담지시킨 촉매는 분자 산소를 활성화시켜 페놀의 수산화반응을 수행하면 카테콜이 주 생성물로 검출되며, 실온 상압에서 약 36%의 전환율을 얻는다[M. Eswaramoorthy et alChem. Commun.615, (1998)]. 그러나, MCM 계열의 메조세공 분자체는 담체로서 내구성이 결여되어 개선의 여지가 많다.Activated molecular oxygen on various kinds of porous molecular sieves (Y, MCM-22, VPI-5) on which dimers of copper acetate are supported and used as oxidant to carry out hydroxylation reaction of phenol, copper acetate itself is used as catalyst The activity was increased 6 to 10 times higher than that of TON (conversion frequency, number of moles of reactant or product / moles of copper) = 19 to 35 [R. Robert, P. Ratnasamy J. Mol. Catal. A. 100 , 93 (1995)]. This is interpreted because the metal complex having catalytic activity is uniformly dispersed in the pupil of the molecular sieve. As a result of this study, a catalyst in which a dimer of copper acetate is supported on a mesoporous molecular sieve such as Al-MCM-48 is activated, and catechol is detected as a main product when hydration of phenol is carried out to activate molecular oxygen. About 36% conversion [M. Eswaramoorthy et al Chem. Commun . 615 , (1998). However, MCM-based mesoporous molecular sieve lacks durability as a carrier, and there is much room for improvement.

팔라듐과 티타늄이 담지된 이원계 촉매(Pd/C+TS-1) 존재 하에서 상압 및 35 ℃에서 수소와 산소를 이용한 벤젠의 수산화반응을 시도한 바 있으나[J. Chem. Soc. Chem. Commun. 1446, 1992] 활성이 저조한 문제가 있다. 구리와 팔라듐이 함께 담지된 실리카 촉매를 사용하여 상압 및 50 ℃에서 수소와 산소를 이용한 벤젠의 산화반응을 시도한 바 있으며[JCS Perkin Trans. 2. 1991(1990)], 이때 얻은 최대 전환빈도수는 약 3.8 h-1이었다.In the presence of a palladium- and titanium-supported binary catalyst (Pd / C + TS-1), attempts were made to hydroxylate benzene using hydrogen and oxygen at atmospheric pressure and at 35 ° C [ J. Chem. Soc. Chem. Commun. 1446 , 1992] There is a problem of poor activity. An attempt was made to oxidize benzene using hydrogen and oxygen at atmospheric pressure and 50 ° C using a silica catalyst loaded with copper and palladium [ JCS Perkin Trans. 2 . 1991 (1990)], the maximum conversion frequency obtained was about 3.8 h −1 .

본 발명의 발명자들은 8B족 전이금속과 수소운반 화합물으로서 알킬 안트라퀴논 또는 그 유사체가 제올라이트 세공에 내포되어 있는 다공성 촉매에 의해 수용액상에서 직접적 과산화수소 제조기술을 개발하였다[대한민국 특허출원 제 97-50302호]. 또한, 상기 신규 다공성 촉매와 Ti, V, Sn 등의 사면체 배위구조를갖는 전이금속을 함유하거나 Fe, Mn, Os, Sn 등의 중금속을 함유한 제올라이트 촉매로 이루어진 이원계 불균일 촉매 상에서 수소와 산소를 사용하여 온화한 분위기에서 수산화 방향족 화합물의 직접적 제조방법을 개발한 바 있다[대한민국 특허출원 제 98-22415 호, 대한민국 특허출원 제 99-27874 호].The inventors of the present invention have developed a technique for producing hydrogen peroxide directly in an aqueous solution by a porous catalyst containing an alkyl anthraquinone or an analog thereof as a group 8B transition metal and a hydrogen transport compound. [Korean Patent Application No. 97-50302] . In addition, hydrogen and oxygen are used on a binary heterogeneous catalyst comprising the novel porous catalyst and a zeolite catalyst containing a transition metal having a tetrahedral coordination structure such as Ti, V, and Sn or heavy metals such as Fe, Mn, Os, and Sn. Has developed a process for the direct preparation of hydroxylated aromatic compounds in a mild atmosphere [Korean Patent Application No. 98-22415, Korean Patent Application No. 99-27874].

이에, 본 발명자들은 이상에서 언급한 촉매들의 단점을 해결하기 위하여 각종 탄화수소 화합물의 산화제로서 과산화수소를 사용하여 값싸고 손쉽게 제조하면서도 전환빈도수 및 선택도면에서 우수한 산화활성을 갖는 새로운 촉매를 연구한 결과, 과산화수소와 함께 값싸고 손쉽게 제조가 가능한 납이 함유된 다공성 촉매를 사용하여 효과적으로 탄화수소 화합물의 산화물을 제조함으로써 본 발명을 완성하게 되었다.Accordingly, the present inventors have studied a new catalyst having excellent oxidation activity in terms of conversion frequency and selectivity while being cheaply and easily manufactured using hydrogen peroxide as an oxidizing agent of various hydrocarbon compounds in order to solve the disadvantages of the catalysts mentioned above. The present invention has been accomplished by effectively preparing oxides of hydrocarbon compounds using a lead-containing porous catalyst which is inexpensive and easily prepared.

따라서, 본 발명은 탄화수소 화합물의 산화제로서 과산화수소를 사용하여 값싸고 손쉽게 제조하면서도 전환빈도수 및 선택도면에서 우수한 산화활성을 갖는 납이 함유된 새로운 산화반응용 촉매를 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a new catalyst for the oxidation reaction containing lead which has excellent oxidation activity in terms of conversion frequency and selectivity while being cheaply and easily prepared using hydrogen peroxide as an oxidizing agent of a hydrocarbon compound.

또한, 본 발명은 새로운 산화반응용 촉매를 이용하여 각종 탄화수소의 산화물을 제조하는 방법을 제공하는데 또 다른 목적이 있다.Another object of the present invention is to provide a method for preparing oxides of various hydrocarbons using a new catalyst for oxidation reaction.

본 발명은 납이 함유된 새로운 산화반응용 촉매 및 이 촉매를 사용하여 각종탄화수소 화합물의 산화물을 제조하는 방법을 그 특징으로 한다.The present invention is characterized by a novel oxidation catalyst containing lead and a method for producing oxides of various hydrocarbon compounds using the catalyst.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

본 발명에 따른 새로운 산화반응용 촉매는 과산화수소가 효과적으로 산화반응에 기여하는 납이 담지된 다공성 분자체 촉매이다. 특히, 담체로서 다공성 분자체를 사용하는데, 바람직하게는 Si/Al 비율이 1 ∼ 160인 X형, Y형, USY형, MOR형, β형, L형, ZSM-5형, MCM-41 및 MCM-48 중에서 선택된 것을 사용한다.The novel oxidation catalyst according to the present invention is a lead-supported porous molecular sieve catalyst in which hydrogen peroxide contributes to the oxidation reaction effectively. In particular, a porous molecular sieve is used as the carrier, preferably X-type, Y-type, USY-type, MOR-type, β-type, L-type, ZSM-5-type, MCM-41 and Si / Al ratios of 1 to 160 and Use one of the MCM-48s.

본 발명에 따른 불균일계 촉매 중에 함유되는 Pb의 양은 0.5 ∼ 10 중량% 범위 내에서 담지시키는 것이 바람직하다. 산화반응 활성도는 Pb의 농도에 의존하는 바, 그 담지량이 0.5 중량% 미만이면 산화반응 활성도가 너무 낮은 문제점이 있으며, 10 중량%를 초과하면 원하는 다공성 제올라이트를 제조하기 어려울 뿐만 아니라 활성종의 분산도가 균일하지 않아서 촉매로서의 성능을 발하지 못한다.The amount of Pb contained in the heterogeneous catalyst according to the present invention is preferably supported within the range of 0.5 to 10% by weight. The oxidation activity depends on the concentration of Pb. If the supported amount is less than 0.5% by weight, the oxidation activity is too low. If it exceeds 10% by weight, it is difficult to prepare the desired porous zeolite as well as the dispersion of the active species. Is not uniform and does not give off performance as a catalyst.

한편, 상기 촉매를 사용하고, -10 ∼ 80 ℃ 조건에서 과산화수소를 유입시켜 각종 탄화수소 화합물의 산화물을 제조하는 방법도 제공한다. 이때, -10 ℃ 미만일 경우에는 전환율이 낮아지는 문제점이 있으며, 80 ℃ 초과하면 선택성이 저하되므로 바람직하지 못하다.On the other hand, the method which uses the said catalyst and introduces hydrogen peroxide on -10-80 degreeC conditions, and also provides the method of manufacturing oxide of various hydrocarbon compounds. At this time, when it is less than -10 ℃ there is a problem that the conversion rate is lowered, if it exceeds 80 ℃ it is not preferable because the selectivity is lowered.

특히, 탄화수소 화합물은 방향족 탄화수소 화합물로, 벤젠, 페놀 및 페놀의 알킬화 유도체를, 올레핀으로 프로필렌, 헥센, 스티렌, 노르보넨, 도데센, 헵텐, 카르본, 리모넨부타디엔을 포함하고, 그외 각종 알코올류와 케톤류, 파라핀류, 아민류, 설파이드류로부터 선택된 것이다.In particular, the hydrocarbon compound is an aromatic hydrocarbon compound, and alkylated derivatives of benzene, phenol and phenol include propylene, hexene, styrene, norbornene, dodecene, heptene, carbon, limonenebutadiene as olefin, and various other alcohols and Ketones, paraffins, amines and sulfides.

또한, 상기 페놀의 알킬화 유도체는 1-메틸 페놀, 2-메틸 페놀, 3-메틸 페놀, 1-에틸 페놀, 2-에틸 페놀, 3-에틸 페놀, 1-이소프로필 페놀, 2-이소프로필 페놀, 3-이소프로필 페놀, 1-프로필 페놀, 2-프로필 페놀, 3-프로필 페놀, 1-1차부틸 페놀, 2-1차부틸 페놀, 3-1차부틸 페놀, 1-이소부틸 페놀, 2-이소부틸 페놀, 3-이소부틸 페놀, 1-3차부틸 페놀, 2-3차부틸 페놀 및 3-3차부틸 페놀 중에서 선택된 것이다.In addition, alkylated derivatives of the phenols include 1-methyl phenol, 2-methyl phenol, 3-methyl phenol, 1-ethyl phenol, 2-ethyl phenol, 3-ethyl phenol, 1-isopropyl phenol, 2-isopropyl phenol, 3-isopropyl phenol, 1-propyl phenol, 2-propyl phenol, 3-propyl phenol, 1-1 butyl phenol, 2-1 butyl phenol, 3-1 butyl phenol, 1-isobutyl phenol, 2- Isobutyl phenol, 3-isobutyl phenol, 1-3 tert-butyl phenol, 2-3 tert-butyl phenol and 3 tert-butyl phenol.

본 발명에 따른 불균일계 촉매는 이온교환법과 Ship-in-a-bottle 법으로 제조하며, 기존의 문헌에 소개된 절차를 따라 제조하였다[F. Bedioui,Coord. Chem. Rev. 144, 39(1995); R.F. Parton et al,Nature,370, 541(1994); L. Gaillion et alJ. Electroanal. Chem.345, 157(1993)].The heterogeneous catalyst according to the present invention is prepared by ion exchange method and Ship-in-a-bottle method, and is prepared according to the procedure introduced in the existing literature [F. Bedioui, Coord. Chem. Rev. 144 , 39 (1995); RF Parton et al, Nature , 370 , 541 (1994); L. Gaillion et al J. Electroanal. Chem . 345 , 157 (1993).

이하, 본 발명은 실시예에 의거하여 더욱 상세하게 설명하겠는바, 본 발명이 다음 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on Examples, but the present invention is not limited to the following Examples.

실시예 1Example 1

촉매의 반응활성을 측정하기 위한 장치는 환류 냉각기, 과산화수소의 주입장치, 삼구 둥근바닥 플라스크 반응기를 이용하였다. 촉매의 반응활성을 조사하기 위하여 페놀의 수산화반응을 실시하였다. 촉매의 제조는 다음과 같이 수행하였다. Pb(NO3)23.2 g을 100 ㎖의 증류수에 넣고 상온에서 완전히 녹인 후 H-β 제올라이트(Si/Al = 25) 5 g을 넣고 12시간 교반하였다. 여과하고 더운 물로 세척한다. 100 ℃의 대기 중에서 12시간 동안 말린다. 이와 같이하여 제조된 Pb(Ⅱ)가 이온교환된 H-β 제올라이트 0.05 g을 준비된 반응용기에 넣은 후, 페놀 1.0 g과 10 ㎖의 0.01 N HCl 수용액과 첨가한 다음, 반응물과 촉매가 균일하게 될 때까지 교반하였다. 여기에 과산화수소를 0.005 ㎖/min 유량으로 주입하면서 60 ℃에서 4시간 동안 반응시키고, 가스 크로마토그래피[Chrompack, CP9001, CPSIL5CB capillary column]를 사용하여 생성물을 분석하였다.As a device for measuring the reaction activity of the catalyst, a reflux condenser, a hydrogen peroxide injector, and a three-neck round bottom flask reactor were used. In order to investigate the reaction activity of the catalyst, a phenol hydroxide reaction was carried out. Preparation of the catalyst was carried out as follows. 3.2 g of Pb (NO 3 ) 2 was added to 100 ml of distilled water and completely dissolved at room temperature. Then, 5 g of H-β zeolite (Si / Al = 25) was added thereto, followed by stirring for 12 hours. Filter and wash with hot water. Dry in air at 100 ° C. for 12 hours. 0.05 g of Pb (II) ion-exchanged H-β zeolite thus prepared was added to a prepared reaction vessel, and then 1.0 g of phenol and 10 ml of 0.01 N HCl aqueous solution were added, and then the reactant and the catalyst were uniformed. Stir until. The product was reacted at 60 ° C. for 4 hours while injecting hydrogen peroxide at a flow rate of 0.005 ml / min, and the product was analyzed using gas chromatography [Chrompack, CP9001, CPSIL5CB capillary column].

실시예 2Example 2

상기 실시예 1과 동일한 방법으로 실시하되, 촉매는 Pb(Ⅱ)가 이온교환된 HZSM-5 제올라이트 0.05 g을 사용하였다.In the same manner as in Example 1, 0.05 g of HZSM-5 zeolite with Pb (II) ion exchange was used.

실시예 3Example 3

상기 실시예 1과 동일한 방법으로 실시하되, 촉매는 Pb(Ⅱ)가 이온교환된 HL 제올라이트 0.05 g을 사용하였다.In the same manner as in Example 1, 0.05 g of HL zeolite with Pb (II) ion exchange was used.

실시예 4Example 4

상기 실시예 1과 동일한 방법으로 실시하되, 싸이클로헥센(cyclohexene) 1 ㎖을 넣고 에폭시화반응을 실시하였다.In the same manner as in Example 1, 1 ml of cyclohexene (cyclohexene) was added to the epoxidation reaction.

실시예 5Example 5

상기 실시예 1과 동일한 방법으로 실시하되, 싸이클로헥사논(cyclohexanone) 1 ㎖와 암모니아가스를 넣고 암옥시화(amoximation) 반응을 실시하였다.In the same manner as in Example 1, 1 ml of cyclohexanone and ammonia gas were added to carry out an ammoxation reaction.

실시예 6Example 6

상기 실시예 1과 동일한 방법으로 실시하되, 프로필렌 가스를 1 ㎖/min 유량으로 주입하면서 에폭시화반응을 실시하였다.It carried out in the same manner as in Example 1, the epoxidation reaction was carried out while injecting propylene gas at a flow rate of 1 ml / min.

실시예 7Example 7

상기 실시예 1과 동일한 방법으로 실시하되, n-헥산 1 ㎖를 넣고 산화반응을 실시하였다.In the same manner as in Example 1, 1 ml of n-hexane was added to perform an oxidation reaction.

비교예 1Comparative Example 1

상기 실시예 1과 동일한 방법으로 실시하되, 촉매로는 H-β제올라이트를 사용하였다.The same method as in Example 1, except that H-β zeolite was used as a catalyst.

상기 표 1은 실시예 1 ∼ 3과 비교예 1에서 각각 제조한 Pb(Ⅱ)촉매상과 Pb(Ⅱ)를 넣지 않은 H-β제올라이트 상에서 페놀의 과산화수소에 의한 이수산화벤젠 제조반응 결과를 나타낸 것이다. 산화반응의 활성종으로 예상되는 Pb(Ⅱ)이 존재하는 제올라이트 촉매(실시예 1 ∼ 3)상에서는 과산화수소에 의해 이수산화벤젠 제조가 용이하게 이루어지나 Pb(Ⅱ)를 넣지 않은 H-β제올라이트 상에서는 산화반응이 전혀 이루어지지 않았다. 본 발명에서 제조한 Pb(Ⅱ)촉매는 제조방법이 매우 간단하며 각종 제올라이트에도 적용하여 반응에 사용이 가능한 것을 알 수 있다. 또한, 이수산화 방향족 화합물 형성 전환빈도수 및 과산화수소 선택도가 매우 높은 것으로 나타났다.Table 1 shows the results of benzene dioxide production reaction by hydrogen peroxide on the Pb (II) catalyst phase prepared in Examples 1 to 3 and Comparative Example 1 and the H-β zeolite without Pb (II). . On zeolite catalysts (Examples 1 to 3) in which Pb (II), which is expected to be the active species of the oxidation reaction, is easily produced by hydrogen peroxide, oxidized on H-β zeolite without Pb (II). There was no reaction at all. The Pb (II) catalyst prepared in the present invention is very simple in production method and can be applied to various zeolites and can be used for reaction. It was also shown that the number of dihydrogen aromatic compound formation conversions and the hydrogen peroxide selectivity were very high.

본 발명에서 제조한 Pb(Ⅱ)/H-β제올라이트 촉매는 상기 표 2와 같이 각종 탄화수소 화합물에 대하여 우수한 산화반응 형성 전환빈도수 및 과산화수소 선택도를 보였다.The Pb (II) / H-β zeolite catalyst prepared in the present invention showed excellent oxidation reaction conversion frequency and hydrogen peroxide selectivity for various hydrocarbon compounds as shown in Table 2 above.

상기에 설명한 바와 같이, 본 발명은 기존에 사용하던 촉매들의 단점을 극복하고 각종 탄화수소 화합물의 산화제로서 과산화수소를 사용하여 값싸고 손쉽게 제조하면서도 전환빈도수 및 선택도면에서 우수한 산화활성을 갖는 새로운 산화반응용 촉매와 이를 이용하여 각종 탄화수소 화합물의 산화물을 제조하는 방법에 관한 것으로서, 범용의 제올라이트에서도 촉매활성을 갖으며, 납의 첨가량도 자유롭게 조절이 가능하고 많은 양의 활성자리를 제공할 수 있는 방법으로 금후 실용 가능성이 매우 크며, 산화반응에 응용성 및 파급효과가 매우 클 것으로 기대된다.As described above, the present invention overcomes the disadvantages of the existing catalysts and is a new oxidation catalyst having excellent oxidation activity in terms of conversion frequency and selectivity while being cheaply and easily manufactured using hydrogen peroxide as an oxidant of various hydrocarbon compounds. The present invention relates to a method for preparing oxides of various hydrocarbon compounds using the same, and has a catalytic activity even in general-purpose zeolites, and is capable of freely controlling the amount of lead added and providing a large amount of active sites. It is very large and it is expected that the applicability and the ripple effect on the oxidation reaction will be very large.

특히, 기존의 티타늄실리케이트 촉매에 비하여 제조방법이 단순하고 가격이매우 저렴하며 원재료도 손쉽게 다룰 수 있는 장점이 있다.In particular, compared to the conventional titanium silicate catalyst, the manufacturing method is simple, the price is very cheap, and there is an advantage that can easily handle the raw materials.

Claims (6)

다공성 분자체에 활성금속으로서 납이 0.5 ∼ 10 중량% 담지되어 있는 것을 특징으로 하는 과산화수소에 의한 산화반응용 촉매.A catalyst for oxidation reaction with hydrogen peroxide, characterized in that 0.5 to 10% by weight of lead is supported on a porous molecular sieve as an active metal. 제 1 항에 있어서, 상기 다공성 분자체는 Si/Al 비율이 1 ∼ 160인 X형, Y형, USY형, MOR형, β형, L형, ZSM-5형 제올라이트, MCM-41 및 MCM-48 중에서 선택된 것을 특징으로 하는 산화반응용 촉매.The method of claim 1, wherein the porous molecular sieve is Si-Al ratio of 1 to 160 X type, Y type, USY type, MOR type, β type, L type, ZSM-5 type zeolite, MCM-41 and MCM- Catalyst for oxidation reaction, characterized in that selected from 48. 납이 0.5 ∼ 10 중량% 함유된 다공성 분자체 촉매로 구성된 산화반응용 촉매를 사용하고, -10 ∼ 80 ℃ 조건에서 산화제로 과산화수소를 유입시켜 산화반응을 수행하는 것을 특징으로 하는 탄화수소 화합물의 산화물 제조방법.Oxidation of a hydrocarbon compound characterized in that an oxidation reaction catalyst composed of a porous molecular sieve catalyst containing 0.5 to 10 wt% of lead is used, and an oxidation reaction is performed by introducing hydrogen peroxide into an oxidizing agent at -10 to 80 ° C. Way. 제 3 항에 있어서, 상기 다공성 분자체는 Si/Al 비율이 1 ∼ 160인 X형, Y형, USY형, MOR형, β형, L형, ZSM-5형 제올라이트, MCM-41 및 MCM-48 중에서 선택된 것을 특징으로 하는 탄화수소 화합물의 산화물 제조방법.The method of claim 3, wherein the porous molecular sieve is Si-Al ratio of 1 to 160 X, Y, USY, MOR, β, L, ZSM-5 zeolite, MCM-41 and MCM- Oxide production of a hydrocarbon compound, characterized in that selected from 48. 제 3 항 또는 제 4 항에 있어서, 상기 탄화수소 화합물은 벤젠, 페놀 및 페놀의 알킬화 유도체 중에서 선택된 방향족 탄화수소류; 프로필렌, 헥센, 스티렌, 노르보넨, 도데센, 헵텐, 카르본, 리모넨부타디엔 중에서 선택된 올레핀류; 알코올류; 케톤류; 파라핀류; 아민류 및 설파이드류 중에서 선택된 것을 특징으로 하는 탄화수소 화합물의 산화물 제조방법.The method of claim 3 or 4, wherein the hydrocarbon compound is selected from the group consisting of aromatic hydrocarbons selected from benzene, phenol and alkylated derivatives of phenol; Olefins selected from propylene, hexene, styrene, norbornene, dodecene, heptene, carbon, limonenebutadiene; Alcohols; Ketones; Paraffins; Oxide production method of a hydrocarbon compound, characterized in that selected from amines and sulfides. 제 5 항에 있어서, 상기 페놀의 알킬화 유도체는 1-메틸 페놀, 2-메틸 페놀, 3-메틸 페놀, 1-에틸 페놀, 2-에틸 페놀, 3-에틸 페놀, 1-이소프로필 페놀, 2-이소프로필 페놀, 3-이소프로필 페놀, 1-프로필 페놀, 2-프로필 페놀, 3-프로필 페놀, 1-1차부틸 페놀, 2-1차부틸 페놀, 3-1차부틸 페놀, 1-이소부틸 페놀, 2-이소부틸 페놀, 3-이소부틸 페놀, 1-3차부틸 페놀, 2-3차부틸 페놀 및 3-3차부틸 페놀 중에서 선택된 것을 특징으로 하는 탄화수소 화합물의 산화물 제조방법.The method of claim 5, wherein the alkylated derivative of phenol is 1-methyl phenol, 2-methyl phenol, 3-methyl phenol, 1-ethyl phenol, 2-ethyl phenol, 3-ethyl phenol, 1-isopropyl phenol, 2- Isopropyl phenol, 3-isopropyl phenol, 1-propyl phenol, 2-propyl phenol, 3-propyl phenol, 1-1 butyl phenol, 2-1 butyl phenol, 3-1 butyl phenol, 1-isobutyl Method for producing an oxide of a hydrocarbon compound, characterized in that selected from phenol, 2-isobutyl phenol, 3-isobutyl phenol, 1-3 tert-butyl phenol, 2-3 tert-butyl phenol and 3 tert-butyl phenol.
KR10-2001-0023814A 2001-05-02 2001-05-02 Oxidation catalyst and the production of hydrocarbon compounds thereby KR100411177B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0023814A KR100411177B1 (en) 2001-05-02 2001-05-02 Oxidation catalyst and the production of hydrocarbon compounds thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0023814A KR100411177B1 (en) 2001-05-02 2001-05-02 Oxidation catalyst and the production of hydrocarbon compounds thereby

Publications (2)

Publication Number Publication Date
KR20020084500A KR20020084500A (en) 2002-11-09
KR100411177B1 true KR100411177B1 (en) 2003-12-18

Family

ID=27703369

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0023814A KR100411177B1 (en) 2001-05-02 2001-05-02 Oxidation catalyst and the production of hydrocarbon compounds thereby

Country Status (1)

Country Link
KR (1) KR100411177B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100972429B1 (en) * 2008-10-15 2010-07-26 주식회사 포스코건설 Apparatus for sorting and dividing organic waste

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03178946A (en) * 1989-12-07 1991-08-02 Tosoh Corp Production of phenol
US5294739A (en) * 1991-06-20 1994-03-15 Shell Oil Company Catalyttic oxidation of hydrocarbons
JPH07206736A (en) * 1994-01-18 1995-08-08 Maruzen Petrochem Co Ltd Oxidation of hydrocarbon
JPH09208511A (en) * 1996-01-29 1997-08-12 Sumitomo Metal Ind Ltd Production of aromatic hydroxy compound
US6180836B1 (en) * 1999-08-17 2001-01-30 National Science Council Of Republic Of China Preparation of phenol via one-step hydroxylation of benzene catalyzed by copper-containing molecular sieve
KR100328008B1 (en) * 1996-12-16 2002-03-09 야마모토 카즈모토 Noble metal support

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03178946A (en) * 1989-12-07 1991-08-02 Tosoh Corp Production of phenol
US5294739A (en) * 1991-06-20 1994-03-15 Shell Oil Company Catalyttic oxidation of hydrocarbons
JPH07206736A (en) * 1994-01-18 1995-08-08 Maruzen Petrochem Co Ltd Oxidation of hydrocarbon
JPH09208511A (en) * 1996-01-29 1997-08-12 Sumitomo Metal Ind Ltd Production of aromatic hydroxy compound
KR100328008B1 (en) * 1996-12-16 2002-03-09 야마모토 카즈모토 Noble metal support
US6180836B1 (en) * 1999-08-17 2001-01-30 National Science Council Of Republic Of China Preparation of phenol via one-step hydroxylation of benzene catalyzed by copper-containing molecular sieve

Also Published As

Publication number Publication date
KR20020084500A (en) 2002-11-09

Similar Documents

Publication Publication Date Title
CN1071139C (en) Oxidation catalyst, process for its preparation and oxidation process using said oxidation catalyst
Kumar et al. Oxidative organic transformations catalyzed by titanium-and vanadium-silicate molecular sieves
JP2003529582A (en) Method for producing aromatic alcohol, especially phenol
US5233097A (en) Oxidation of aromatics to hydroxyaromatics using aluminosilicates containing framework titanium
KR100277203B1 (en) Process for preparing direct hydroxide aromatic compound by hydrogen and oxygen
Wang et al. Copper and manganese: two concordant partners in the catalytic oxidation of p-cresol to p-hydroxybenzaldehyde
US6274764B1 (en) Process for one step gas phase production of acetic acid from ethylene
Rao et al. Oxyfunctionalization of alkanes with H 2 O 2 catalysed by vanadium silicates
Ratnasamy et al. Selective oxidation with redox metallosilicates in the production of fine chemicals
SudhakaráReddy Cleavage of the carbon–carbon double bond over zeolites using hydrogen peroxide
KR100411177B1 (en) Oxidation catalyst and the production of hydrocarbon compounds thereby
Selvaraj et al. Highly selective synthesis of trans-stilbene oxide over mesoporous Mn-MCM-41 and Zr–Mn-MCM-41 molecular sieves
EP0021118A1 (en) Liquid phase catalytic co-oxidation of unsaturated compounds and aldehydes or ketones
Selvam et al. Selective catalytic oxidation of aniline to azoxybenzene over titanium silicate molecular sieves
KR100443261B1 (en) Nano Porous Catalyst for the Selective Production of Catechol
Shen et al. Liquid-phase oxidation of cyclohexane to dibasic acids with immobilized cobalt catalyst
Beck et al. Oxidation–isomerization of an olefin to allylic alcohol using titania–silica and a base co-catalyst
KR100332213B1 (en) Direct preparation of catechol and hydroquinone by gaseous hydrogen and oxygen
WO1999064129A2 (en) Process for preparing hydroxylated aromatics by hydrogen and oxygen
Marchal et al. Selective oxidation of substituted aromatics using different peroxides
Hájek et al. Heterogeneous alkenylation of aromatics under oxygen
KR100501825B1 (en) Highly active nano-catalyst for phenol hydroxylation at room temperature
Tagawa et al. Liquid phase oxidation of benzene to phenol over K 2 Cr 2 O 7/SiO 2
Halligudi et al. Metal Schiff-base complex catalyzed oxidation of p-xylene and methyl 4-methylbenzoate to carboxylic acids
George et al. Direct liquid‐phase side‐chain oxidation of alkylbenzenes over 2 catalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee