KR100399063B1 - Image sensor fabrication method capable of reducing dark current - Google Patents

Image sensor fabrication method capable of reducing dark current Download PDF

Info

Publication number
KR100399063B1
KR100399063B1 KR10-2000-0086523A KR20000086523A KR100399063B1 KR 100399063 B1 KR100399063 B1 KR 100399063B1 KR 20000086523 A KR20000086523 A KR 20000086523A KR 100399063 B1 KR100399063 B1 KR 100399063B1
Authority
KR
South Korea
Prior art keywords
image sensor
forming
dark current
substrate
silicon substrate
Prior art date
Application number
KR10-2000-0086523A
Other languages
Korean (ko)
Other versions
KR20020058418A (en
Inventor
황준
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR10-2000-0086523A priority Critical patent/KR100399063B1/en
Publication of KR20020058418A publication Critical patent/KR20020058418A/en
Application granted granted Critical
Publication of KR100399063B1 publication Critical patent/KR100399063B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14698Post-treatment for the devices, e.g. annealing, impurity-gettering, shor-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

본 발명은 실리콘 기판 표면의 댕글링 본드에 포획된 전자에 의한 암전류를 감소시키기 위하여 포토다이오드 형성이 완료된 실리콘 기판 표면을 수소, 산소 또는 질소 중 적어도 어느 하나의 가스 분위기에서 열처리를 실시하여 실리콘 기판 표면의 댕글링 본드를 제거하는데 그 특징이 있다.According to the present invention, a silicon substrate surface is subjected to heat treatment in a gas atmosphere of at least one of hydrogen, oxygen, or nitrogen in order to reduce dark current caused by electrons trapped in a dangling bond on the silicon substrate surface. It is characterized by eliminating dangling bonds.

Description

암전류를 감소시킬 수 있는 이미지 센서 제조 방법{Image sensor fabrication method capable of reducing dark current}Image sensor fabrication method capable of reducing dark current

본 발명은 이미지 센서 제조 분야에 관한 것으로, 특히 빛 에너지를 받지 않을 경우에도 받은 것으로 간주하여 흐르는 암전류(dark current)를 감소시킬 수 있는 이미지 센서 및 그 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the field of image sensor manufacturing, and more particularly, to an image sensor and a method for manufacturing the same, which can reduce dark current flowing even when light energy is not received.

이미지 센서(image sensor)는 1차원 또는 2차원 이상의 광학 정보를 전기신호로 변환하는 장치이다. 이미지 센서의 종류는 크게 나누어 촬상관과 고체 촬상 소자로 분류된다. 촬상관은 텔레비전을 중심으로 하여 화상처리기술을 구사한 계측, 제어, 인식 등에서 널리 상용되며 응용 기술이 발전되었다. 시판되는 고체 이미지 센서는 MOS(metal-oxide-semiconductor)형과 CCD(charge coupled device)형의 2종류가 있다.An image sensor is an apparatus that converts optical information of one or two dimensions or more into an electrical signal. The types of image sensors are broadly classified into imaging tubes and solid-state imaging devices. Imaging tubes are widely used in measurement, control, and recognition using image processing technology centering on televisions, and applied technologies have been developed. There are two types of commercially available solid-state image sensors, a metal-oxide-semiconductor (MOS) type and a charge coupled device (CCD) type.

CMOS 이미지 센서는 CMOS 제조 기술을 이용하여 광학적 이미지를 전기적신호로 변환시키는 소자로서, 화소수 만큼 MOS트랜지스터를 만들고 이것을 이용하여 차례차례 출력을 검출하는 스위칭 방식을 채용하고 있다. CMOS 이미지 센서는, 종래 이미지센서로 널리 사용되고 있는 CCD 이미지센서에 비하여 구동 방식이 간편하고 다양한 스캐닝 방식의 구현이 가능하며, 신호처리 회로를 단일칩에 집적할 수 있어 제품의 소형화가 가능할 뿐만 아니라, 호환성의 CMOS 기술을 사용하므로 제조 단가를 낮출 수 있고, 전력 소모 또한 크게 낮다는 장점을 지니고 있다.CMOS image sensor is a device that converts an optical image into an electrical signal by using CMOS fabrication technology, and adopts a switching method in which MOS transistors are made by the number of pixels and the outputs are sequentially detected using the same. The CMOS image sensor is simpler to drive than the CCD image sensor, which is widely used as a conventional image sensor, and can realize various scanning methods, and can integrate a signal processing circuit into a single chip, thereby miniaturizing the product. The use of compatible CMOS technology reduces manufacturing costs and significantly lowers power consumption.

도 1은 4개의 트랜지스터와 2개의 캐패시턴스 구조로 이루어지는 CMOS 이미지센서의 단위화소를 보이는 회로도로서, 광감지 수단인 포토다이오드(PD)와 4개의 NMOS트랜지스터로 구성되는 CMOS 이미지센서의 단위화소를 보이고 있다. 4개의 NMOS트랜지스터 중 트랜스퍼 트랜지스터(Tx)는 포토다이오드(PD)에서 생성된 광전하를 플로팅 확산영역(FD)으로 전송하는 신호를 전달하고, 리셋 트랜지스터(Rx)는 플로팅 확산영역(FD)을 공급전압(VDD) 레벨로 리셋시키는 신호를 전달하고, 드라이브 트랜지스터(Dx)는 소스팔로워(Source Follower)로서 역할하며, 셀렉트 트랜지스터(Sx)는 픽셀 데이터 인에이블(pixel data enable) 신호를 인가받아 픽셀 데이터 신호를 출력으로 전송하는 역할을 한다.1 is a circuit diagram showing a unit pixel of a CMOS image sensor composed of four transistors and two capacitance structures, and a unit pixel of a CMOS image sensor composed of a photodiode (PD) as an optical sensing means and four NMOS transistors. . Of the four NMOS transistors, the transfer transistor Tx transmits a signal for transferring the photocharge generated in the photodiode PD to the floating diffusion region FD, and the reset transistor Rx supplies the floating diffusion region FD. The drive transistor Dx serves as a source follower, and the select transistor Sx receives a pixel data enable signal and receives a pixel to reset the voltage to the voltage V DD level. It is responsible for transmitting the data signal to the output.

이와 같이 구성된 이미지센서 단위화소에 대한 동작은 다음과 같이 이루어진다. 처음에는 리셋 트랜지스터(Rx), 트랜스퍼 트랜지스터(Tx) 및 셀렉트 트랜지스터(Sx)를 온(on)시켜 단위화소를 리셋시킨다. 이때 포토다이오드(PD)는 공핍되기 시작하여 전하축적(carrier charging)이 발생하고, 플로팅 확산영역은 공급전압( VDD)까지 전하축전된다. 그리고 트랜스퍼 트랜지스터(Tx)를 오프시키고 셀렉트 트랜지스터(Sx)를 온시킨 다음 리셋트랜지스터(Rx)를 오프시킨다. 이와 같은 동작 상태에서 단위화소 출력단(SO)으로부터 출력전압 V1을 읽어 버퍼에 저장시키고 난 후, 트랜스퍼 트랜지스터(Tx)를 온시켜 빛의 세기에 따라 변화된 캐패시턴스 Cp의 캐리어들을 캐패시턴스 Cf로 이동시킨 다음, 다시 출력단(Out)에서 출력전압 V2를 읽어들여 V1 - V2에 대한 아날로그 데이터를 디지털 데이터로 변경시키므로 단위화소에 대한 한 동작주기가 완료된다.Operation of the image sensor unit pixel configured as described above is performed as follows. Initially, the unit pixel is reset by turning on the reset transistor Rx, the transfer transistor Tx, and the select transistor Sx. At this time, the photodiode PD starts to deplete to generate charge charging, and the floating diffusion region is charged to the supply voltage VDD. The transfer transistor Tx is turned off, the select transistor Sx is turned on, and the reset transistor Rx is turned off. In this operation state, after reading the output voltage V1 from the unit pixel output terminal SO and storing it in the buffer, the transfer transistor Tx is turned on to move the carriers of the capacitance Cp changed according to the light intensity to the capacitance Cf. The output voltage (V2) is read from the output terminal (Out) again and the analog data for V1-V2 is converted into digital data, so one operation cycle for the unit pixel is completed.

종래 기술에 따른 CMOS 이미지 센서 제조 공정은 다음과 같은 과정을 포함한다. 즉, p형 실리콘 기판에 형성된 p형 에피택셜층에 화소간 분리를 위한 필드산화막을 형성하고, 게이트 절연막 및 트랜스퍼 트랜지스터의 게이트 전극을 형성한 다음, 선택적 이온주입 공정을 실시하여 포토다이오드 영역 및 플로팅 확산영역을 ㅎ셩성하는 과정을 포함한다.The CMOS image sensor manufacturing process according to the prior art includes the following process. In other words, a field oxide film for inter-pixel separation is formed on a p-type epitaxial layer formed on a p-type silicon substrate, a gate insulating film and a gate electrode of a transfer transistor are formed, and then a selective ion implantation process is performed to perform photodiode region and floating. The process involves creating a diffused region.

전술한 바와 같이 이루어지는 종래 이미지 센서 제조 공정은 도 2에 보이는 바와 같이 포토다이오드 영역의 실리콘 기판 표면의 댕글링 본드(dangling bond)에 의한 인터페이스 트랩(interface trap)에 전자(e-)가 포획(trap)되어 빛 에너지의 조사 없이도 포토다이오드 자체가 댕글링 본드에 포획된 전자들에 의해 암전류를 형성하여 센서의 기능 전체를 저하시키는 문제점이 대두되고 있으며, 이러한 문제는 소자의 집적도가 향상될수록 그 정도가 더욱 심해지고 있다.In the conventional image sensor fabrication process as described above, electrons (e ) are trapped in an interface trap by dangling bonds on the surface of the silicon substrate in the photodiode region as shown in FIG. 2. The photodiode itself forms a dark current by the electrons trapped in the dangling bond without irradiating light energy, thereby degrading the overall function of the sensor. It's getting worse.

상기와 같은 문제점을 해결하기 위한 본 발명은, 실리콘 기판 표면의 댕글링 본드에 전자가 포획됨에 따른 암전류를 감소시킬 수 있는 이미지 센서 제조 방법을 제공하는데 목적이 있다.The present invention for solving the above problems, an object of the present invention is to provide a method for manufacturing an image sensor that can reduce the dark current caused by electrons trapped in the dangling bond on the surface of the silicon substrate.

도 1은 종래 기술에 따른 CMOS 이미지 센서의 단위화소 구조를 개략적으로 보이는 회로도,1 is a circuit diagram schematically showing a unit pixel structure of a conventional CMOS image sensor;

도 2는 종래 기술에 따른 이미지 센서 제조 공정 중 실리콘 기판 표면의 댕글링 본드에 전자가 포획되는 것을 보이기 위한 설명도,2 is an explanatory diagram for showing that electrons are trapped in a dangling bond on the surface of a silicon substrate during an image sensor manufacturing process according to the prior art;

도 3a 내지 도 3c는 본 발명의 일실시예에 따른 이미지 센서 제조 공정 단면도.3A to 3C are cross-sectional views of an image sensor manufacturing process according to an embodiment of the present invention.

*도면의 주요부분에 대한 도면 부호의 설명** Description of reference numerals for the main parts of the drawings *

35: n형 불순물 영역 37: p형 불순물 영역35: n-type impurity region 37: p-type impurity region

38: 플로팅 확산영역38: floating diffusion region

상기와 같은 목적을 달성하기 위한 본 발명은, 반도체 기판 상에 활성영역과 필드영역을 정의하는 소자분리막을 형성하는 단계; 상기 기판 상에 게이트 전극을 형성하는 단계; 상기 게이트 전극과 상기 소자분리막 사이의 상기 기판에 포토다이오드용 도핑영역을 형성하는 단계; H2및 N2혼합가스 분위기에서 열처리하여 상기 기판 표면의 댕글링 본드에 수소를 결합시키는 단계; 및 전체 구조 상에 절연막을 형성하는 단계를 포함하는 이미지 센서 제조 방법을 제공한다.The present invention for achieving the above object, forming a device isolation film defining an active region and a field region on a semiconductor substrate; Forming a gate electrode on the substrate; Forming a doped region for photodiode on the substrate between the gate electrode and the device isolation film; Heat-treating in an H 2 and N 2 mixed gas atmosphere to bond hydrogen to a dangling bond on the surface of the substrate; And forming an insulating film on the entire structure.

본 발명은 포토다이오드 형성이 완료된 실리콘 기판 표면을 수소, 질소 또는 산소 중 어느 하나의 가스 분위기에서 열처리하여 실리콘 기판 표면의 계면 트랩을 제거할 수 있다. 또한, 수소 이온이 실리콘 기판의 댕글링 본드와 공유결합하도록 하여 전자가 트랩되는 것을 억제할 수 있다.The present invention can remove the interface trap on the surface of the silicon substrate by heat-treating the surface of the silicon substrate on which the photodiode is completed in a gas atmosphere of any one of hydrogen, nitrogen or oxygen. In addition, hydrogen ions can be covalently bonded to the dangling bonds of the silicon substrate to suppress the trapping of electrons.

도 3a 내지 도 3c는 본 발명의 실시예에 따른 CMOS 이미지 센서 제조 공정 단면도로서, 광감지를 위한 포토다이오드, 광전하전송을 위한 트랜스퍼 트랜지스터의 게이트 전극 및 플로팅 확산영역의 형성과정을 보이고 있다. 이하, 도 3a 내지 도 3c를 참조하여 종래 기술에 따른 CMOS 이미지 센서 제조 방법을 상세하게 설명한다.3A to 3C are cross-sectional views of a manufacturing process of a CMOS image sensor according to an exemplary embodiment of the present invention, illustrating a process of forming a photodiode for detecting light, a gate electrode, and a floating diffusion region of a transfer transistor for photocharge transfer. Hereinafter, a CMOS image sensor manufacturing method according to the prior art will be described in detail with reference to FIGS. 3A to 3C.

먼저 도 3a에 도시한 바와 같이, p형 실리콘 기판(30)에 형성된 p형 에피택셜층(31)에 화소간 분리를 위한 필드산화막(32)을 형성하고, 게이트 절연막(33) 및 트랜스퍼 트랜지스터의 게이트 전극(34)을 형성한 다음, 선택적 이온주입 공정을 실시하여 포토다이오드 영역의 n형 불순물 영역(35)을 형성한다.First, as shown in FIG. 3A, a field oxide film 32 for inter-pixel separation is formed on the p-type epitaxial layer 31 formed on the p-type silicon substrate 30, and the gate insulating film 33 and the transfer transistor are formed. After forming the gate electrode 34, a selective ion implantation process is performed to form an n-type impurity region 35 of the photodiode region.

다음으로 도 3b에 보이는 바와 같이, 게이트 전극(34) 측벽에 절연막 스페이서(36)를 형성하고, 상기 포토다이오드의 n형 불순물 영역(35) 상에 p형 불순물 영역(37)을 형성하고, 게이트 전극(34) 타단의 상기 실리콘 기판(30) 내에 n형 불순물 영역 주입하여 플로팅 확산영역(38)을 형성한다. 이후, 포토다이오드 형성이 완료된 실리콘 기판을 수소 분위기에서 열처리 한다. 본 발명의 실시예에서는 상기열처리를 H2및 N2의 혼합가스 분위기에서 300 ℃ 내지 500 ℃ 1시간 내지 4시간 동안 열처리를 실시한다. 상기 열처리를 세정 공정을 진행한 후에 실시할 수도 있다.Next, as shown in FIG. 3B, an insulating film spacer 36 is formed on the sidewall of the gate electrode 34, a p-type impurity region 37 is formed on the n-type impurity region 35 of the photodiode, and the gate A floating diffusion region 38 is formed by implanting an n-type impurity region into the silicon substrate 30 at the other end of the electrode 34. Thereafter, the silicon substrate on which the photodiode is completed is heat-treated in a hydrogen atmosphere. In the embodiment of the present invention, the heat treatment is performed in a mixed gas atmosphere of H 2 and N 2 for 300 ° C. to 500 ° C. for 1 hour to 4 hours. The heat treatment may be carried out after the washing step.

이어서 도 3c에 도시한 바와 같이, 전체 구조 상에 PMD(pre metal dielectric)층(39)을 형성한다.Subsequently, as shown in FIG. 3C, a pre metal dielectric (PMD) layer 39 is formed over the entire structure.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes are possible in the art without departing from the technical spirit of the present invention. It will be clear to those of ordinary knowledge.

상기와 같이 이루어지는 본 발명은 포토다이오드 형성이 완료된 실리콘 기판을 수소 분위기에서 열처리 함으로써 실리콘 기판 표면의 댕글링 본드에 전자가 결합되는 것을 억제하여 암전류를 감소시킬 수 있으며, 그에 따라 CMOS 이미지 센서의 특성 및 성능 향상을 기대할 수 있다. 본 발명과 같은 방법은 고집적 CMOS 이미지 센서 제조 공정에 활용될 수 있다.According to the present invention, the photodiode-formed silicon substrate is heat-treated in a hydrogen atmosphere, thereby suppressing the coupling of electrons to the dangling bond on the surface of the silicon substrate, thereby reducing the dark current, thereby reducing the characteristics of the CMOS image sensor and You can expect a performance improvement. The method such as the present invention can be utilized in a high density CMOS image sensor fabrication process.

Claims (4)

이미지 센서 제조 방법에 있어서,In the image sensor manufacturing method, 반도체 기판 상에 활성영역과 필드영역을 정의하는 소자분리막을 형성하는 단계;Forming an isolation layer defining an active region and a field region on the semiconductor substrate; 상기 기판 상에 게이트 전극을 형성하는 단계;Forming a gate electrode on the substrate; 상기 게이트 전극과 상기 소자분리막 사이의 상기 기판에 포토다이오드용 도핑영역을 형성하는 단계;Forming a doped region for photodiode on the substrate between the gate electrode and the device isolation film; H2및 N2혼합가스 분위기에서 열처리하여 상기 기판 표면의 댕글링 본드에 수소를 결합시키는 단계; 및Heat-treating in an H 2 and N 2 mixed gas atmosphere to bond hydrogen to a dangling bond on the surface of the substrate; And 전체 구조 상에 절연막을 형성하는 단계Forming an insulating film on the entire structure 를 포함하는 이미지 센서 제조 방법.Image sensor manufacturing method comprising a. 제 1 항에 있어서,The method of claim 1, 상기 H2및 N2혼합가스 분위기에서 수행되는 열처리 단계는The heat treatment step performed in the H 2 and N 2 mixed gas atmosphere 300 ℃ 내지 500 ℃ 온도에서 1 ∼ 4 시간 동안 실시하는 것을 특징으로 하는 이미지 센서 제조 방법.Method for manufacturing an image sensor, characterized in that carried out for 1 to 4 hours at a temperature of 300 ℃ to 500 ℃. 삭제delete 삭제delete
KR10-2000-0086523A 2000-12-30 2000-12-30 Image sensor fabrication method capable of reducing dark current KR100399063B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0086523A KR100399063B1 (en) 2000-12-30 2000-12-30 Image sensor fabrication method capable of reducing dark current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0086523A KR100399063B1 (en) 2000-12-30 2000-12-30 Image sensor fabrication method capable of reducing dark current

Publications (2)

Publication Number Publication Date
KR20020058418A KR20020058418A (en) 2002-07-12
KR100399063B1 true KR100399063B1 (en) 2003-09-26

Family

ID=27689516

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0086523A KR100399063B1 (en) 2000-12-30 2000-12-30 Image sensor fabrication method capable of reducing dark current

Country Status (1)

Country Link
KR (1) KR100399063B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070012962A1 (en) * 2005-07-18 2007-01-18 Omnivision Technologies, Inc. Method for making image sensor with reduced etching damage
KR100718782B1 (en) * 2005-11-11 2007-05-16 매그나칩 반도체 유한회사 Method for manufacturing image sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294865A (en) * 1985-06-21 1986-12-25 Nippon Texas Instr Kk Charge-coupled type semiconductor device
JPH01152761A (en) * 1987-12-10 1989-06-15 Nec Corp Manufacture of solid-state image sensing device
KR930022569A (en) * 1992-04-24 1993-11-24 김광호 Method for manufacturing solid imaging apparatus
KR19980072450A (en) * 1997-03-05 1998-11-05 김광호 Defect removal method of charge coupled device (CCD)
JP2000012817A (en) * 1998-06-24 2000-01-14 Nec Corp Solidstate image pickup device and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294865A (en) * 1985-06-21 1986-12-25 Nippon Texas Instr Kk Charge-coupled type semiconductor device
JPH01152761A (en) * 1987-12-10 1989-06-15 Nec Corp Manufacture of solid-state image sensing device
KR930022569A (en) * 1992-04-24 1993-11-24 김광호 Method for manufacturing solid imaging apparatus
KR19980072450A (en) * 1997-03-05 1998-11-05 김광호 Defect removal method of charge coupled device (CCD)
JP2000012817A (en) * 1998-06-24 2000-01-14 Nec Corp Solidstate image pickup device and manufacture thereof

Also Published As

Publication number Publication date
KR20020058418A (en) 2002-07-12

Similar Documents

Publication Publication Date Title
US7541571B2 (en) Image sensor having first and second charge transmitters
JP2002373978A (en) Cmos image sensor capable of increasing punch voltage and current collecting amount of photodiode and its manufacturing method
US8508638B2 (en) 3T pixel for CMOS image sensors with low reset noise and low dark current generation utilizing parametric reset
CN104617117A (en) Solid-state imaging device, method of manufacturing the same, and electronic apparatus
KR20020045165A (en) Image sensor capable of improving electron transfer and method for forming the same
KR100406596B1 (en) Method for forming image sensor having NPNP photodiode
KR100464949B1 (en) Method for forming image sensor capable of improving characteristics of photodiode
KR100399063B1 (en) Image sensor fabrication method capable of reducing dark current
KR100373342B1 (en) Image sensor capable of preventing flowing backward of charge
KR20020052791A (en) Image sensor formation method capable of protecting surface of substrate
KR100388461B1 (en) Image sensor capable of improving light sensitivity and method for forming the same
KR100830328B1 (en) CMOS Image sensor and method for fabricaing the same
KR20020058580A (en) Image sensor capable increasing area of photodiode and method for forming the same
KR20020048705A (en) Image sensor capable of improving low light characteristics and method for forming the same
KR101493870B1 (en) Image device with improved spatial signal to noise ratio and Method of fabricating the same
US20060049437A1 (en) CMOS image sensors and methods for fabricating the same
KR20020058457A (en) Image sensor having high concentration impurity region in semiconductor substrate between photodiode and field oxide
KR100749270B1 (en) CMOS Image sensor and method for fabricaing the same
KR100460760B1 (en) Unit Pixel with improved fill factor and dark signal property in cmos image sensor
KR20020058477A (en) Image sensor capable of increasing depletion area of photodiode and method for forming the same
KR20040093295A (en) Fabricating method for photo diode in cmos image sensor
KR20020058560A (en) Image sensor capable increasing light sensitivity of photodiode and method for forming the same
KR20020052794A (en) Image sensor formation method capable of reducing node capacitance of floating diffusion area
KR20020048717A (en) Image sensor having reflection layer in semiconductor substrate and method for fabricating the same
KR100388474B1 (en) Image sensor capable of increasing capacitance of photodiode and method for fabricating the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110830

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20120830

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee