KR100400868B1 - BH cold rolled steel with excellent machinability and its manufacturing method - Google Patents

BH cold rolled steel with excellent machinability and its manufacturing method Download PDF

Info

Publication number
KR100400868B1
KR100400868B1 KR10-1998-0060206A KR19980060206A KR100400868B1 KR 100400868 B1 KR100400868 B1 KR 100400868B1 KR 19980060206 A KR19980060206 A KR 19980060206A KR 100400868 B1 KR100400868 B1 KR 100400868B1
Authority
KR
South Korea
Prior art keywords
steel sheet
less
rolled steel
temperature
workability
Prior art date
Application number
KR10-1998-0060206A
Other languages
Korean (ko)
Other versions
KR20000043785A (en
Inventor
백승철
배춘선
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1998-0060206A priority Critical patent/KR100400868B1/en
Publication of KR20000043785A publication Critical patent/KR20000043785A/en
Application granted granted Critical
Publication of KR100400868B1 publication Critical patent/KR100400868B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 가공성이 우수하고 안정적인 BH성을 확보할 수 있는 냉연강판과 그 제조방법에 관한 것으로, 중량%로, C: 0.010∼0.050%, Mn: 0.10% 이하, Zr: 0.002∼0.030%, P: 0.020% 이하, S: 0.015% 이하, Al: 0.015∼0.05%, N: 0.004% 이하, 나머지는 Fe 및 불가피한 불순물로 조정되고, 이때 Zr의 함량은 다음의 식에 의거하여 결정되는 가공성이 우수한 BH 냉연강판과,The present invention relates to a cold-rolled steel sheet and a method for manufacturing the same, which are excellent in workability and ensure a stable BH property, in weight%, C: 0.010 to 0.050%, Mn: 0.10% or less, Zr: 0.002 to 0.030%, P : 0.020% or less, S: 0.015% or less, Al: 0.015 to 0.05%, N: 0.004% or less, the remainder is adjusted to Fe and unavoidable impurities, wherein the content of Zr is excellent in workability determined based on the following equation. BH cold rolled steel sheet,

Zr(%) = 92/32 ×{S[%] - Mn[%]/10} + 92/12 × N[%],Zr (%) = 92/32 × {S [%]-Mn [%] / 10} + 92/12 × N [%],

상기의 조성으로 이루어진 성분의 강편을 1100∼1300℃에서 재가열하는 단계; 880∼950℃의 마무리압연 온도와 650∼750℃의 권취온도에서 열간압연하는 단계; 65∼80%의 압하율로 냉간압연하는 단계; 750∼850℃의 균열대 온도와 350∼450℃의 과시효대 온도에서 연속소둔하는 단계; 상기 연속소둔된 냉간압연강판을 1.0∼2.0%로 조질압연하는 단계로 이루어진 가공성이 우수한 BH 냉연강판의 제조방법을 요지로 한다.Reheating the steel strip of the component having the above composition at 1100 to 1300 ° C .; Hot rolling at a finish rolling temperature of 880 to 950 ° C and a winding temperature of 650 to 750 ° C; Cold rolling at a reduction ratio of 65 to 80%; Continuous annealing at a crack zone temperature of 750-850 ° C. and an overaging band temperature of 350-450 ° C .; The present invention provides a method for producing a BH cold rolled steel sheet having excellent workability, which comprises the step of temper rolling the continuously annealed cold rolled steel sheet at 1.0 to 2.0%.

본 발명에 의하면, 가공성이 우수하고 안정적인 BH성을 지닌 강판에 관한 것으로 자동차 외판에 적용될 수 있다. 이 발명에 의한 강을 사용하여 자동차 외판을 성형하면 안정적으로 자동차의 내덴트성을 향상시킬 수 있는 효과가 있다.According to the present invention, it relates to a steel sheet having excellent workability and stable BH property and can be applied to an automobile exterior plate. Forming the automobile shell using the steel according to the present invention has the effect of stably improving the dent resistance of the vehicle.

Description

가공성이 우수한 비에이치 냉연강판 및 그 제조방법BH cold rolled steel with excellent workability and manufacturing method

본 발명은 가공성이 우수하고 안정적인 BH성을 확보할 수 있는 냉연강판과 그 제조방법에 관한 것으로, 특히 프레스 가공이 용이하고 자동차 도장공정후 항복강도의 상승으로 내덴트성이 우수한 특징을 갖는 비에이치(BH) 냉연강판과 그 제조방법에 관한 것이다.The present invention relates to a cold-rolled steel sheet and a method for manufacturing the same, which are excellent in workability and ensure a stable BH property, and in particular, are easy to press and have a high dent resistance due to an increase in yield strength after an automobile coating process. BH) Cold rolled steel sheet and a method of manufacturing the same.

일반적으로, 자동차 외판용 재료는 결함없이 프레스 성형을 실시하고 성형후 원하는 모양의 부품을 원활히 제작하기 위하여 자동차용 강판으로 가공성이 우수한 냉연강판이 요구된다. 여기서, 가공성이 우수한 냉연강판이란 연신율이 높고 소성변형비가 큰 냉연강판을 말하며, 이와같은 냉연강판으로 자동차 외판을 성형하여야 원하는 모양의 부품을 제작할 수 있는 것이다.In general, cold rolled steel sheet having excellent processability is required for automotive steel sheet in order to perform press molding without defects and to smoothly manufacture a part having a desired shape after molding. Here, the cold rolled steel sheet having excellent workability refers to a cold rolled steel sheet having a high elongation and a large plastic deformation ratio. The cold rolled steel sheet may be manufactured to form parts having a desired shape by forming an automotive exterior sheet using such cold rolled steel sheet.

또한, 자동차 문, 후두 및 트렁크 등의 외판에 요구되는 특성으로서 가공성 외에 항복강도가 있다. 강판의 항복강도가 낮으면 사람이 손으로 자동차 외판을 눌렀을 때나 외부의 물체가 자동차와 부딪힐때 자동차 표면이 안으로 들어가는 결함이 쉽게 발생하는 문제가 있다. 이러한 원인에 의해 자동차 표면에 결함이 생기는 현상을 덴트(dent)라 하고, 덴트를 억제하는 성질을 내덴트성이라고 한다.In addition, there is a yield strength in addition to workability as a characteristic required for outer panels such as automobile doors, larynx and trunk. If the yield strength of the steel sheet is low, there is a problem that a defect that easily enters the surface of the vehicle easily occurs when a person presses the outer surface of the vehicle by hand or when an external object collides with the vehicle. The phenomenon that a defect occurs on the surface of the automobile due to this cause is called dent, and the property of suppressing the dent is called dent resistance.

내덴트성을 향상시키기 위하여는 강판의 항복강도가 높아야한다. 하지만, 성형전 강판의 항복강도가 너무 높으면 성형시 가공 결함이 발생하고 성형후 스프링백 현상이 커지므로 원하는 모양으로 정확히 부품을 성형하기 어렵다.In order to improve the dent resistance, the yield strength of the steel sheet must be high. However, if the yield strength of the steel sheet before forming is too high, processing defects occur during molding and springback phenomenon increases after molding, and thus it is difficult to accurately form a part in a desired shape.

이러한 문제를 해결하기 위하여 BH(Baked Hardening)강판이 개발되었다. BH강판은 성형전 강판의 항복강도는 낮으나 자동차 부품으로 성형한 후 자동차 도장 공정 중 170℃에서 20분정도 가열처리될 때 항복강도가 상승하는 강판이다. 이와같이 성형전에는 강도가 낮으므로 성형에 유리하며, 성형 또는 도장후에 강도가 상승하므로 내덴트성에 유리한 특성을 가진다.To solve this problem, BH (Baked Hardening) steel sheet was developed. The BH steel sheet has a low yield strength of the steel sheet before molding, but the yield strength is increased when heated to 170 ° C. for 20 minutes during the automotive coating process after molding into automotive parts. In this way, the strength is low before molding, which is advantageous for molding, and the strength is increased after molding or coating, and thus has advantageous properties for dent resistance.

이러한 BH강판의 BH성이 나타나는 기구는 도장공정시 강판이 가열될 때 강중의 C 나 N의 고용원소가 성형중에 생기는 강판 내부의 전위와 결합하면서 전위의 이동을 억제하여 항복강도가 상승하는 것이다. 이러한 기구로 BH성이 형성되므로 양호한 BH성을 얻기 위하여는 강중에 고용원소가 존재해 있어야 한다.The mechanism in which the BH property of the BH steel sheet is exhibited is that when the steel sheet is heated during the coating process, yield strength is increased by suppressing the displacement of the dislocation while binding the dissolution element of C or N in the steel to the dislocation inside the steel sheet during molding. Since the BH property is formed by such a mechanism, an element of employment must be present in the steel in order to obtain good BH property.

하지만, 고용원소가 너무 많이 존재해 있으면 상온 중에서 시효가 발생하기 쉬워진다. 상온에서 강판의 시효가 발생하면 성형전 강판의 강도가 상승하고 성형중에 강판 표면에 스트레쳐 스트레인이라는 표면 결함이 발생할 가능성이 높아진다. 스트레쳐 스트레인 결함이 발생한 부품은 자동차 외판으로 사용할 수 없으므로 상온중 시효가 발생되지 않는 조건으로 BH강판을 제조하여야 한다.However, if there are too many employment elements, aging is likely to occur at room temperature. Aging of the steel sheet at room temperature increases the strength of the steel sheet before molding and increases the possibility of surface defects such as stretcher strain on the surface of the steel sheet during molding. Parts that have a strainer strain defect cannot be used as a vehicle shell, so the BH steel sheet should be manufactured under the condition that aging does not occur at room temperature.

BH성도 확보하고 상온 시효도 억제하기 위하여는 강중 고용원소의 양을 적정하게 유지하는 기술이 매우 중요하게 된다. 종래에는 이와 같은 BH성을 갖는 냉연강판을 제조하기 위하여, 일본특허공개 평2-197549호, 특허공개 소63-247338호에개시된 바와 같이, 극저탄소강에 Ti나 Nb를 첨가한 강을 개발하였다.In order to secure the BH property and to suppress the aging at room temperature, the technology for maintaining the appropriate amount of employment element in the steel becomes very important. Conventionally, in order to manufacture a cold rolled steel sheet having such a BH property, as disclosed in Japanese Patent Laid-Open No. 2-197549 and Japanese Patent Laid-Open No. 63-247338, a steel having Ti or Nb added to ultra low carbon steel was developed. .

극저탄소강은 탄소의 함량이 0.007% 이하의 강종을 의미하며 극저탄소강을 제조하기 위하여는 제강공정에서 장시간의 RH작업을 실시하여야 한다. 제강공정에서 장시간 RH공정으로 탄소의 함량을 최소화한 강에 고용원소를 적당한 양으로 조절하기 위하여 C 석출원소인 Ti이나 Nb 등을 첨가하였다. 이 과정에서 발생하는 문제는 적당한 고용원소의 양을 조절하는 것이 매우 어렵다는 것이다. 원하는 양의 고용원소를 갖는 강을 얻기 위하여는 제강공정에서 C 및 Ti 또는 Nb의 양을 정확히 조절하여야 하지만 실제로 제강공정에서 압연제품인 각 코일의 C 및 Ti 또는 Nb의 양을 정확히 조절하는 것은 거의 불가능하다. 이러한 이유로 극저탄소 BH강은 각 코일별 고용원소들의 양이 달라지므로 코일에 따른 BH성 및 시효성이 불균일한 문제점을 근원적으로 갖을 수 밖에 없는 것이다.Cryogenic carbon steel means steel grades with a carbon content of 0.007% or less. In order to manufacture ultra-low carbon steel, RH work for a long time should be performed in the steelmaking process. In the steelmaking process, Ti or Nb, which is a C precipitation element, was added to the steel to minimize the carbon content by the RH process for a long time. The problem with this process is that it is very difficult to control the right amount of employment elements. In order to obtain the steel with the desired amount of solid solution, it is necessary to precisely control the amount of C and Ti or Nb in the steelmaking process, but it is almost impossible to accurately control the amount of C and Ti or Nb of each coil which is a rolled product in the steelmaking process. Do. For this reason, the ultra-low carbon BH steel has a problem in that the BH properties and aging characteristics of the coils have a non-uniform problem because the amount of solid solutions for each coil is different.

이 때문에 극저탄소 BH강의 시효, BH성 및 가공성에 대한 제품별 불균일성을 해결하는 안정적인 BH강판이 요구된다. 또한, 제강공정에서 장시간 RH처리를 해야하므로 생산성저하와 공정비용도 상승하는 문제점이 있다.For this reason, a stable BH steel sheet is required to solve the product non-uniformity of the aging, BH properties and workability of the ultra low carbon BH steel. In addition, since the RH treatment for a long time in the steelmaking process, there is a problem that the productivity decreases and the process cost also increases.

본 발명은 상기의 요망과 문제점 해결을 위하여 안출된 것으로서, 장시간의 RH작업을 생략하여 생산성 향상과 원가를 절감할 수 있고, 시효, BH성 및 가공성에 대한 제품별 불균일성이 적으면서 가공성이 우수한 BH냉연강판과 그 제조방법을 제공하는데 목적이 있다.The present invention has been made to solve the above demands and problems, it is possible to omit the RH work for a long time to improve the productivity and reduce the cost, and BH excellent in workability while having less product non-uniformity of aging, BH and workability It is an object to provide a cold rolled steel sheet and a method of manufacturing the same.

본 발명은 상기 목적을 달성하기 위하여, 중량%로, C: 0.010∼0.050%, Mn: 0.10% 이하, Zr: 0.002∼0.030%, P: 0.020% 이하, S: 0.015% 이하, Al: 0.015∼0.05%, N: 0.004% 이하, 나머지는 Fe 및 불가피한 불순물로 조성되고, 이때 Zr의 함량은 다음의 식에 의거하여 결정되는 가공성이 우수한 BH 냉연강판을 제공하는 것을 특징으로 한다.In order to achieve the above object, the present invention, in terms of weight%, C: 0.010 to 0.050%, Mn: 0.10% or less, Zr: 0.002 to 0.030%, P: 0.020% or less, S: 0.015% or less, Al: 0.015 to 0.05%, N: 0.004% or less, the remainder is composed of Fe and inevitable impurities, wherein the content of Zr is characterized by providing a BH cold rolled steel sheet excellent in workability determined based on the following equation.

Zr(%) = 92/32 ×{S[%] - Mn[%]/10} + 92/12 × N[%].Zr (%) = 92/32 × {S [%] − Mn [%] / 10} + 92/12 × N [%].

또한, 본 발명은 상기 조성으로 이루어진 성분의 강편을 1100∼1300℃에서 재가열하는 단계; 880∼950℃의 마무리 압연온도와 650∼750℃의 권취에서 열간압연하는 단계; 65∼80%의 압하율로 냉간압연하는 단계; 750∼850℃의 균열대 온도와 350∼450℃의 과시효대 온도에서 연속소둔하는 단계; 상기 연속소둔된 냉간압연강판을 1.0∼2.0%로 조질압연하는 단계로 이루어진 가공성이 우수한 BH 냉연강판의 제조방법을 제공한다.In addition, the present invention comprises the steps of reheating the steel strip of the component consisting of the composition at 1100 ~ 1300 ℃; Hot rolling at a finish rolling temperature of 880 to 950 ° C and a winding of 650 to 750 ° C; Cold rolling at a reduction ratio of 65 to 80%; Continuous annealing at a crack zone temperature of 750-850 ° C. and an overaging band temperature of 350-450 ° C .; Provided is a method for producing a BH cold rolled steel sheet excellent in workability consisting of the step of temper rolling the continuously annealed cold rolled steel sheet 1.0 to 2.0%.

이하, 본 발명을 더욱 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명에서는 극저탄소강판 대신에 탄소의 함량이 상대적으로 많은 저탄소강판을 사용하여 고용탄소를 안정적으로 유지함으로써 일정한 BH성을 유지하는 강판을 제조하는 것을 특징으로 한다.In the present invention, by using a low carbon steel sheet having a relatively high carbon content in place of the ultra-low carbon steel sheet, it is characterized in that the steel sheet to maintain a constant BH property by maintaining a solid solution carbon.

또한, 본 발명의 저탄소강판은 제강공정에서 장시간의 RH처리가 필요한 극저탄소강의 경우와는 달리 RH처리를 생략할 수 있으며, 극저탄소강보다 가공성이 열등한 저탄소강에 의해 가공성을 향상시킬 수 있는 원소를 첨가하여 가공성이 우수하면서 코일별 가공성 및 BH성의 편차가 적은 강판을 제조하는 것을 특징으로 한다.In addition, the low carbon steel sheet of the present invention can omit the RH treatment, unlike the case of the ultra low carbon steel which requires a long time RH treatment in the steelmaking process, the element that can improve the workability by low carbon steel inferior to the ultra low carbon steel processability It is characterized in that to produce a steel sheet excellent in workability and less variation in workability and BH properties for each coil by adding.

이하, 본 발명강의 조성범위에 대한 한정이유를 설명한다.Hereinafter, the reason for limitation on the composition range of the inventive steel will be described.

탄소(C)가 0.01% 미만인 경우에는 강중에 Fe3C 형성이 어렵다. 강판의 성형성을 확보하면서 BH성을 얻기 위하여는 고용탄소를 조절하여야 한다. 상술된 바와같이, Fe3C가 형성되지 않는 0.01% 이하의 C를 함유한 강에서는 제강공정에서 장시간의 RH처리를 통하여 최대한 C을 제거하여 0.007% 이하의 극저탄소강을 만든 후 C을 석출할 수 있는 Ti나 Nb을 첨가하여 C를 조절했다. 그러나, C가 0.01% 이상인 강에서는 소둔공정에서 Fe3C가 활발히 형성되어 평형상의 고용탄소만이 존재한다. C의 함량이 0.01% 이상으로 증가하면 Fe3C의 분율이 증가하지만 고용탄소는 일정한 값을 유지한다.If the carbon (C) is less than 0.01%, it is difficult to form Fe 3 C in the steel. In order to secure the formability of the steel sheet and obtain the BH property, the solid solution carbon must be controlled. As described above, in steels containing 0.01% or less of C, which do not form Fe 3 C, C is removed as much as 0.007% or less after removal of C as much as possible through long-term RH treatment in the steelmaking process. C was adjusted by addition of Ti or Nb. However, in steels with C of 0.01% or more, Fe 3 C is actively formed in the annealing process, so that only equilibrium dissolved carbon exists. When the content of C increases to 0.01% or more, the fraction of Fe 3 C increases, but the solid solution carbon maintains a constant value.

즉, Fe3C가 형성되지 않는 극저탄소강에서 고용탄소는 첨가한 C의 함량에 비례하여 증가하게 되므로 C 석출원소의 첨가량에 의하여 고용탄소를 조절해야 하고 첨가 원소 및 총 C함량에 따라 고용탄소의 양이 민감하게 변동하므로 적정한 고용탄소를 갖는 강을 안정적으로 제조하기가 매우 어렵다.That is, in the ultra low carbon steel in which Fe 3 C is not formed, the solid solution carbon increases in proportion to the amount of C added. Therefore, the solid solution carbon must be controlled by the amount of C precipitated element and the solid solution carbon according to the added element and the total C content. Due to the sensitive fluctuation of the amount, it is very difficult to stably produce steel with a suitable solid solution carbon.

반면, 0.01% 이상의 저탄소강판에서는 상평형적으로 10∼20ppm정도의 양만이 고용탄소로 존재하고 나머지 C는 Fe3C로 석출되므로, 총 C 함량에 따라 고용탄소의 양이 변동하지 않고 일정하게 10∼20ppm정도의 고용탄소를 유지할 수 있다.On the other hand, in the low carbon steel sheet of 0.01% or more, only about 10 to 20 ppm is present as solid solution in phase equilibrium, and the remaining C is precipitated as Fe 3 C. Therefore, the amount of solid solution carbon does not change depending on the total C content. It can maintain about 20ppm of dissolved carbon.

C의 함량이 0.05%를 초과하면 다량의 퍼얼라이트가 존재하므로 강도가 많이상승하고 연신율이 저하되는 문제가 있으므로 C의 함량을 0.05% 이하로 제한하였다.When the content of C exceeds 0.05%, since a large amount of pearlite is present, there is a problem that the strength increases and the elongation is lowered, so the content of C is limited to 0.05% or less.

일반적으로, 저탄소강에서 Mn은 S의 석출을 위하여 첨가하는 원소이다. 강중에 고용 S가 존재하면 강의 열간압연 중 적열취성에 의한 강판 표면의 균열을 발생시키므로 고용 S을 완전히 제거하여야 한다. 이러한 목적으로 종래의 저탄소강판에서 Mn은 0.01%∼0.25%의 함량을 첨가하여 MnS를 석출하여 고용 S를 제거하였다. 하지만, Mn이 많이 첨가되면 강중에 고용으로 존재하는 Mn과 고용탄소가 결합하는 Mn-C 쌍극자(Dipole)를 형성한다. Mn-C 쌍극자가 형성되면 고용 C의 이동이 어려워지므로 C가 Fe3C로 석출되는 것을 방해하여 소둔공정에서 압연판이 재결정될 때 {111} 집합조직이 형성되는 것을 억제하므로 소성변형비가 감소한다. 결국, 저탄소강에서 Mn이 많으면 가공성이 나빠진다.In general, in low carbon steel, Mn is an element added for the precipitation of S. The presence of solid solution S in the steel will cause cracks on the surface of the steel sheet due to hot brittleness during hot rolling of the steel. For this purpose, in the conventional low carbon steel sheet, Mn was added in an amount of 0.01% to 0.25% to precipitate MnS to remove solid solution S. However, when a large amount of Mn is added, Mn-C dipoles in which solid-solution Mn and solid-solution carbon are combined in the steel form. The formation of the Mn-C dipole makes it difficult to move the solid solution C and thus prevents C from precipitating into Fe 3 C, thereby suppressing formation of {111} texture when the rolled plate is recrystallized in the annealing process, thereby reducing the plastic strain ratio. As a result, when Mn is large in low carbon steel, workability will worsen.

본 발명에서는 저탄소강판에서 가공성을 저해하는 Mn의 첨가를 최대한 줄이면서 S를 석출시키고자 하였다. Mn을 0.1% 이하로 최소화하여 가공성을 확보하고 적은 양의 Mn으로 존재하게 되는 잔류 S는 Zr로 석출시키고자 한 것이다.In the present invention, it was intended to precipitate S while reducing as much as possible the addition of Mn to inhibit workability in low carbon steel sheet. Minimization of Mn to 0.1% or less to ensure workability and the residual S present in a small amount of Mn is intended to precipitate as Zr.

종래의 저탄소강에서는 Zr이 첨가되어 있지 않으나, 본 발명에서는 Mn의 함량을 최소화시키면서 고용 S를 석출시키기 위하여 다음의 식으로 계산된 만큼 Zr을 첨가한 것이다.In the conventional low carbon steel, Zr is not added, but in the present invention, Zr is added as much as calculated by the following formula in order to precipitate solid solution S while minimizing the content of Mn.

Zr[%] = 92/32 ×{S[%] - Mn[%]/10} + 92/12 ×N[%]Zr [%] = 92/32 × {S [%]-Mn [%] / 10} + 92/12 × N [%]

이 식의 유도과정은 다음과 같다. S를 Mn으로 충분히 석출시키기 위하여는중량비로 S의 10배 이상 Mn을 첨가하여야 한다. 나머지 S는 Zr와 결합시켜 ZrS로 석출시키는 것이다. 원자중량을 고려할 때 1원자의 Zr과 1원자의 S가 결합하기 위하여는 1%의 S당 92/32%의 Zr이 필요하다. 또한, Zr은 S와 석출하기 이전에 고온에서 ZrN으로 석출하므로 1%의 N에 대하여 92/12%의 Zr이 필요한 것이다. 결국, Zr 원소는 고용질소 전체와 S의 일부를 석출시키는 역할을 하는 것이다. Zr에 의하여 석출되지 않는 S는 Mn에 의하여 석출되어 FeS 형성에 의한 적열취성을 방지하게 되는 것이다. 상기 식에서 유도된 Zr의 양은 0.002~0.03%가 된다. 여기에서, Zr의 양이 0.002% 미만이면 Zr에 의한 S의 석출효과가 없고, Zr의 양이 0.03%를 초과하면 S의 석출효과에 비하여 Zr의 양이 과량으로 첨가되어 강의 생산비용이 증가된다.The derivation process of this equation is as follows. In order to sufficiently precipitate S into Mn, Mn should be added at least 10 times of S by weight. The remaining S is bonded with Zr to precipitate with ZrS. Considering the atomic weight, in order for 1 atom of Zr and 1 atom of S to bond, 92/32% of Zr per 1% of S is required. In addition, since Zr is precipitated as ZrN at high temperature before precipitation with S, 92/12% of Zr is required for 1% of N. After all, the element Zr serves to precipitate out all of the solid solution nitrogen and part of S. S which is not precipitated by Zr is precipitated by Mn to prevent red brittleness due to FeS formation. The amount of Zr derived in the above formula is 0.002 to 0.03%. Here, if the amount of Zr is less than 0.002%, there is no precipitation effect of S by Zr. If the amount of Zr is more than 0.03%, the amount of Zr is added in excess of the precipitation effect of S and the production cost of steel is increased. .

FeS가 형성되면 고온에서 용융되어 균열을 발생시키는 적열취성의 원인이 되므로 S의 함량은 0.015% 이하로 최소화시킨다.When FeS is formed, it melts at a high temperature, causing red brittleness to cause cracking, so the content of S is minimized to 0.015% or less.

N의 함량이 많으면 강판의 가공성을 저하시키므로, 0.004% 이하로 유지한다.If the content of N is high, the workability of the steel sheet is lowered, so it is maintained at 0.004% or less.

고온에서 N은 Zr과 반응하여 석출되지만 저온까지 잔류되는 N을 석출시키기 위하여 Al을 0.015%∼0.05% 첨가한다. 즉, Al은 열간압연후 권취중에 AlN으로 석출하므로 가공성을 저하시키는 고용질소를 완전히 제거하는 역할을 한다. Al의 양이 0.015% 미만이면 Al에 의한 N의 석출효과가 없고, Al의 양이 0.05%를 초과하면 N의 석출효과에 비하여 Al의 양이 과량으로 첨가되어 강의 생산비용이 증가된다.At high temperature, N reacts with Zr and precipitates, but 0.015% to 0.05% of Al is added to precipitate N remaining at a low temperature. That is, Al precipitates as AlN during winding after hot rolling, thereby completely removing solid solution nitrogen that degrades workability. If the amount of Al is less than 0.015%, there is no precipitation effect of N by Al, and if the amount of Al exceeds 0.05%, the amount of Al is added in excess of the precipitation effect of N, thereby increasing the steel production cost.

P가 많으면 항복강도가 증가하여 스프링백 현상이 커지므로 P는 0.02% 이하로 유지시킨다.If P is large, yield strength increases and springback phenomenon increases, so P is kept below 0.02%.

Si 함량도 많으면 항복강도가 증가하므로 0.015% 이하로 관리한다.If the Si content is too high, the yield strength increases, so it is managed at 0.015% or less.

다음은 본 발명의 제조방법에 대하여 설명한다.Next, the manufacturing method of the present invention will be described.

상기의 성분으로 조성된 강판은 1100~1300℃로 재가열된 후에 Ar3온도 이상에서, 즉 강의 조직이 오스테나이트인 상태에서 열간압연하고 이때 열간압연의 마무리 온도는 880∼950℃로 한다.The steel sheet composed of the above components is hot-rolled at an Ar 3 temperature or more after reheating to 1100 to 1300 ° C., that is, in a state in which the steel structure is austenite, and the finish temperature of the hot rolling is 880 to 950 ° C.

상기 강판의 재가열온도가 1100℃ 미만이면 주조시에 형성된 응고 조직의 파괴가 불충분하여 중심편석이 잘 발달되고 이에 따라 최종 형성된 결정립의 혼립으로 인하여 강판의 가공성 및 충격인성이 현저히 저하된다. 그리고, 상기 강판의 재가열온도가 1300℃를 초과하면 산화에 의한 스케일 형성이 촉진되어 슬라브의 두께 감소량이 상대적으로 증가되고, 재가열시의 결정립의 조대화에 따라 강판의 충격인성이 저하되며, 가열원단위의 상승으로 인하여 열연강판의 제조비용이 증가한다. 따라서, 재가열온도는 1100~1300℃로 설정한다.If the reheating temperature of the steel sheet is less than 1100 ° C., the coagulation structure formed during casting is insufficient, and the center segregation is well developed, and thus the workability and impact toughness of the steel sheet are significantly reduced due to the mixing of the finally formed crystal grains. When the reheating temperature of the steel sheet exceeds 1300 ° C, the formation of scale due to oxidation is promoted, and the thickness reduction amount of the slab is relatively increased, and the impact toughness of the steel sheet is reduced by coarsening of grains during reheating. Due to the increase in the production cost of hot rolled steel sheet. Therefore, reheating temperature is set to 1100-1300 degreeC.

페라이트역에서 열간압연하면 {110}<001> 조직이 많이 형성되어 최종적으로 가공성이 열화되므로, 열간압연은 오스테나이트역에서 수행한다.Hot rolling is performed in the ferritic region, so that many {110} <001> structures are formed and finally the workability is degraded. Therefore, hot rolling is performed in the austenite region.

압연마무리 온도가 950℃를 넘어서면, 열간압연후 오스테나이트 입도(grain size)가 커지고 변태전 결정입경이 커져 변태후 결정립 미세화가 충분하지 않게 되므로 결정립 조대화에 기인한 강판의 충격인성 및 강도의 저하가 나타난다. 압연 마무리 온도가 880℃ 이하로 되면, 결정립 조대화 및 혼립이 일어나 충격인성 및 가공성의 저하를 초래한다. 따라서, 열간압연 마무리 온도는 880~950℃로 설정한다.When the rolling finish temperature exceeds 950 ° C, the austenite grain size becomes large after hot rolling and the grain size before transformation is not enough, so that grain refinement after transformation is not sufficient. Deterioration is seen. When the rolling finish temperature is 880 ° C. or less, grain coarsening and mixing occur, resulting in deterioration of impact toughness and workability. Therefore, hot rolling finish temperature is set to 880-950 degreeC.

또한, 열간압연후 코일의 권취온도는 650~750℃로 유지하여 권취상태에서 탄화물을 원활하게 형성하여 고용탄소를 최소화시키고 AlN도 최대한으로 석출시켜 고용질소의 형성을 최소화시킨다. 권취온도가 650℃ 미만이면, 탄화물 형성이 원활하지 못하여 고용탄소와 고용질소의 함량이 증가한다. 권취온도가 750℃를 초과하면 냉연강판에서의 가공성이 열화된다.In addition, the coiling temperature of the coil after hot rolling is maintained at 650 ~ 750 ℃ to form a carbide smoothly in the wound state to minimize the solid solution carbon and AlN to the maximum to minimize the formation of solid solution nitrogen. If the coiling temperature is less than 650 DEG C, carbide formation is not smooth and the content of solid carbon and solid nitrogen is increased. If the coiling temperature exceeds 750 ° C, workability in the cold rolled steel sheet is deteriorated.

그리고, 강판을 권취하기 전에 고용탄소 및 고용질소의 함량를 최소화시키는 것은 열연강판을 압연한 후 소둔할 때 {111} 재결정 집합조직을 잘 발달시키기 때문이다. 즉, 소둔중에 고용원소가 적어야 {111} 재결정 집합조직이 발달한다. {111} 집합조직이 잘 발달하면 소성변형비가 증가하므로 프레스 가공에 유리하게 된다.In order to minimize the content of solid solution carbon and solid solution nitrogen before winding the steel sheet, the {111} recrystallized texture is well developed when the hot rolled steel sheet is rolled and annealed. In other words, {111} recrystallization aggregates are developed when there are few employment elements during annealing. If the {111} texture is well developed, the plastic deformation ratio is increased, which is advantageous for the press working.

상온까지 냉각된 열연강판을 산세하고 냉간압연한 후 소둔한다. 소둔 중에 재결정 형성이 쉽게 이루어지도록 큰 압하율로 냉간압연하며, {111} 재결정 집합조직이 발달되는 온도 영역에서 소둔한다. 상기 냉간압연하는 공정에서 압연은 65∼80%의 압하율로 실시한다.The hot rolled steel sheet cooled to room temperature is pickled, cold rolled and then annealed. Cold rolling is carried out at a large reduction rate so that recrystallization is easily formed during annealing, and annealing is performed in the temperature range where the {111} recrystallized texture is developed. In the cold rolling step, rolling is performed at a reduction ratio of 65 to 80%.

연속소둔 조건중 균열대온도는 750∼850℃로 한다.The crack zone temperature in the continuous annealing condition is 750 to 850 ° C.

균열대 이후에 강판은 서냉대와 급냉대 및 과시효대를 거치게 되는데, 이것은 탄화물을 형성시키고 일정량의 고용탄소를 강 중에 존재시키는 과정이다. 급냉대에서 20∼100℃/sec 속도로 냉각된 강 내에 과잉의 고용탄소가 존재하다가 대부분은 과시효대에서 Fe3C로 석출되고 일정량 고용탄소로 강 내에 남아 있게된다. 남아 있는 고용탄소에 의하여 강의 BH성이 생기는 것이다. 과시효대는 탄화물을 안정적으로 석출시키는 온도를 유지해야 하므로 과시효대 온도를 350∼450℃로 한다.After the cracks, the steel plate is subjected to slow cooling, quenching and overaging, which is the process of forming carbides and the presence of a solid solution of dissolved carbon in the steel. Excess dissolved carbon exists in the steel cooled at 20-100 ° C./sec in the quench zone, and most of it is precipitated with Fe 3 C in the overageing zone and remains in the river with a certain amount of dissolved carbon. The remaining solid carbon creates the BH properties of the steel. The overaging zone must maintain a temperature at which carbides are stably deposited, so the overaging zone temperature is 350-450 ° C.

열처리된 냉간압연판에 있는 고용원소에 의하여 항복점 현상이 발생한다. 항복점현상이 있는 강판으로 자동차 부품을 성형하면 스트레쳐스트레인 결함이 발생할 가능성이 있으므로 조질압연에 의하여 항복점 현상을 제거해야 한다. 조질압연의 압하율이 작으면 항복점 현상을 완전히 제거할 수 없고 항복점 현상이 너무 크면 항복강도가 증가하여 스프링백이 커지므로 적정한 압하율로 조질압연을 실시하여야 한다. 본 발명에서는 1.0∼2.0%의 조질압연을 실시하여 항복점현상을 제거한다.The yield point phenomenon occurs due to the high solubility element in the heat-treated cold rolled plate. When molding automotive parts from steel sheets with yield point phenomena, there is a possibility of stretcher strain defects, so the yield point phenomenon should be eliminated by temper rolling. If the rolling reduction rate of the temper rolling is small, the yield point phenomenon cannot be completely eliminated. If the yield point phenomenon is too large, the yield strength increases and the spring back becomes large, so the temper rolling must be performed at the appropriate rolling rate. In the present invention, 1.0 to 2.0% of the crude rolling is performed to eliminate the yield point phenomenon.

이하에서는 본 발명의 실시예를 설명한다.Hereinafter, embodiments of the present invention will be described.

[표 1]의 성분으로 조성된 강을 용해하고 열간압연을 실시하였다. 열간압연시 1250℃로 재가열한 후에 910℃의 마무리 온도와, 710℃의 권취온도로 작업하였다. 열간압연판의 표면 산화층을 산세처리를 하여 제거한 후 75% 냉간압연을 실시하였다. 냉간압연한 강판을 연속소둔로에서 열처리하였다. 열처리시 균열대의 온도는 760℃이고 균열대에서 유지시간은 28초로 하였다. 과시효대 온도는 400℃이었다. 열처리후 1.4%의 압하율로 조질압연을 실시하였다.Steels composed of the components shown in [Table 1] were dissolved and hot rolled. After reheating to 1250 ° C. during hot rolling, it was worked at a finishing temperature of 910 ° C. and a winding temperature of 710 ° C. The surface oxide layer of the hot rolled plate was removed by pickling, followed by 75% cold rolling. The cold rolled steel sheet was heat treated in a continuous annealing furnace. During the heat treatment, the temperature of the crack was 760 DEG C and the holding time was 28 seconds at the crack. The overaging temperature was 400 ° C. After heat treatment, temper rolling was carried out at a reduction ratio of 1.4%.

[표 2]는 [표 1]의 성분으로 제조한 냉연강판의 재질특성을 측정한 결과이다. 본 발명에 의한 강의 소성변형비인 r값과 연신율이 비교재의 값보다 큰 것을 알 수 있다. 냉연강판의 가공성은 소성변형비와 연신율로 나타나므로, 이 값이 크면 프레스 성형성이 우수하게 되며, 본 발명에 의하여 만들어진 강판이 우수한 가공성을 갖으며 BH성을 갖는 것을 알 수 있었다.[Table 2] is the result of measuring the material properties of the cold rolled steel sheet manufactured by the component of [Table 1]. It turns out that r value and elongation which are the plastic strain ratios of the steel by this invention are larger than the value of a comparative material. Since the workability of the cold rolled steel sheet is expressed by the plastic strain ratio and the elongation, it is found that the larger the value, the better the press formability, and the steel sheet produced by the present invention has excellent workability and BH property.

기호sign CC BB S.AlS.Al MnMn PP SS NN ZrZr 비고Remarks AA 0.0180.018 -- 0.0160.016 0.070.07 0.0100.010 0.0100.010 0.00210.0021 0.0200.020 본 발명The present invention BB 0.0180.018 -- 0.0410.041 0.080.08 0.0100.010 0.0110.011 0.00260.0026 0.0290.029 CC 0.0180.018 -- 0.0480.048 0.190.19 0.0110.011 0.0100.010 0.00270.0027 -- 비교재Comparative material DD 0.0200.020 0.00130.0013 0.00350.0035 0.200.20 0.0110.011 0.0110.011 0.00210.0021 -- EE 0.0180.018 0.00120.0012 0.0150.015 0.200.20 0.0110.011 0.0110.011 0.00280.0028 -- FF 0.0200.020 0.00210.0021 0.0420.042 0.200.20 0.0120.012 0.0100.010 0.00280.0028 -- GG 0.0210.021 0.00200.0020 0.0160.016 0.200.20 0.0120.012 0.0120.012 0.00330.0033 -- HH 0.0110.011 0.00210.0021 0.0180.018 0.210.21 0.0110.011 0.0110.011 0.00170.0017 -- II 0.0140.014 0.00190.0019 0.0180.018 0.200.20 0.0120.012 0.0110.011 0.00190.0019 -- JJ 0.0230.023 0.00140.0014 0.0110.011 0.210.21 0.0120.012 0.0120.012 0.00220.0022 -- KK 0.0150.015 0.00220.0022 0.0190.019 0.100.10 0.0130.013 0.0090.009 0.00170.0017 -- LL 0.0190.019 0.00240.0024 0.0220.022 0.230.23 0.0120.012 0.0100.010 0.00180.0018 -- MM 0.0190.019 0.00120.0012 0.0210.021 0.210.21 0.0110.011 0.0110.011 0.00160.0016 -- NN 0.0200.020 0.00440.0044 0.0220.022 0.240.24 0.0120.012 0.0110.011 0.00270.0027 -- OO 0.0160.016 0.00320.0032 0.0300.030 0.210.21 0.0110.011 0.0120.012 0.00170.0017 -- PP 0.0250.025 0.00290.0029 0.0430.043 0.230.23 0.0120.012 0.0100.010 0.00190.0019 --

번호number TSTS ELEL RR BHBH 비고Remarks AA 30.630.6 44.044.0 1.501.50 3.233.23 본 발명The present invention BB 31.531.5 44.544.5 1.601.60 4.904.90 CC 32.232.2 42.742.7 1.461.46 3.103.10 비교재Comparative material DD 31.431.4 43.643.6 1.311.31 2.532.53 EE 32.032.0 43.143.1 1.271.27 2.372.37 FF 31.631.6 41.241.2 1.161.16 3.193.19 GG 31.131.1 42.442.4 1.171.17 1.351.35 HH 31.131.1 38.738.7 1.331.33 7.277.27 II 30.630.6 40.440.4 1.171.17 5.305.30 JJ 30.930.9 37.937.9 1.211.21 5.795.79 KK 31.331.3 38.538.5 1.221.22 2.482.48 LL 31.231.2 36.536.5 1.081.08 3.333.33 MM 31.431.4 38.638.6 1.221.22 2.442.44 NN 31.631.6 37.037.0 1.241.24 7.437.43 OO 30.230.2 34.034.0 1.151.15 6.706.70 PP 32.232.2 38.338.3 1.021.02 1.451.45

상술한 바와 같이, 본 발명은 가공성이 우수하고 안정적인 BH성을 지닌 강판에 관한 것으로 자동차 외판에 적용될 수 있다. 본 발명에 의한 강판을 사용하여 자동차 외판을 성형하면 안정적으로 자동차의 내덴트성을 향상시킬 수 있는 효과가 있다.As described above, the present invention relates to a steel plate having excellent workability and stable BH property, and may be applied to an automobile exterior plate. Forming the automobile outer plate using the steel sheet according to the present invention has the effect of stably improving the dent resistance of the vehicle.

Claims (2)

중량%로, C: 0.010∼0.050%, Mn: 0.10% 이하, Zr: 0.002∼0.030%, P: 0.020% 이하, S: 0.015% 이하, Al: 0.05∼0.05%, N: 0.004% 이하, 나머지는 Fe 및 불가피한 불순물로 조성되고, 이때 Zr의 함량은 하기 식,By weight%, C: 0.010 to 0.050%, Mn: 0.10% or less, Zr: 0.002 to 0.030%, P: 0.020% or less, S: 0.015% or less, Al: 0.05 to 0.05%, N: 0.004% or less Is composed of Fe and unavoidable impurities, wherein the content of Zr is Zr[%] = 92/32 ×{S[%] - Mn[%]/10} + 92/12 ×N[%],Zr [%] = 92/32 × {S [%]-Mn [%] / 10} + 92/12 × N [%], 에 의거하여 결정되는 것을 특징으로 하는 가공성이 우수한 BH 냉연강판.BH cold-rolled steel sheet excellent in workability, characterized in that determined on the basis of. 제1항의 조성으로 이루어진 성분의 강편을 1100∼1300℃에서 재가열하는 단계와;Reheating the steel strip of the component consisting of the composition of claim 1 at 1100 ~ 1300 ℃; 880∼950℃의 마무리 압연온도와 650∼750℃의 권취온도에서 열간압연하는 단계;Hot rolling at a finish rolling temperature of 880 to 950 ° C and a winding temperature of 650 to 750 ° C; 65∼80%의 압하율로 냉간압연하는 단계;Cold rolling at a reduction ratio of 65 to 80%; 750∼850℃의 균열대 온도와 350∼450℃의 과시효대 온도에서 연속소둔하는 단계와;Continuous annealing at a crack zone temperature of 750-850 ° C. and an overage temperature of 350-450 ° C .; 상기 연속소둔된 냉간압연강판을 1.0∼2.0%로 조질압연하는 단계로 이루어진 것을 특징으로 하는 가공성이 우수한 BH 냉연강판의 제조방법.BH cold rolled steel sheet manufacturing method, characterized in that the continuous annealed cold rolled steel sheet consisting of a step of roughly rolling 1.0 to 2.0%.
KR10-1998-0060206A 1998-12-29 1998-12-29 BH cold rolled steel with excellent machinability and its manufacturing method KR100400868B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0060206A KR100400868B1 (en) 1998-12-29 1998-12-29 BH cold rolled steel with excellent machinability and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0060206A KR100400868B1 (en) 1998-12-29 1998-12-29 BH cold rolled steel with excellent machinability and its manufacturing method

Publications (2)

Publication Number Publication Date
KR20000043785A KR20000043785A (en) 2000-07-15
KR100400868B1 true KR100400868B1 (en) 2003-12-31

Family

ID=19567041

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0060206A KR100400868B1 (en) 1998-12-29 1998-12-29 BH cold rolled steel with excellent machinability and its manufacturing method

Country Status (1)

Country Link
KR (1) KR100400868B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276923A (en) * 1985-05-31 1986-12-06 Kawasaki Steel Corp Production of cold rolled steel sheet having bh characteristic uniform in transverse direction
JPH02285029A (en) * 1989-04-25 1990-11-22 Nippon Steel Corp Production of cold rolled steel sheet excellent in workability and ageing characteristic
JPH0718382A (en) * 1993-07-05 1995-01-20 Nisshin Steel Co Ltd Production of cold rolled steel sheet excellent in deep drawability
JPH10183253A (en) * 1996-12-24 1998-07-14 Nisshin Steel Co Ltd Production of cold rolled steel sheet or hot dip plated steel sheet excellent in surface property and workability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276923A (en) * 1985-05-31 1986-12-06 Kawasaki Steel Corp Production of cold rolled steel sheet having bh characteristic uniform in transverse direction
JPH02285029A (en) * 1989-04-25 1990-11-22 Nippon Steel Corp Production of cold rolled steel sheet excellent in workability and ageing characteristic
JPH0718382A (en) * 1993-07-05 1995-01-20 Nisshin Steel Co Ltd Production of cold rolled steel sheet excellent in deep drawability
JPH10183253A (en) * 1996-12-24 1998-07-14 Nisshin Steel Co Ltd Production of cold rolled steel sheet or hot dip plated steel sheet excellent in surface property and workability

Also Published As

Publication number Publication date
KR20000043785A (en) 2000-07-15

Similar Documents

Publication Publication Date Title
KR101967959B1 (en) Ultra-high strength steel sheet having excellent bendability and mathod for manufacturing same
KR100711445B1 (en) A method for manu- facturing alloyed hot dip galvanized steel sheet for hot press forming having excellent plating adhesion and impact property, the method for manufacturing hot press parts made of it
KR100722394B1 (en) Steel having superior spheroidized annealing and method making of the same
KR101344651B1 (en) Manufacturing method of steel-sheet
KR100823598B1 (en) High carbon steel sheet superior in isotropy and manufacturing method thereof
KR100400868B1 (en) BH cold rolled steel with excellent machinability and its manufacturing method
KR102557845B1 (en) Cold-rolled steel sheet and method of manufacturing the same
KR100400867B1 (en) Low carbon cold rolled steel sheet with low plastic anisotropy coefficient and excellent workability and manufacturing method
KR101568495B1 (en) High strength cold rolled steel sheet having excellent shape property and method for manufacturing the same
KR100470640B1 (en) A high strength bake-hardenable cold rolled steel sheet, and a method for manufacturing it
KR101149193B1 (en) Steel sheet having excellent formability and galvanizing property, and method for producing the same
JPH07188771A (en) Production of cold rolled steel sheet excellent in formability, having hardenability in coating/baking and small in change of hardenability in coating/baking in width direction
KR100325109B1 (en) Method for manufacturing bake hardenable low carbon cold rolled steel sheet with improved formability
KR101042454B1 (en) Hot-rolled steel sheet with good deep drawing, and method for producing the same
JP3718987B2 (en) Paint bake-hardening cold-rolled steel sheet excellent in aging resistance and method for producing the same
KR20100047007A (en) Hot-rolled steel sheet with good formability, and method for producing the same
KR100530073B1 (en) High strength steel sheet having superior workability and method for manufacturing there of
KR20080085808A (en) A high carbon steel sheet superior in strenth and toughness and a manufacturing method thereof
KR100829682B1 (en) Manufacturing method for high strength cold rolled steel sheet with good elongation
JPS5974237A (en) Production of galvanized steel sheet for deep drawing having excellent formability
JPS593528B2 (en) Manufacturing method of galvanized steel sheet for deep drawing with excellent formability
JPH0673498A (en) Cold rolled steel sheet excellent in baking hardenability in coating/baking at low temperature and its production
KR20220125755A (en) Ultra high strength cold rolled steel sheet having high elongation and local formality and method of manufacturing the same
KR20050032721A (en) Ultra high strength steel of 120kgf/㎟ grade having excellent formability
JPS59575B2 (en) Manufacturing method for high-strength cold-rolled steel sheets with excellent formability

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120830

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20130917

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140918

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20150916

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160908

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20170925

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee