KR100402051B1 - Selective non-catalytic reducing agent for reducing nitric oxides in flue gases - Google Patents

Selective non-catalytic reducing agent for reducing nitric oxides in flue gases Download PDF

Info

Publication number
KR100402051B1
KR100402051B1 KR10-2000-0061354A KR20000061354A KR100402051B1 KR 100402051 B1 KR100402051 B1 KR 100402051B1 KR 20000061354 A KR20000061354 A KR 20000061354A KR 100402051 B1 KR100402051 B1 KR 100402051B1
Authority
KR
South Korea
Prior art keywords
reducing agent
selective non
catalytic
urea
reducing
Prior art date
Application number
KR10-2000-0061354A
Other languages
Korean (ko)
Other versions
KR20020030507A (en
Inventor
이중기
정문조
이재우
박달근
우주만
유경선
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR10-2000-0061354A priority Critical patent/KR100402051B1/en
Publication of KR20020030507A publication Critical patent/KR20020030507A/en
Application granted granted Critical
Publication of KR100402051B1 publication Critical patent/KR100402051B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/56Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/21Organic compounds not provided for in groups B01D2251/206 or B01D2251/208

Abstract

본 발명은 질소산화물 저감용 선택적 무촉매 환원제에 관한 것으로서, 더욱 상세하게는 질소산화물에 대한 선택적 무촉매 환원방법(Selective Non-Catalytic Reduction)에서 사용되는 요소[(NH2)2CO] 수용액에 음이온 계면활성제 또는 음이온과 비이온 계면활성제를 일정량 첨가시킴으로써, 기존의 선택적 무촉매 환원제와 달리 요소 수용액을 보다 미세하게 분무시켜 동일 사용량 대비 고효율로 질소산화물을 저감시킬 수 있고, 특히 900 ℃ 이하의 비교적 저온에서도 요소의 분해반응을 화학적으로 촉진시켜 종래보다 광범위한 온도 범위에서 질소산화물(NOX)을 효과적으로 저감시킬 수 있어 각종 산업시설이나 자동차의 배기가스 정화용 환원제로서 매우 유용한 선택적 무촉매 환원제에 관한 것이다.The present invention relates to a selective non-catalytic reducing agent for reducing nitrogen oxides, and more particularly, to anion in an aqueous solution of urea [(NH 2 ) 2 CO] used in selective non-catalytic reduction for nitrogen oxides. By adding a certain amount of a surfactant or an anion and a nonionic surfactant, unlike a conventional selective non-catalytic reducing agent, it is possible to reduce the nitrogen oxide in a high efficiency compared to the same amount by spraying the urea solution more finely, especially at a relatively low temperature below 900 ℃ In addition, the present invention relates to a selective non-catalyst reducing agent which is very useful as a reducing agent for exhaust gas purification of various industrial facilities and automobiles by chemically promoting the decomposition reaction of urea and effectively reducing nitrogen oxide (NO X ) in a wider temperature range than before.

Description

질소산화물 저감용 선택적 무촉매 환원제{Selective non-catalytic reducing agent for reducing nitric oxides in flue gases}Selective non-catalytic reducing agent for reducing nitric oxides in flue gases}

본 발명은 질소산화물 저감용 선택적 무촉매 환원제에 관한 것으로서, 더욱 상세하게는 질소산화물에 대한 선택적 무촉매 환원방법(Selective Non-Catalytic Reduction)에서 사용되는 요소[(NH2)2CO] 수용액에 음이온 계면활성제 또는 음이온과 비이온 계면활성제를 일정량 첨가시킴으로써, 기존의 선택적 무촉매 환원제와 달리 요소 수용액을 보다 미세하게 분무시켜 동일 사용량 대비 고효율로 질소산화물을 저감시킬 수 있고, 특히 900 ℃ 이하의 비교적 저온에서도 요소의 분해반응을 화학적으로 촉진시켜 종래보다 광범위한 온도 범위에서 질소산화물(NOX)을 효과적으로 저감시킬 수 있어 각종 산업시설이나 자동차의 배기가스 정화용 환원제로서 매우 유용한 선택적 무촉매 환원제에 관한 것이다.The present invention relates to a selective non-catalytic reducing agent for reducing nitrogen oxides, and more particularly, to anion in an aqueous solution of urea [(NH 2 ) 2 CO] used in selective non-catalytic reduction for nitrogen oxides. By adding a certain amount of a surfactant or an anion and a nonionic surfactant, unlike a conventional selective non-catalytic reducing agent, it is possible to reduce the nitrogen oxide in a high efficiency compared to the same amount by spraying the urea solution more finely, especially at a relatively low temperature below 900 ℃ In addition, the present invention relates to a selective non-catalyst reducing agent which is very useful as a reducing agent for exhaust gas purification of various industrial facilities and automobiles by chemically promoting the decomposition reaction of urea and effectively reducing nitrogen oxide (NO X ) in a wider temperature range than before.

일반적으로 배기가스에 함유된 질소산화물(NOX)은 일산화질소, 이산화질소 및 아산화질소를 말하는 것으로 여타의 탄소산화물 및 황산화물과 같이 환경오염을 일으키는 대표적인 물질 중의 하나이다. 아산화질소는 독성이 크지 않지만, 이산화탄소와 함께 지구 온난화의 주원인 물질이며, 일산화질소는 배기가스 질소산화물의 주성분으로 공기중에 배출될 경우 상온에서도 산소와 반응하여 쉽게 이산화질소로 전환된다. 특히, 일산화질소와 이산화질소는 인체에 매우 유해한 발암성 물질로 심각한 대기 오염을 일으키며, 황산화물과 함께 산성비의 원인이 되고 있다.In general, nitrogen oxide (NO X ) contained in the exhaust gas refers to nitrogen monoxide, nitrogen dioxide and nitrous oxide, and is one of the representative substances causing environmental pollution, such as other carbon oxides and sulfur oxides. Nitrous oxide is not toxic, but it is a major source of global warming along with carbon dioxide. Nitrogen monoxide is a major component of exhaust gas nitrogen oxides. When it is released into the air, it reacts with oxygen at room temperature and is easily converted to nitrogen dioxide. In particular, nitrogen monoxide and nitrogen dioxide are carcinogenic substances that are very harmful to the human body, causing serious air pollution, and together with sulfur oxides, are causing acid rain.

이에 따라, 연소 조절 및 배기가스 처리에 의한 질소산화물 저감기술이 개발되어 왔다. 그 중, 배기가스 처리에 의한 질소산화물 저감기술은 크게 촉매를 사용하는 경우와 촉매를 사용하지 않고 처리하는 경우로 나누어진다. 선택적 무촉매 환원법은 고온영역에서 암모니아[미국특허 제3,900,554호]나 요소 수용액[미국특허 제4,119,702호, 미국특허 제4,208,386호]를 직접 분사하여 NOx를 질소와 수증기로 전환시켜 저감하는 기법으로, NOx 저감율은 930 ∼ 980 ℃ 영역의 좁은 온도범위에서 아래의 반응식 (1)에서 (6)까지의 과정을 거치면서 NO를 N2와 H2O로 전환시켜 NO 저감율 60 ∼ 80% 수준을 얻을 수 있었다.Accordingly, nitrogen oxide reduction technology by combustion control and exhaust gas treatment has been developed. Among them, the nitrogen oxide reduction technique by the exhaust gas treatment is largely divided into the case of using a catalyst and the case of treatment without using a catalyst. Selective non-catalytic reduction is a technique to directly reduce ammonia [US Pat. No. 3,900,554] or urea aqueous solution [US Pat. No. 4,119,702, US Pat. No. 4,208,386] by converting NOx to nitrogen and water vapor in a high temperature region. In the narrow temperature range in the range of 930 to 980 ℃, the NO reduction rate was reduced to 60 to 80% by converting NO into N 2 and H 2 O through the following reaction equations (1) to (6). .

NH2CONH2→ NH3+ HNCO (1)NH 2 CONH 2 → NH 3 + HNCO (1)

H2O → O + OH (2)H 2 O → O + OH (2)

NH3+ O → NH2+ OH (3)NH 3 + O → NH 2 + OH (3)

NH3+ OH → NH2+ H2O (4)NH 3 + OH → NH 2 + H 2 O (4)

HNCO + H → NH2+ CO (5)HNCO + H → NH 2 + CO (5)

NO + NH2→ N2+ H2O (6)NO + NH 2 → N 2 + H 2 O (6)

이 방법은 촉매를 이용하는 선택적 촉매 환원법(SCR) 보다는 저감효율이 낮지만 설치비와 설치기간이 짧으며 추가의 시설이 크게 요구되지 않기 때문에 현재 운전중인 연소설비에서 발생하는 NOx 저감에 보다 효과적이다. 그런데, 이 방법이 효과적이기 위해서는 주입되는 온도구간 900 ∼ 1100 ℃ 범위에 요소 수용액을 주입하여야 하는데 최적의 온도영역이 좁기 때문에 당량비로 요소 수용액을 주입하게 되면 저감효율이 낮아지고, 과량으로 주입하게 되면 부반응에 의해 오히려 NOx의 생성이 유발될 수 있다.This method is less effective than the selective catalytic reduction (SCR) method using the catalyst, but is more effective in reducing the NOx generated in the current combustion plant because the installation cost and installation period are short and no additional facility is required. However, in order for this method to be effective, urea aqueous solution should be injected in the range of 900 to 1100 ℃ to be injected. Since the optimum temperature range is narrow, if the urea aqueous solution is injected at an equivalence ratio, the reduction efficiency is lowered. Side reactions may lead to the production of NOx.

따라서, 상기 문제점을 개선한 종래의 방법으로는, 요소 수용액 분사와 함께 기상첨가제를 사용하는 방법[WO 91/17814], 액상첨가제로 알콜, 설탕, 케톤을 주입하는 방법[WO 91/17814], 암모늄 이온을 포함하는 암모늄카바메이트를 환원제로 사용하는 방법[미국특허 제4,997,631호] 등이 있다. 또한, 요소 수용액을 930 ℃이상에 투입하며, 파라핀, 올레핀계 산화된 탄화수소[미국특허 제4,719,092호]와 요소 수용액 또는 암모늄 이온이 포함된 화학물질을 혼합한 용액을 730 ∼ 930 ℃ 사이에 투입하고, 하이드록시 아미노 하이드로카본과 과산화수소수를 혼합하여 760 ℃ 이하에 투입하는 방법이 있다[미국특허 제4,777,024호]. 또 다른 첨가제에 대한 특허로는 암모니아 수용액을 사용하며 수용액에 암모늄카보네이트, 암모늄옥살레이트 등을 액상첨가제로 사용하고 기상첨가제로는 수소, 일산화탄소, 탄화수소를 사용하는 방법이 제시되고 있다[미국특허 제3,900,554호]. 그 외에도, 첨가제로서 KOH, NaOH를 이용하는 방법[미국특허 제5,543,123호]과 인산염을 첨가하여 배관내의 스케일 생성을 방지하여 전체 공정의 운전성을 향상시키고자 하는 방법[미국특허 제5,441,743호]이 제시되었다.Therefore, the conventional method to solve the above problems, a method of using a gaseous additive with the injection of urea aqueous solution [WO 91/17814], a method of injecting alcohol, sugar, ketone with a liquid additive [WO 91/17814], And a method of using ammonium carbamate containing ammonium ions as a reducing agent (US Pat. No. 4,997,631). In addition, the aqueous solution of urea is added to 930 ℃ or more, a solution containing a mixture of paraffin, olefin-based oxidized hydrocarbon [US Patent No. 4,719,092] and a chemical containing urea aqueous solution or ammonium ion is added between 730 ~ 930 ℃ And hydroxy amino hydrocarbons and hydrogen peroxide solution are mixed and put below 760 ℃ [US Patent No. 4,777,024]. Patents for other additives use aqueous ammonia solution, and ammonium carbonate, ammonium oxalate, etc. are used as liquid additives in the aqueous solution and hydrogen, carbon monoxide, hydrocarbons are used as gaseous additives [US Patent No. 3,900,554]. number]. In addition, a method of using KOH and NaOH as an additive [US Pat. No. 5,543,123] and a method for improving the operability of the entire process by preventing the generation of scale in the pipe by adding phosphate [US Pat. No. 5,441,743] are presented. It became.

그러나, 상기와 같은 종래의 방법들은 대부분 고온영역이 대상이었으며, 저온에 주입하기 위한 첨가제의 경우 가격이 고가이거나 단독으로는 질소산화물의 저감 성능이 낮은 단점이 있어 개선의 여지가 있었다.However, the conventional methods described above are mostly targeted at a high temperature region, and additives for injecting at a low temperature have a disadvantage in that the price is high or the reduction performance of nitrogen oxide alone is low.

한편, 선진국에서는 계속적으로 각종 환경오염성 배출가스를 엄격히 규제하고 있는 추세여서 앞으로도 배기가스 정화 기술의 수요는 크게 증가될 전망이다. 따라서, 기존에 비하여 광범위한 온도범위에서 질소산화물 저감효율이 우수하게 유지될 수 있는 선택적 비촉매 환원제의 개발이 촉구되고 있는 실정이다.Meanwhile, advanced countries continue to strictly regulate various pollutant emissions, and the demand for exhaust gas purification technology is expected to increase significantly. Therefore, there is a need to develop a selective non-catalytic reducing agent capable of maintaining excellent nitrogen oxide reduction efficiency over a wider temperature range than before.

이에, 본 발명자들은 상기한 문제점들을 해결하여, 보다 넓은 온도범위에서높은 NOx 저감율을 유지하는 선택적 무촉매 환원제를 개발하기 위하여 연구 노력한 결과, 환원제로 사용되는 요소 수용액에 액상화합물로서 특정 계면활성제를 일정량 첨가하면, 요소 수용액의 분무시 발생되는 액적의 크기를 보다 미립화함과 동시에, 요소의 분해에 의하여 발생되는 NH2라디칼의 형성을 보다 낮은 온도에서도 가능하게 하여 환원성능이 저온에서도 급격히 향상됨을 알게 되어 본 발명을 완성하였다.Accordingly, the present inventors have solved the above problems, researches to develop a selective non-catalytic reducing agent that maintains a high NOx reduction rate in a wider temperature range, as a result, a certain amount of a specific surfactant as a liquid compound in the aqueous solution of urea used as a reducing agent When added, the size of the droplets generated during the spraying of urea aqueous solution is more atomized and the formation of NH 2 radicals generated by decomposition of urea is possible at lower temperatures, thereby reducing the reduction performance rapidly. The present invention has been completed.

따라서, 본 발명은 종래와 달리 질소산화물의 저감효율을 증대시키기 위하여 특정한 계면활성제를 소정량 첨가하여 고온 뿐 아니라 저온에서도 질소산화물 저감효과가 우수한 개선된 무촉매 환원제를 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide an improved catalyst-free reducing agent excellent in reducing nitrogen oxide at high temperature as well as low temperature by adding a certain amount of a specific surfactant to increase the reduction efficiency of nitrogen oxide, unlike the related art.

도 1은 선형 알킬벤젠 설포닉 애시드 첨가시 반응기 온도에 따른 NOX저감율을 나타낸 그래프이다.1 is a graph showing the NO x reduction rate according to the reactor temperature when the linear alkylbenzene sulfonic acid is added.

도 2는 소디움 알파 올레핀 설포네이트 첨가시 반응기 온도에 따른 NOX저감율을 나타낸 그래프이다.2 is a graph showing the NO x reduction rate according to the reactor temperature when sodium alpha olefin sulfonate is added.

본 발명은 요소 수용액을 주성분으로 하는 질소산화물 저감용 선택적 무촉매 환원제에 있어서,The present invention provides a selective non-catalytic reducing agent for reducing nitrogen oxides containing urea aqueous solution as a main component,

요소 수용액을 포함하는 전체 환원제에 대하여 설폰계 음이온 계면활성제가 0.1 ∼ 20 중량% 포함된 선택적 무촉매 환원제에 그 특징이 있다.The selective non-catalytic reducing agent containing 0.1 to 20% by weight of sulfonic anionic surfactant based on the total reducing agent containing the aqueous urea solution is characterized.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

본 발명은 연소장치에서 발생되는 질소산화물을 포함하는 배연에 음이온 계면활성제나 음이온 및 비이온 계면활성제의 혼합물을 포함한 요소 수용액을 혼합하여 투입함으로써 용액의 분무를 보다 미세하게 하여줌과 동시에 종래보다 낮은 온도에서도 요소의 분해가 화학적으로 촉진되도록 하여 질소산화물의 저감 효율을 향상킨 질소산화물 저감용 선택적 무촉매 환원제에 관한 것이다.The present invention mixes an aqueous urea solution including an anionic surfactant or a mixture of anionic and nonionic surfactants with flue gas containing nitrogen oxides generated from a combustion device to make the atomization of the solution more fine and at the same time lower. The present invention relates to a selective non-catalytic reducing agent for reducing nitrogen oxides, in which the decomposition of urea is chemically promoted even at temperature, thereby improving the efficiency of reducing nitrogen oxides.

본 발명에 따른 질소산화물 저감용 선택적 무촉매 환원제를 그 제조방법에 따라 더욱 구체화하여 설명하면 다음과 같다.The selective non-catalytic reducing agent for reducing nitrogen oxides according to the present invention will be described in more detail according to the preparation method as follows.

먼저, 요소 수용액에 설폰계 음이온 계면활성제를 0.1 ∼ 20 중량%로 첨가하는바, 설폰계 음이온 계면활성제로는 예컨대 선형 알킬벤젠 설포닉 애시드(linear alkylbenzen sulfonic acid, LAS) 또는 소디움 알파 올레핀 설포네이트(sodium alpha olefin sulfonate)를 첨가하며, 첨가 후 10 ∼ 60℃에서 60분 정도 균일하게 교반한다. 이때, 바람직하게는 상기 선형 알킬벤젠 설포닉 애시드는 전체 환원제에 대하여 0.1 ∼ 10 중량%, 더욱 바람직하게는 0.1 ∼ 5 중량% 첨가시키는바, 너무 소량 첨가하면 첨가효과를 기대할 수 없고, 과량 첨가하면 점도의 증가로 노즐을 이용한 분무에 문제가 있다. 또한, 상기 소디움 알파 올레핀 설포네이트는 바람직하게는 0.1 ∼ 10 중량% 첨가시키는바, 상기 0.1 중량% 미만을 첨가하면 첨가효과를 기대할 수 없고, 20 중량%를 초과하면 점도의 증가로 노즐분무에 문제가 있다.First, a sulfonic anionic surfactant is added to the aqueous urea solution in an amount of 0.1 to 20% by weight. As the sulfonic anionic surfactant, for example, linear alkylbenzen sulfonic acid (LAS) or sodium alpha olefin sulfonate ( Sodium alpha olefin sulfonate) is added and uniformly stirred at 10 to 60 ° C. for 60 minutes after the addition. At this time, preferably the linear alkylbenzene sulfonic acid is added in an amount of 0.1 to 10% by weight, more preferably 0.1 to 5% by weight, based on the total reducing agent. There is a problem in spraying with a nozzle due to the increase in viscosity. In addition, the sodium alpha olefin sulfonate is preferably added in an amount of 0.1 to 10% by weight. If it is added in an amount less than 0.1% by weight, the effect of addition cannot be expected. There is.

한편, 상기 음이온 계면활성제에 외에 코코넛 디에탄올 아미드 비이온 계면활성제를 추가로 첨가할 수 있으며, 0.1 ∼ 20 중량%, 바람직하게는 0.1 ∼ 3 중량% 첨가시키는바, 상기 0.1 중량% 미만으로 첨가시키면 첨가효과가 나타나지 않으며, 20 중량%를 초과하면 노즐분사에 문제가 있다.Meanwhile, in addition to the anionic surfactant, coconut diethanol amide nonionic surfactant may be additionally added, and 0.1-20 wt%, preferably 0.1-3 wt% is added. There is no additive effect, and if it exceeds 20% by weight, there is a problem in nozzle spraying.

다음으로, 상기 혼합용액에 수산화나트륨 수용액을 사용하여 pH를 조절한 다음 입경 10 ㎛를 거를 수 있는 필터를 통과시킨다. 이때, 선형 알킬벤젠 설포닉 애시드를 첨가시킨 혼합용액의 경우에는 pH를 5.5 ∼ 7.5 범위로 유지시키는바, 상기 pH가 5.5 미만이면 부식과 알킬벤젠 설포닉 애시드의 분해가 진행될 수 있으며, pH가 7.5를 초과하면 활성기의 기능이 저하되어 바람직하지 못하다. 또한, 소디움 알파 올레핀 설포네이트를 첨가시킨 혼합용액의 경우에는 pH를 5.5 ∼ 9.5 범위 바람직하기로는 5.5 ∼ 7.5 범위로 유지시키는바, 상기 pH가 5.5 미만이면 부식의 문제가 있으며, pH가 9.5를 초과하면 활성기의 기능이 저하되는 문제가 있다. 그리고, 상기 입경 10 ㎛ 이하인 것만을 사용하는 이유는 노즐에서의 막힘을 방지하기 위함이다.Next, the pH of the mixed solution was adjusted using an aqueous sodium hydroxide solution, and then passed through a filter capable of filtering a particle size of 10 μm. In this case, in the case of the mixed solution to which the linear alkylbenzene sulfonic acid is added, the pH is maintained in the range of 5.5 to 7.5. If the pH is less than 5.5, corrosion and decomposition of the alkylbenzene sulfonic acid may proceed, and the pH is 7.5. Exceeding this lowers the function of the activator, which is undesirable. In addition, in the case of the mixed solution in which sodium alpha olefin sulfonate is added, the pH is maintained in the range of 5.5 to 9.5, preferably in the range of 5.5 to 7.5. If the pH is less than 5.5, there is a problem of corrosion, and the pH exceeds 9.5. There is a problem that the function of the activator is lowered. In addition, the reason for using only the particle diameter of 10 micrometers or less is for preventing clogging in a nozzle.

따라서, 본 발명에 따른 질소산화물 저감용 선택적 무촉매 환원제는 계면활성제를 소정량 사용하여 요소 수용액의 성능을 향상시킴으로써, 배연가스가 900 ∼ 1100 ℃인 시멘트 킬른 배연가스 뿐만 아니라, 배연온도가 800 ℃ 정도인 소각로와 같은 저온에서도 높은 NOx 저감율을 유지시킬 수 있는 환원제로서, 비교적 저온에서도 효과적으로 질소산화물을 저감시킬 수 있어 환경공해 예방에 크게 기여할 수 있다.Accordingly, the selective non-catalytic reducing agent for reducing nitrogen oxides according to the present invention improves the performance of the aqueous urea solution by using a predetermined amount of a surfactant, so that not only cement kiln flue gas having a flue gas of 900 to 1100 ° C., but also has a flue gas temperature of 800 ° C. It is a reducing agent that can maintain a high NOx reduction rate even at low temperatures such as incinerators, which can effectively reduce nitrogen oxides even at relatively low temperatures, thereby greatly contributing to the prevention of environmental pollution.

이하, 본 발명을 실시예에 근거하여 더욱 상세하게 설명하겠는바, 본 발명이 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited by Examples.

실시예 1Example 1

요소 10 g을 물 87 g에 녹인 요소 수용액에 선형 알킬벤젠 설포닉 애시드(유효성분 100%, 애경유지) 음이온 계면활성제를 3 g 첨가한 후 교반기를 이용하여 30 ℃에서 60분간 균일하게 혼합하고 수산화나트륨 수용액을 이용하여 혼합용액의 pH를 6으로 유지시킨 다음 입경 10㎛을 거를 수 있는 필터를 통과시켜 질소산화물 저감용 환원제를 제조하였다.10 g of urea was dissolved in 87 g of water, and 3 g of linear alkylbenzene sulfonic acid (active ingredient 100%, Aekyung oil) anionic surfactant was added, and then mixed uniformly at 30 ° C. for 60 minutes using a stirrer. The pH of the mixed solution was maintained at 6 using an aqueous sodium solution, and then a reducing agent for reducing nitrogen oxides was prepared by passing a filter having a particle diameter of 10 μm.

한편, 질소산화물 농도 및 온도가 조절된 환원반응기 내부로 상기 환원제를 분사하여 본 발명의 효과를 시험하였다. 이때, 사용된 장치의 구성은 다음과 같다. 액화석유가스(LPG)를 연소하는 버너에서 고온의 배연이 발생하며, 이 배연은 외경 60.5 mm, 길이 1.2 m의 304 스테인레스스틸 재질의 강관으로 제작된 환원반응장치를 통과한 후 흡수탑을 거쳐 대기중으로 방출된다. 환원반응기는 온도조절이 가능한 전기로의 내부에 수직으로 설치되어 있으며, LPG 가스의 연소량과 전기로의 열량을 조절하여 강관내부의 온도가 조절된다. 강관의 옆면에는 온도측정, 시료채취, 약품 주입 등의 목적에 사용하기 위한 외경 6.4 mm의 관이 여러 개 설치되어 있다. 질소산화물의 농도는 LPG 연소버너에 공급되는 2차 공기에 질량유량조절기를 통해 공급되는 NO를 적절히 혼합하여 조절된다. 요소 수용액은 HPLC용 정량펌프를 사용하여 공급되며, 분사용 공기와 함께 환원반응장치 내부로 분사된다. 환원반응장치에서 배출되는 배연은 흡수탑 이전에 설치된 시료관에서 연속적으로 채취되어 NOx 분석기에 의해 농도가 측정된다.On the other hand, the effect of the present invention was tested by injecting the reducing agent into the reduction reactor controlled the nitrogen oxide concentration and temperature. At this time, the configuration of the apparatus used is as follows. High-temperature flue gas is generated in the burner burning LPG, which passes through a reduction reactor made of 304 stainless steel steel pipe with an outer diameter of 60.5 mm and a length of 1.2 m, and then passes through an absorption tower. Is released into the air. The reduction reactor is installed vertically inside the temperature controllable electric furnace, and the temperature inside the steel pipe is controlled by adjusting the combustion amount of LPG gas and the heat amount of the electric furnace. On the side of the steel pipe, several tubes with an outer diameter of 6.4 mm are installed for the purpose of temperature measurement, sampling, and chemical injection. The concentration of nitrogen oxides is controlled by appropriately mixing NO supplied through the mass flow controller to the secondary air supplied to the LPG combustion burner. The aqueous urea solution is supplied using a metering pump for HPLC and is injected into the reduction reaction apparatus together with the injection air. The flue gas emitted from the reduction reactor is continuously collected from the sample tube installed before the absorption tower and the concentration is measured by the NOx analyzer.

여기서는, 질소산화물 농도가 720 ppm으로 조정되고 온도가 850 ℃로 유지된 환원반응기 내부로 상기 제조된 환원제를 분사하였다. 분사 후 질소산화물의 농도는 198 ppm으로 저감율은 73 % 이었다.Here, the prepared reducing agent was injected into the reduction reactor in which the nitrogen oxide concentration was adjusted to 720 ppm and the temperature was maintained at 850 ° C. After injection, the concentration of nitrogen oxide was 198 ppm and the reduction rate was 73%.

실시예 2 ∼ 5Examples 2-5

상기 실시예 1과 동일한 방법으로 수행하되, 다음 표 1에 나타낸 바와 같이 계면활성제의 종류 및 함량, pH, 환원반응기 온도 등을 달리하여 실시하였다. 또한, 상기와 같이 환원제를 분사하여 측정한 결과를 다음 표 1에 나타내었다.The same method as in Example 1, but was carried out by varying the type and content of the surfactant, pH, reduction reactor temperature, and the like as shown in Table 1. In addition, the results measured by spraying a reducing agent as described above are shown in Table 1 below.

비교예 1 ∼ 3Comparative Examples 1 to 3

상기 실시예 1과 동일한 방법으로 수행하되, 다음 표 1에 나타낸 바와 같이 계면활성제를 넣지 않고, 환원반응기 온도를 각각 850, 800, 1050 ℃로 하여 실시하였다. 또한, 상기와 같이 환원제를 분사하여 측정한 결과를 다음 표 1에 나타내었다.The same process as in Example 1 was carried out, but as shown in the following Table 1, without adding a surfactant, the reduction reactor temperature was carried out to 850, 800, 1050 ℃, respectively. In addition, the results measured by spraying a reducing agent as described above are shown in Table 1 below.

비교예 4Comparative Example 4

요소 수용액 없이 선형 알킬벤젠 설포닉 애시드의 음이온 계면활성제를 3 g 물 97 g에 녹여 10분간 교반한 용액에서 상부의 거품을 제거하였다. 그런 다음, 상기 실시예 1과 동일한 방법으로 질소산화물 저감율을 측정하여, 그 결과를 다음 표 1에 나타내었다.Anionic surfactant of linear alkylbenzene sulfonic acid was dissolved in 97 g of 3 g of water without urea aqueous solution, and the upper bubbles were removed from the stirred solution for 10 minutes. Then, the nitrogen oxide reduction rate was measured in the same manner as in Example 1, and the results are shown in Table 1 below.

비교예 5Comparative Example 5

상기 비교예 4와 동일한 조건과 방법으로 실시하되, 계면활성제가 들어 있지않고 요소 10 g이 들어있는 수용액만을 분사하였다.The same conditions and methods as in Comparative Example 4 were carried out, but only the aqueous solution containing 10 g of urea without surfactant was sprayed.

그밖에도, 상기 실시예 1과 동일한 방법으로 수행하되 반응기 온도를 800, 850, 900, 950 ℃로 각각 달리하고, 각각의 온도에 따라 LAS의 함량을 0, 1, 3, 5 중량%로 달리하여 반응시킨 다음, 그 결과를 도 1에 나타내었다. 도 1을 보면, 첨가제로 계면활성제인 LAS를 이용하면 850 ℃에서 3 중량%일 때 질소산화물 저감율이 가장 향상되고, 질소산화물의 저감율이 높게 유지되는 반응온도 창의 범위도 넓어짐을 확인할 수 있었다. 또한, 이와 같이 AOS에 대하여 실시하고 그 결과를 도 2에 나타내었다. 도 2를 보면, 900 ℃ 이상에서 질소산화물 저감효율이 다소 감소하지만 800 ∼ 900 ℃ 사이에서는 LAS를 이용한 경우와 마찬가지로 높은 NOx 저감율을 유지함을 알 수 있었다.In addition, it is carried out in the same manner as in Example 1 except that the reactor temperature is changed to 800, 850, 900, 950 ℃, respectively, and the content of LAS by 0, 1, 3, 5 wt% After the reaction, the results are shown in FIG. 1. Referring to FIG. 1, it can be seen that when LAS, which is a surfactant, is used as an additive, the reduction rate of nitrogen oxide is most improved at 3 wt% at 850 ° C., and the range of the reaction temperature window in which the reduction rate of nitrogen oxide is maintained is widened. In addition, the AOS was carried out in this manner and the results are shown in FIG. 2. 2, the nitrogen oxide reduction efficiency is slightly reduced above 900 ℃, it can be seen that the high NOx reduction rate is maintained as in the case of using the LAS between 800 ~ 900 ℃.

상술한 바와 같이, 본 발명에 따른 질소산화물 저감용 선택적 무촉매 환원제는 배연 내에 요소 수용액과 함께 특정 음이온 계면활성제를 주입함으로써, 요소 수용액의 분무를 보다 미세하게 진행시켜 사용량 대비 NOX저감효율이 우수하며, 고온에서 뿐만 아니라 900 ℃ 이하의 저온에서도 요소의 분해반응을 화학적으로 촉진시켜 다양한 배연 온도에 효과적으로 적용할 수 있고, 고온에서도 부반응이 일어나지 않으며, 공정상 간단하고 원가절감으로 경제적인 환원제로서, 자동차 및 각종 산업시설에 NOX정화용 환원제로 널리 활용될 수 있다., By injecting a specific anionic surface active agent with the urea aqueous solution in the selective non-catalytic reducing agent is a flue gas for the nitrogen oxide reduction in accordance with the present invention, compared to push forward the spraying of the urea aqueous solution and more fine usage NO X reduction efficiency is excellent as described above, In addition to high temperature as well as low temperature below 900 ℃ chemically accelerated decomposition reaction of urea can be effectively applied to a variety of flue temperature, no side reaction occurs at high temperature, as a simple and cost-effective reducing agent in the process, automotive and other industrial facilities can be widely used as a purifying NO X reducing agent.

Claims (6)

요소 수용액을 주성분으로 하는 질소산화물 저감용 선택적 무촉매 환원제에 있어서,In the selective non-catalytic reducing agent for reducing nitrogen oxides based on urea aqueous solution, 상기 환원제에는 선형 알킬벤젠 설포닉 애시드 및 소디움 알파 올레핀 설포네이트 중에서 선택된 설폰계 음이온 계면활성제가 0.1 ∼ 20 중량% 범위로 포함되어 있고, 환원제의 pH가 5.5 ∼ 7.5 범위로 조절된 것임을 특징으로 하는 선택적 무촉매 환원제.The reducing agent includes a sulfone-based anionic surfactant selected from linear alkylbenzene sulfonic acid and sodium alpha olefin sulfonate in the range of 0.1 to 20 wt%, and the pH of the reducing agent is controlled to be in the range of 5.5 to 7.5. Non-catalytic reducing agent. 삭제delete 제 1 항에 있어서, 상기 설폰계 음이온 계면활성제로는 선형 알킬벤젠 설포닉 애시드만 사용하되, 환원제 중에 0.1 ∼ 5 중량% 포함된 것임을 특징으로 하는 선택적 무촉매 환원제.[Claim 2] The selective non-catalytic reducing agent according to claim 1, wherein only the linear alkylbenzene sulfonic acid is used as the sulfone-based anionic surfactant, but 0.1 to 5 wt% is included in the reducing agent. 제 1 항에 있어서, 상기 설폰계 음이온 계면활성제로는 소디움 알파 올레핀 설포네이트만 사용하되, 환원제 중에 0.1 ∼ 10 중량% 포함된 것임을 특징으로 하는 선택적 무촉매 환원제.[Claim 2] The selective non-catalytic reducing agent according to claim 1, wherein only the sodium alpha olefin sulfonate is used as the sulfone-based anionic surfactant, but 0.1 to 10 wt% is included in the reducing agent. 제 1 항에 있어서, 상기 설폰계 음이온 계면활성제에는 코코넛 디에탄올 아미드 비이온 계면활성제가 추가로 포함된 것임을 특징으로 하는 선택적 무촉매 환원제.[Claim 2] The selective non-catalytic reducing agent according to claim 1, wherein the sulfone-based anionic surfactant further includes a coconut diethanol amide nonionic surfactant. 제 5 항에 있어서, 상기 코코넛 디에탄올 아미드 비이온 계면활성제는 환원제 중에 0.1 ∼ 20 중량% 포함된 것임을 특징으로 하는 선택적 무촉매 환원제.6. The selective non-catalytic reducing agent of claim 5, wherein the coconut diethanol amide nonionic surfactant is included in the reducing agent in an amount of 0.1 to 20 wt%.
KR10-2000-0061354A 2000-10-18 2000-10-18 Selective non-catalytic reducing agent for reducing nitric oxides in flue gases KR100402051B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0061354A KR100402051B1 (en) 2000-10-18 2000-10-18 Selective non-catalytic reducing agent for reducing nitric oxides in flue gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0061354A KR100402051B1 (en) 2000-10-18 2000-10-18 Selective non-catalytic reducing agent for reducing nitric oxides in flue gases

Publications (2)

Publication Number Publication Date
KR20020030507A KR20020030507A (en) 2002-04-25
KR100402051B1 true KR100402051B1 (en) 2003-10-17

Family

ID=19694165

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0061354A KR100402051B1 (en) 2000-10-18 2000-10-18 Selective non-catalytic reducing agent for reducing nitric oxides in flue gases

Country Status (1)

Country Link
KR (1) KR100402051B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100393831B1 (en) * 1997-12-25 2003-08-06 가부시키가이샤 오드레만 Modified silk materials and process for the production thereof
KR101774254B1 (en) * 2015-12-16 2017-09-04 주식회사 해림엔지니어링 Selective non-catalytic reduction solution for nitrogen oxides removal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104645794A (en) * 2015-01-13 2015-05-27 广州特种承压设备检测研究院 Method for optimizing SNCR (selective non-catalytic reduction) denitrification system of garbage incinerator by adding anionic surfactant

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4119702A (en) * 1976-07-28 1978-10-10 Hitachi, Ltd. Process for abating concentration of nitrogen oxides in combustion flue gas
US4626417A (en) * 1983-09-29 1986-12-02 Union Oil Company Of California Methods for chemically reducing nitrogen oxides
US4877591A (en) * 1987-03-13 1989-10-31 Fuel Tech, Inc. Process for the reduction of nitrogen oxides in an effluent using sugar
JPH02169030A (en) * 1988-12-20 1990-06-29 Tanaka Kikinzoku Kogyo Kk Preparation of combustion catalyst
US5489419A (en) * 1992-10-13 1996-02-06 Nalco Fuel Tech Process for pollution control
US5741750A (en) * 1994-02-14 1998-04-21 Plantagenet Holdings Pty Ltd, Conditioning composition and catalyst for use therewith
KR100197287B1 (en) * 1996-05-21 1999-06-15 송재준 Reforming reductant for exhaust gas denitrogen and the method of removing nitrogen oxide
JP2000229222A (en) * 1999-02-08 2000-08-22 Ford Global Technol Inc Mesoporous oxide molecular sieve for absorbing nitrogen oxide in oxidative exhaust gas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4119702A (en) * 1976-07-28 1978-10-10 Hitachi, Ltd. Process for abating concentration of nitrogen oxides in combustion flue gas
US4626417A (en) * 1983-09-29 1986-12-02 Union Oil Company Of California Methods for chemically reducing nitrogen oxides
US4877591A (en) * 1987-03-13 1989-10-31 Fuel Tech, Inc. Process for the reduction of nitrogen oxides in an effluent using sugar
JPH02169030A (en) * 1988-12-20 1990-06-29 Tanaka Kikinzoku Kogyo Kk Preparation of combustion catalyst
US5489419A (en) * 1992-10-13 1996-02-06 Nalco Fuel Tech Process for pollution control
US5741750A (en) * 1994-02-14 1998-04-21 Plantagenet Holdings Pty Ltd, Conditioning composition and catalyst for use therewith
KR100197287B1 (en) * 1996-05-21 1999-06-15 송재준 Reforming reductant for exhaust gas denitrogen and the method of removing nitrogen oxide
JP2000229222A (en) * 1999-02-08 2000-08-22 Ford Global Technol Inc Mesoporous oxide molecular sieve for absorbing nitrogen oxide in oxidative exhaust gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100393831B1 (en) * 1997-12-25 2003-08-06 가부시키가이샤 오드레만 Modified silk materials and process for the production thereof
KR101774254B1 (en) * 2015-12-16 2017-09-04 주식회사 해림엔지니어링 Selective non-catalytic reduction solution for nitrogen oxides removal

Also Published As

Publication number Publication date
KR20020030507A (en) 2002-04-25

Similar Documents

Publication Publication Date Title
CA1255475A (en) Reduction of nitrogen-based pollutants through the use of urea solutions containing oxygenated hydrocarbon solvents
US4861567A (en) Methods of reducing NOx and SOx emissions from combustion systems
US9114357B2 (en) Treatment of nitrogen oxides in flue gas streams
KR960021112A (en) Electron beam irradiation exhaust gas treatment method and processing apparatus
CA2578048A1 (en) Method and system for reducing ammonia slip after selective reduction of nox
CN104474859B (en) A kind of method of flue gas desulfurization and denitrification, device and application thereof
DE69120812D1 (en) METHOD FOR MINIMIZING THE CONCENTRATION OF POLLUTANTS IN COMBUSTION GASES
CN103272470B (en) A kind of additive for improving SNCR ammonia activity and application thereof
CN103252159B (en) Additive for denitration of smoke SNCR (selective non-catalytic reduction) and application thereof
KR100402051B1 (en) Selective non-catalytic reducing agent for reducing nitric oxides in flue gases
CN107261805B (en) Hydrazine solution special for chimney flue gas desulfurization and denitrification and preparation method thereof
CN102728215B (en) Composition and method for removing nitrogen oxides in desulfurizing tower
RU2469949C2 (en) Method of purifying smoke gases, containing nitrogen oxides
KR101774254B1 (en) Selective non-catalytic reduction solution for nitrogen oxides removal
Jakubiak et al. The effect of ozone feeding mode on the effectiveness of NO oxidation
CN110026082A (en) A kind of ozone injects the kiln gas denitrification apparatus and method of auxiliary SCR before ammonia
KR100686650B1 (en) Development of reagent solution and additives for the removal of nitric oxides in flue gases using manure waste
RU2724607C2 (en) Low-temperature scr method based on urea in the presence of exhaust gases with high sulfur content
CN111715050B (en) Method for improving urea denitration efficiency by adopting alkaline alcohol solution
KR20070052389A (en) Nox reducing solution reagent using wastewater and sewage
KR100451285B1 (en) The reduction method of nitrogen oxides and sulfur oxides using hydrogen peroxide solution and calcium oxide solution
Gullett et al. Sorbent/urea slurry injection for simultaneous SO2/NOx removal
KR100289168B1 (en) Process for Reducing Nitrogen Oxides in Exausted Gas
JPH0352624A (en) Dry simultaneous desulfurization and denitrification
KR20080071324A (en) Nox reducing solution reagent using sewage sludge extrants in a sewage and wastewater treatment process

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080930

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee