KR100406480B1 - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery Download PDF

Info

Publication number
KR100406480B1
KR100406480B1 KR10-1999-0010777A KR19990010777A KR100406480B1 KR 100406480 B1 KR100406480 B1 KR 100406480B1 KR 19990010777 A KR19990010777 A KR 19990010777A KR 100406480 B1 KR100406480 B1 KR 100406480B1
Authority
KR
South Korea
Prior art keywords
carbonate
batteries
weight
battery
electrolyte solution
Prior art date
Application number
KR10-1999-0010777A
Other languages
Korean (ko)
Other versions
KR20000061613A (en
Inventor
김종섭
김영규
김광식
김진성
Original Assignee
삼성에스디아이 주식회사
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사, 제일모직주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR10-1999-0010777A priority Critical patent/KR100406480B1/en
Publication of KR20000061613A publication Critical patent/KR20000061613A/en
Application granted granted Critical
Publication of KR100406480B1 publication Critical patent/KR100406480B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 유기용매 및 리튬염으로 이루어진 리튬 전지용 비수전해액에 하기 화학식 1로 표시되는 할로겐화 벤젠으로 이루어지는 군으로부터 선택된 1종 이상을 50중량% 미만으로 첨가하여 조성되는 전지용 비수전해액에 관한 것으로, 기본 전해액의 성능을 감소시키지 않으면서 전지의 충방전 수명성능을 크게 향상시킬 수 있게 된다.The present invention relates to a non-aqueous electrolyte solution for batteries formed by adding at least 50% by weight of at least one selected from the group consisting of halogenated benzenes represented by the following formula (1) to a non-aqueous electrolyte for lithium batteries comprising an organic solvent and a lithium salt. It is possible to greatly improve the charge and discharge life performance of the battery without reducing the performance of.

[화학식1][Formula 1]

(단,X는 F, Cl, Br로 이루어진 군으로부터 1개 이상 선택되는 할로겐 원소, n은 1 내지 3의 정수로 나타낸 원자수이다)(Where X is a halogen element selected from the group consisting of F, Cl and Br, n is the number of atoms represented by an integer of 1 to 3)

Description

전지용 비수전해액{NONAQUEOUS ELECTROLYTE BATTERY}Nonaqueous Electrolyte for Battery {NONAQUEOUS ELECTROLYTE BATTERY}

본 발명은 리튬 2차 전지등에 사용되는 전지용 비수전해액에 관한 것으로, 더욱 상세하게는 유기용매에 리튬염을 용해시킨 것을 기본 전해액으로 하고 여기에 할로겐화 벤젠을 1종이상 첨가한 것을 전해액 조성으로 하는 것으로 충·방전 사이클특성이 매우 우수한 전지용 비수전해액에 관한 것이다.The present invention relates to a non-aqueous electrolyte solution for batteries used in lithium secondary batteries and the like, and more particularly, to a lithium electrolyte dissolved in an organic solvent as a basic electrolyte, and to the electrolyte composition of at least one halogenated benzene. The present invention relates to a nonaqueous electrolyte solution for batteries having excellent charge and discharge cycle characteristics.

종래 노트북 컴퓨터, 켐코드, 휴대폰등에 사용되는 소형화 슬림화된 리튬 2차 전지의 구성은 리튬 금속 혼합 산화물을 양극 활물질로 하고, 탄소 재료 또는금속 리튬등을 음극으로 하며, 유기용매에 리튬염을 적당량 용해시킨 것을 전해액으로 하여 구성되어 있다.The miniaturized slim lithium secondary battery used in conventional notebook computers, chem codes, mobile phones, etc. is composed of lithium metal mixed oxides as positive electrode active materials, carbon materials or metal lithium as negative electrodes, and a suitable amount of lithium salt is dissolved in an organic solvent. It is comprised as what was made into electrolyte solution.

보다 구체적으로 전해액으로 사용되는 유기용매로는 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 디프로필카보네이트(DPC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC), 에틸프로필카보네이트(EPC)등으로부터 2종이상 선택되는 것이고, 용질로는 LiPF6등의 리튬염을 사용하고 있다.More specifically, organic solvents used as electrolytes include ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethyl methyl carbonate (EMC), Two or more kinds are selected from methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), etc., and lithium salts, such as LiPF 6 , are used as a solute.

그러나, 최근 전지의 성능 향상 특히, 우수한 충·방전 성능에 대한 요구가 증가되고 있고, 이를 충족시키기 위하여 전해액에 특정 화합물을 부가하는 기술의 개발이 진행되고 있다.However, in recent years, the demand for improved battery performance, in particular, excellent charge and discharge performance is increasing, and in order to meet this, the development of a technology for adding a specific compound to the electrolyte solution is in progress.

그 예로, 일본의 특개평 9-63649A호에서는 1%이상 CO2를 첨가하여 전지의 충방전 수명을 향상시키는 방법을 제시하였고, 동 9-63644호에서는 플로라이드가 치환된 환상카보네이트화합물을 10중량% 이상 첨가하여 전지의 안전성 및 방전 특성을 향상시키는 방법을 제시하였고, 동 8-236155호에서는 아민화합물을 첨가하여 전해액의 분해 억제로 충방전 수명 특성을 향상시키는 방법을 제시하였다.For example, Japanese Patent Application Laid-open No. Hei 9-63649A proposes a method for improving the charge / discharge life of a battery by adding 1% or more of CO 2 , and in No. 9-63644, 10 weights of fluoride-substituted cyclic carbonate compounds A method of improving the safety and discharging characteristics of the battery by adding more than% has been presented. In the same manner, the same method of 8-236155 proposes a method of improving the charge and discharge life characteristics by suppressing decomposition of the electrolyte by adding an amine compound.

또한, 미국특허 5709968호에서는 알킬기와 할로겐기가 치환된 벤젠화합물을 사용하여 과충전시 전지의 열폭주 현상을 억제할 수 있음을 제시하였다.In addition, US Pat. No. 5,709,968 suggests that the thermal runaway phenomenon of the battery during overcharging can be suppressed by using a benzene compound substituted with an alkyl group and a halogen group.

그러나, 전지 성능 향상을 위하여 특정 화합물을 전해액에 첨가하는 대부분의 경우에 전지 성능중 일부 항목의 성능향상은 기대할 수 있으나, 다른 항목의 성능을 오히려 감소시키게 되는 등의 문제를 발생시키고 있다. 예를 들면 전해액에 어떤 첨가제를 부가하면 저온성능은 향상되나 충방전 수명성능이 감소하는 등의 문제점이 있었다.However, in most cases in which a specific compound is added to the electrolyte to improve battery performance, the performance of some items of the battery performance can be expected, but the performance of other items is rather reduced. For example, when an additive is added to the electrolyte, low temperature performance is improved, but the charge and discharge life performance is decreased.

본 발명의 목적은 상기와 같은 종래 문제점을 해결하기 위한 것으로, 리튬 2차 전지의 전해액에 할로겐화 벤젠를 첨가함으로써 전지의 충방전 수명특성을 더욱 향상시킬 수 있는 리튬 전지용 비수전해액을 제공하는 것이다.An object of the present invention is to solve the conventional problems as described above, to provide a non-aqueous electrolyte for lithium batteries that can further improve the charge and discharge life characteristics of the battery by adding a halogenated benzene to the electrolyte of the lithium secondary battery.

도 1은 발명에 따른 전해액을 사용하는 전지와 종래 전해액의 충방전 성능을 비교한 그래프이다.1 is a graph comparing the charge and discharge performance of a battery using the electrolyte according to the invention and the conventional electrolyte.

즉, 본 발명은 유기용매 및 리튬염으로 이루어진 리튬 전지 비수전해액에 하기 화학식 1로 표시되는 할로겐화 벤젠으로 이루어진 군으로부터 선택된 1종 이상을 0.01중량% 이상, 50중량% 미만으로 첨가하는 것을 특징으로 하는 전지용 비수전해액에 관한 것이다.That is, the present invention is characterized in that at least one selected from the group consisting of halogenated benzenes represented by the following formula (1) to the lithium battery non-aqueous electrolyte consisting of an organic solvent and a lithium salt in an amount of at least 0.01% by weight, less than 50% by weight It relates to a nonaqueous electrolyte solution for batteries.

[화학식 1][Formula 1]

(상기식에서, X는 F, Cl, Br로 이루어진 군으로부터 1개 이상 선택되는 할로겐 원소이고, n은 1 내지 3의 정수로서 나타낸 원자수이다.)(Wherein, X is a halogen element selected from one or more selected from the group consisting of F, Cl, Br, n is the number of atoms represented as an integer of 1 to 3.)

이하, 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

일반적으로 전지에 사용되는 전해액은 음극을 구성하는 탄소와 반응하여 음극 표면에 엷은 막을 형성하나, 형성되는 막의 종류는 전해액에 사용되는 용매나 첨가제등에 따라서 크게 달라져 전지 성능에 큰 영향을 미치는 것으로 알려져 있다.In general, the electrolyte used in the battery reacts with the carbon constituting the negative electrode to form a thin film on the surface of the negative electrode, but the type of the formed film is greatly influenced by the solvent and additives used in the electrolyte, which is known to have a great effect on battery performance. .

본 발명자들은 이와 같은 현상을 면밀히 조사한 결과 상기 화학식 1로 나타내어지는 화합물이 전해액에 첨가될 경우 전지의 충방전 수명이 크게 증가함을 발견함으로써 본 발명을 완성하게 되었다.The present inventors have completed the present invention by closely examining such a phenomenon and found that when the compound represented by Chemical Formula 1 is added to the electrolyte, the charge and discharge life of the battery is greatly increased.

본 발명에서 바람직하게 사용되는 비수전해액 유기용매로는 예를들면 에틸렌카보네이트, 프로필렌카보네이트, Υ-부틸로락톤등의 환상 카보네이트 화합물 (Cyclic carbonate), 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 메틸프로필카보네이트, 에틸메틸카보네이트, 에틸프로필카보네이트 등의 선형 카보네이트 화합물(Chain carbonate), 프로필아세테이트, 메틸아세테이트, 에틸아세테이트, 부틸아세테이트, 메틸프로피온산, 에틸프로피온산등을 들 수 있으며 이들 유기 용매중에서 2종 이상을 선택 혼합하여 사용하는 것이 더욱 바람직하다.As the non-aqueous electrolyte organic solvent preferably used in the present invention, for example, cyclic carbonate compounds (Cyclic carbonate) such as ethylene carbonate, propylene carbonate and k-butyrolactone, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, methyl propyl Linear carbonate compounds such as carbonate, ethyl methyl carbonate, ethyl propyl carbonate, propyl acetate, methyl acetate, ethyl acetate, butyl acetate, methyl propionic acid, ethyl propionic acid, and the like. It is more preferable to mix and use.

본 발명에서 유기용매에 첨가되는 리튬염으로는 LiPF6, LiClO4, LiAsF6, LiBF4, LiCF3SO3중에서 1종 또는 2종 이상 선택하여 사용하는 것이 좋고, 이때 염의 사용농도는 바람직하게 0.7 내지 2.0 M 범위이다.As the lithium salt added to the organic solvent in the present invention, it is preferable to use one or two or more selected from LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , and LiCF 3 SO 3 , wherein the salt concentration is preferably 0.7. To 2.0 M.

염의 농도가 0.7 M 미만에서는 전해액의 전도도가 낮아짐으로써 전해액 성능이 떨어지고, 2.0 M 초과시에는 저온에서의 점도 증가에 기인한 저온 성능이 떨어지는 문제점이 있어 좋지 않다.When the salt concentration is less than 0.7 M, the conductivity of the electrolyte is lowered, so that the performance of the electrolyte is lowered. When the salt concentration is higher than 2.0 M, the low temperature performance due to the increase in viscosity at low temperature is not good.

본 발명에서 특징적으로 사용되는 상기 화학식 1로 표기되는 첨가제의 구체적인 예로서는 플로로벤젠, 디플로로벤젠, 트리플로로벤젠, 클로로벤젠, 디클로로벤젠, 트리클로로벤젠, 브롬모벤젠, 디브롬모벤젠, 클로로플로로벤젠, 브롬모플로로벤젠 등을 들 수 있으며 이들을 1종이상 혼합하여 사용할 수 있다. 이때 그 사용량은 0.01중량% 이상, 50중량% 미만으로, 보다 바람직하게는 2 내지 40중량%의 범위로 사용하는 것이 바람직한데, 이는 첨가제의 함량을 50중량% 이상으로 사용하더라도 충방전 수명특성이 사용량에 따라 계속 증가하는 것이 아니므로 본 발명에서 제한하는 범위로 사용하는 것이 가장 바람직하다.Specific examples of the additive represented by the formula (1) characteristically used in the present invention include florobenzene, difluorobenzene, trifluorobenzene, chlorobenzene, dichlorobenzene, trichlorobenzene, bromobenzene, dibromobenzene, Chlorofluorobenzene, bromomofluorobenzene, and the like, and these may be used by mixing one or more kinds. At this time, the amount of use is more than 0.01% by weight, less than 50% by weight, more preferably in the range of 2 to 40% by weight, it is preferable that the charge and discharge life characteristics even if the content of the additive is used in more than 50% by weight It is most preferable to use it in the range limited by this invention, since it does not continue to increase with usage.

보다 구체적으로 본 발명의 비수전해액의 구성을 가장 바람직한 일실시형태로 나타내면, 에틸렌카보네이트와 디메틸카보네이트와 디에틸카보네이트를 1:1:1의 비율로 혼합된 용매에 용질로 LiPF6를 1M 농도로 용해시킨 것을 기본 전해액으로 하고 이 기본 전해액에 대하여 상기 화학식 1의 화합물을 50중량% 미만으로 첨가하여 구성하는 것이다.More specifically, the constitution of the non-aqueous electrolyte solution of the present invention is shown in the most preferred embodiment, whereby LiPF 6 is dissolved at a concentration of 1 M in a solvent mixed with ethylene carbonate, dimethyl carbonate and diethyl carbonate in a ratio of 1: 1: 1. The base electrolyte is prepared by adding the compound of the general formula (1) to less than 50% by weight based on the base electrolyte.

이하, 본 발명을 실시예를 들어 더욱 상세히 설명하고자 하나 본 발명이 하기 실시예에 의하여 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by the following Examples.

실시예 1Example 1

에틸렌카보네이트와 디메틸카보네이트와 디에틸카보네이트를 1:1:1의 비율로 혼합한 용매에 용질로서 LiPF6를 1M 농도로 용해시킨 것을 기본 전해액으로 하고 이 기본전해액에 플로로벤젠 10중량% 첨가하여 최종 전해액을 수득하여 18650 원통형 전지를 제조한 후 전지의 표준용량을 평가하여 표 1에 나타내었고, -20℃ 저온 방전 효율(%)을 평가하여 표 2에 나타내었으며, 충방전 수명을 평가하여 도 1의 그래프에 나타내었다. 이때, 음극의 활물질로는 흑연을, 결착제로는 불화비닐리덴수지 (Poly Vinylidene Fluoride, PVDF)를 사용하였고, 양극의 활물질로는 LiCoO2를, 결착제로는 PVDF를 사용하였고, 도전체로는 아세틸렌블랙을 사용하였다.LiPF 6 dissolved in 1M concentration as a solute in a solvent mixed with ethylene carbonate, dimethyl carbonate, and diethyl carbonate in a ratio of 1: 1: 1 was added as a basic electrolyte solution, and 10 wt% of phlolobenzene was added to the basic electrolyte solution. After preparing an 18650 cylindrical battery by obtaining an electrolyte solution, the standard capacity of the battery was evaluated and shown in Table 1, and the low-temperature discharge efficiency (%) was shown in Table 2 to evaluate the low-temperature discharge efficiency (%). Is shown in the graph. In this case, graphite was used as the active material of the negative electrode, polyvinylidene fluoride resin (PVDF) was used as the binder, LiCoO 2 was used as the active material of the positive electrode, PVDF was used as the binder, and acetylene black as the conductor. Was used.

실시예 2Example 2

첨가제로 디플로로벤젠을 10중량% 사용한 것을 제외하고는 실시예 1과 동일하게 실시한 후 표준 용량 및 -20℃ 저온방전 효율(%)을 평가하여 표 1 및 2에 나타내었고, 충방전 수명을 평가하여 도1의 그래프로 나타내었다.Except that 10% by weight of difluorobenzene as an additive was carried out in the same manner as in Example 1 to evaluate the standard capacity and low temperature discharge efficiency (%) at -20 ℃ is shown in Tables 1 and 2, the charge and discharge life The evaluation is shown in the graph of FIG.

실시예 3Example 3

첨가제로 트리플로로벤젠을 10중량% 사용한 것을 제외하고는 실시예 1과 동일하게 실시한 후 표준 용량 및 -20℃ 저온방전 효율(%)을 평가하여 표 1 및 2에 나타내었다.Except that 10% by weight of trifluorobenzene as an additive was carried out in the same manner as in Example 1, and the standard capacity and -20 ℃ low temperature discharge efficiency (%) were evaluated and shown in Tables 1 and 2.

실시예 4Example 4

첨가제로 플로로벤젠을 20중량% 사용한 것을 제외하고는 실시예 1과 동일하게 실시한 후 표준 용량 및 -20℃ 저온방전 효율(%)을 평가하여 표 1 및 2에 나타내었다.Except that 20% by weight of florobenzene as an additive was carried out in the same manner as in Example 1, and the standard capacity and -20 ℃ low temperature discharge efficiency (%) was evaluated and shown in Tables 1 and 2.

실시예 5Example 5

첨가제로 클로로플로로벤젠을 10중량% 사용한 것을 제외하고는 실시예 1과 동일하게 실시한 후 표준 용량 및 -20℃ 저온방전 효율(%)을 평가하여 표 1 및 2에 나타내었고, 충방전 수명을 평가하여 도1의 그래프로 나타내었다.Except that 10% by weight of chlorofluorobenzene as an additive was carried out in the same manner as in Example 1 to evaluate the standard capacity and low temperature discharge efficiency (%) at -20 ℃ is shown in Tables 1 and 2, the charge and discharge life The evaluation is shown in the graph of FIG.

실시예 6Example 6

첨가제로 브로모플로로벤젠을 10중량% 사용한 것을 제외하고는 실시예 1과 동일하게 실시한 후 표준 용량 및 -20℃ 저온방전 효율(%)을 평가하여 표 1 및 2에 나타내었다.Except that 10% by weight of bromofluorobenzene as an additive was carried out in the same manner as in Example 1, and the standard capacity and -20 ℃ low temperature discharge efficiency (%) was evaluated and shown in Tables 1 and 2.

비교예 1Comparative Example 1

첨가제의 사용없이 기본 전해액만을 사용한 것을 제외하고는 실시예 1과 동일하게 실시한 후 표준용량 및 -20℃ 저온방전 효율(%)을 평가하여 표1 및 표2에 나타내었고, 충방전 수명을 평가하여 도 1의 그래프로 나타내었다.Except for using only the basic electrolyte solution without the use of additives, the same procedure as in Example 1 and the standard capacity and -20 ℃ low temperature discharge efficiency (%) are shown in Table 1 and Table 2, and the charge and discharge life was evaluated It is shown by the graph of FIG.

비교예 2Comparative Example 2

첨가제로서 α,α, α-트리플로로 톨투엔을 10중량% 사용한 것을 제외하고는 실시예 1과 동일하게 실시한 후 표준용량 및 -20℃ 저온방전 효율(%)을 평가하여 표1 및 표2에 나타내었고 충방전 수명을 평가하여 도 1의 그래프로 나타내었다.The same procedure as in Example 1 was conducted except that 10 wt% of α, α and α-trifluoro toluene were used as additives, and the standard capacity and -20 ° C low temperature discharge efficiency (%) were evaluated. It is shown in the graph to the charge and discharge life of Figure 1 to evaluate.

구분division 표준용량Standard capacity 실시예 1Example 1 1697 mAh1697 mAh 실시예 2Example 2 1702 mAh1702 mAh 실시예 3Example 3 1692 mAh1692 mAh 실시예 4Example 4 1688 mAh1688 mAh 실시예 5Example 5 1705 mAh1705 mAh 실시예 6Example 6 1673 mAh1673 mAh 비교예 1Comparative Example 1 1665 mAh1665 mAh 비교예 2Comparative Example 2 1625 mAh1625 mAh

구분division 공칭용량대비 -20℃ 저온 방전효율(%)-20 ℃ low temperature discharge efficiency (%) relative to nominal capacity 실시예 1Example 1 80.4%80.4% 실시예 2Example 2 81.6%81.6% 실시예 3Example 3 79.9%79.9% 실시예 4Example 4 84.2%84.2% 실시예 5Example 5 80.6%80.6% 실시예 6Example 6 79.8%79.8% 비교예 1Comparative Example 1 80.5%80.5% 비교예 2Comparative Example 2 75.4%75.4%

물성평가방법Property evaluation method

*충방전 수명 시험 : 전지를 1℃에서 4.1V까지 충전후 1℃에서 2.75V까지 방전하는 것을 1사이클로하여 500사이클까지 실시하면서 전지의 표준용량을 매사이클마다 측정하였다 (25℃의 항온화)* Charge / discharge life test: The battery was charged from 1 ° C to 4.1V, and then discharged from 1 ° C to 2.75V in 1 cycle up to 500 cycles, and the standard capacity of the battery was measured every cycle.

*저온성능시험 : 전지를 0.2℃에서 4.1V까지 충전시켜 -20℃에서 16시간 방치후 0.2℃에서 2.75V까지 방전시킬 경우의 용량감소를 측정하였다.* Low temperature performance test: The battery was charged to 0.2V at 4.1V and left at -20 ° C for 16 hours, and then the capacity reduction when discharged at 0.2 ° C to 2.75V was measured.

상기 표 1 및 2와 도 1의 그래프에서 나타내는 바와 같이 본 발명의 전해액을 사용하는 경우 표준용량의 증가 및 저온방전 효율의 감소 없이, 전지의 충방전 수명성능을 크게 향상시킬 수 있었다. 또한, 비교예 2에 제시한 바와 같이 할로겐원소가 직접 방향족(Aromatic)에 결합되지 않는 화합물을 첨가할 경우 표 1과 2 및 도 1에 나타낸 바와 같이 전지 성능을 오히려 악화시키는것으로 나타났다.As shown in Tables 1 and 2 and the graph of FIG. 1, the charge and discharge life performance of the battery could be greatly improved without increasing the standard capacity and decreasing the low temperature discharge efficiency. In addition, as shown in Comparative Example 2, when a compound in which a halogen element is not directly bonded to an aromatic (Aromatic) was added, it was shown to deteriorate battery performance as shown in Tables 1 and 2 and FIG. 1.

이상에서 상술한 바와 같이 본 발명에 따라 전지용 비수전해액에 디플로로벤젠 또는 그 유도체를 첨가하는 경우 기본 전해액의 성능을 감소시키지 않으면서 전지의 표준용량 및 충방전 수명성능을 크게 향상시킬 수 있게 된다.As described above, when adding difluorobenzene or a derivative thereof to the battery nonaqueous electrolyte according to the present invention, it is possible to greatly improve the standard capacity and the charge / discharge life performance of the battery without reducing the performance of the basic electrolyte solution. .

Claims (4)

유기용매 및 리튬염으로 이루어진 리튬 전지용 비수전해액에 하기 화학식 1로 표시되는 할로겐화 벤젠으로 이루어지는 군으로부터 선택된 1종 이상을 0.01중량% 이상, 50중량% 미만으로 첨가하여 조성되는 전지용 비수전해액A nonaqueous electrolyte solution for batteries formed by adding at least 0.01% by weight or less than 50% by weight of a non-aqueous electrolyte for lithium batteries comprising an organic solvent and a lithium salt, selected from the group consisting of halogenated benzenes represented by the following general formula (1): [화학식 1][Formula 1] (상기식에서, X는 F, Cl, Br로 이루어진군으로부터 1개이상 선택되는 할로겐 원소, n은 1 내지 3의 정수로 나타낸 원자수이다.)(Wherein, X is a halogen element selected from one or more selected from the group consisting of F, Cl, Br, n is the number of atoms represented by an integer of 1-3.) 제 1항에 있어서, 상기 유기용매는 에틸렌카보네이트, 프로필렌카보네이트, γ-부틸로락톤, 디메틸카보네이트, 디에틸카보네이트, 디프로필카보네이트, 에틸메틸카보네이트, 메틸프로필카보네이트, 에틸프로필카보네이트, 메틸아세테이트, 에틸아세테이트, 프로필아세테이트, 부틸아세테이트, 메틸프로피온산, 에틸프로피온산으로 이루어진 군으로부터 1종 또는 2종이상 선택되는 것을 특징으로 하는 전지용 비수전해액.The method of claim 1, wherein the organic solvent is ethylene carbonate, propylene carbonate, γ-butylolactone, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, ethyl propyl carbonate, methyl acetate, ethyl acetate A non-aqueous electrolyte solution for batteries, characterized in that one or two or more selected from the group consisting of propyl acetate, butyl acetate, methyl propionic acid, ethyl propionic acid. 제 1항에 있어서, 상기 리튬염은 LiPF6, LiClO4, LiAsF6, LiBF4, LiCF3SO3중에서 1종 또는 2종이상 선택되고, 0.7 내지 2.0M의 농도로 첨가되는 것을 특징으로 하는 전지용 비수전해액.The method according to claim 1, wherein the lithium salt is selected from LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiCF 3 SO 3 or one or more, and is added in a concentration of 0.7 to 2.0M Nonaqueous electrolyte. 제 1항에 있어서, 상기 할로겐화 벤젠의 첨가량이 2 내지 40중량%인 것을 특징으로 하는 전지용 비수전해액.The nonaqueous electrolyte solution for batteries according to claim 1, wherein the addition amount of the halogenated benzene is 2 to 40% by weight.
KR10-1999-0010777A 1999-03-29 1999-03-29 Nonaqueous electrolyte battery KR100406480B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0010777A KR100406480B1 (en) 1999-03-29 1999-03-29 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0010777A KR100406480B1 (en) 1999-03-29 1999-03-29 Nonaqueous electrolyte battery

Publications (2)

Publication Number Publication Date
KR20000061613A KR20000061613A (en) 2000-10-25
KR100406480B1 true KR100406480B1 (en) 2003-11-19

Family

ID=19578055

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0010777A KR100406480B1 (en) 1999-03-29 1999-03-29 Nonaqueous electrolyte battery

Country Status (1)

Country Link
KR (1) KR100406480B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100536196B1 (en) 2003-05-13 2005-12-12 삼성에스디아이 주식회사 A non-aqueous electrolyte and a lithium secondary battery comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09204932A (en) * 1996-01-25 1997-08-05 Fujitsu Ltd Electrolyte for lithium secondary battery, and lithium secondary battery
JPH10167714A (en) * 1996-12-16 1998-06-23 Osaka Gas Co Ltd Production of carbon material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09204932A (en) * 1996-01-25 1997-08-05 Fujitsu Ltd Electrolyte for lithium secondary battery, and lithium secondary battery
JPH10167714A (en) * 1996-12-16 1998-06-23 Osaka Gas Co Ltd Production of carbon material

Also Published As

Publication number Publication date
KR20000061613A (en) 2000-10-25

Similar Documents

Publication Publication Date Title
KR100316686B1 (en) Nonaqueous electrolyte battery
KR100515298B1 (en) A non-aqueous electrolyte and a lithium secondary battery comprising the same
EP1296401B1 (en) Nonaqueous electrolyte secondary battery
KR100471970B1 (en) An electrolyte for a lithium ion battery and a lithium ion battery comprising the same
KR100585947B1 (en) Nonaqueous Electrolyte for Batteries
KR20030010425A (en) Organic electrolytic solution and lithium battery employing the same
KR100406480B1 (en) Nonaqueous electrolyte battery
KR100574328B1 (en) Nonqueous Electrolyte for Battery
KR100642435B1 (en) Nonaqueous Electrolyte for Battery
KR100860441B1 (en) Nonaqueous battery electrolyte
KR100642434B1 (en) Nonaqueous electrolyte battery
KR100511779B1 (en) Nonaqueous electrolyte battery
KR100546781B1 (en) Nonaqueous electrolyte battery
KR100511780B1 (en) Nonaqueous electrolyte battery
KR100611462B1 (en) Nonaqueous Electrolyte for Battery
KR100611450B1 (en) Nonaqueous Electrolyte for Battery
KR100511781B1 (en) Nonaqueous electrolyte battery
KR100611449B1 (en) Nonaqueous Electrolyte for Battery
KR100370389B1 (en) Non-aqueous electrolyte solution for lithium battery
KR100510863B1 (en) Nonaqueous Electrolyte for Use in Lithium Battery
KR100511519B1 (en) Nonaqueous electrolyte for battery and secondary battery comprising the electrolyte
KR100572284B1 (en) Non-aqueous electrolyte for lithium battery
KR20050062212A (en) Non-aqueous electrolyte for lithium battery
KR20050061967A (en) Nonaqueous electrolyte for battery and secondary battery comprising the electrolyte

Legal Events

Date Code Title Description
N231 Notification of change of applicant
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121022

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20131024

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20141023

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20151020

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20161028

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20171019

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20181025

Year of fee payment: 16

EXPY Expiration of term