KR100398388B1 - 충격특성이 우수한 샤프트용 선재의 제조방법 - Google Patents

충격특성이 우수한 샤프트용 선재의 제조방법 Download PDF

Info

Publication number
KR100398388B1
KR100398388B1 KR10-1998-0057105A KR19980057105A KR100398388B1 KR 100398388 B1 KR100398388 B1 KR 100398388B1 KR 19980057105 A KR19980057105 A KR 19980057105A KR 100398388 B1 KR100398388 B1 KR 100398388B1
Authority
KR
South Korea
Prior art keywords
steel
wire
wire rod
present
manufacturing
Prior art date
Application number
KR10-1998-0057105A
Other languages
English (en)
Other versions
KR20000041269A (ko
Inventor
박종경
신병현
한승규
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1998-0057105A priority Critical patent/KR100398388B1/ko
Publication of KR20000041269A publication Critical patent/KR20000041269A/ko
Application granted granted Critical
Publication of KR100398388B1 publication Critical patent/KR100398388B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 자동차 조향장치의 랙바 등에 사용되는 선재의 제조방법에 관한 것으로, 그 목적은 강성분을 적절히 조정하고 열간선재압연과 냉각조건을 적절히 제어함으로써 소입-소려열처리를 생략하고도 조질강 선재와 동등한 가공특성 특히, 충격인성이 개선되는 샤프트용 선재의 제조방법을 제공함에 있다.
이러한 목적을 갖는 본 발명은, 중량%로, C:0.30-0.60%, Si:0.10-0.40%, Mn:0.8-1.5%, Cr:0.03-1.0%, V:0.03-0.15%, Ti:0.010-0.040%, Al:0.01-0.10%, P:0.030%이하, S:0.020-0.10%, N:0.005-0.030%, Ni:0.10-0.30%와 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 조성되는 빌레트를 950-1100℃로 가열하여 열간선재압연하고 코일형태로 권취한다음, 550-750℃ 구간을 0.1-1.0℃/sec의 속도로 냉각한 후, 5.0-30%의 단면감소율로 냉간인발하는 것을 포함하여 이루어지는 충격특성이 우수한 샤프트용 선재의 제조방법에 관한 것을 그 기술적요지로 한다.
이러한 본 발명은, 인장강도 89.1-97kg/㎟ 충격치 6.5-7.5kg.m/㎠의 선재를 제공하는 효과가 있다.

Description

충격특성이 우수한 샤프트용 선재의 제조방법
본 발명은 자동차 조향장치의 랙바 등에 사용되는 선재의 제조방법에 관한 것으로, 보다 상세히는 열간선재압연후 행하는 소입-소려열처리를 생략할 수 있으면서 충격인성이 개선되는 비조질강 선재의 제조방법에 관한 것이다.
선재는 다양한 기계부품류에 이용되고 있으며 일례로 도 1에 도시된 자동차 조향장치의 기어샤프트인 랙바(10)에도 적용되고 있다. 선재를 랙바로 이용하기 위해서는 먼저, 빌레트를 열간선재압연하여 환봉형태로 만들고 이를 소입,소려열처리하여 강도와 인성을 향상시킨 다음, 냉간인발과 절단과정을 거치고 이어 치차(齒車)를 형성하기 위해 선재를 절삭가공한다. 이 치차부위에는 내마모성을 부여하기 위하여 고주파소입열처리 및 소려열처리를 하여 랙바로 제품화한다. 보통 고주파소입열처리하여 제품에 이용되는 선재를 고주파소입용 선재라 하며, 이 선재는 냉간가공성(절삭가공성 및 드릴링 가공성)과 고주파소입성 및 기계적특성이 무엇보다 중요하다. 고주파소입용 선재로는 통상 아래 표 1에 나타낸 기계구조용 탄소강인 S45C가 많이 이용되고 있다.
강종 화학조성(중량%)
C Si Mn P S
S45C 0.42-0.48 0.15-0.35 0.60-0.90 0.030이하 0.035이하
한편, 70년대 중반부터 유럽 및 일본을 중심으로 선재의 강도와 인성을 향상시키기 위한 소입-소려 열처리를 생략하여 원가절감을 획기적으로 꾀할 수 있는 비조질강 선재가 개발되어 널리 사용되고 있다. 비조질강 선재는 합금설계를 적절히 하고, 제어압연 및 제어냉각을 통해 고강도 고인성 소재를 제조함으로써 열간단조 또는 냉간단조후에 뒤따르는 소입-소려 열처리공정을 생략할 수 있도록 개발된 강이다. 비조질강 선재의 대표적인 예로서는 일본 공개특허공보 소 59-136420호 및 일본공개특허공보 평 7-54040호가 있다.
일본 공개특허공보 소 59-136420호에 개시된 강은 종래의 기계구조용 탄소강 대비 망간(Mn) 함량을 증가시켜 인성의 저하 없이 강도증가를 꾀하는 한편, 석출경화 원소인 바나듐(V)을 약 0.1% 내외 첨가하여 열간단조후 냉각과정에서 페라이트 기지조직내에 바나듐탄질화물[V(C,N)]을 미세하게 석출시켜 강도증가를 도모함으로써 뒤따르는 소입소려 열처리공정의 생략을 가능케 한 것이다. 이 선재의 경우에는 열간단조 가공을 통하여 특정형상의 부품을 만드는 소재로 사용하기에는 적합하나, 절삭가공성이나 드릴링(drilling) 가공성이 좋지 않으므로 냉간가공용 소재로 사용하기에는 부적합하다.
또한, 일본 공개특허공보 평 7-54040호에 제안한 비조질강 선재는, 냉간가공성을 향상시키기 위해 탄소(C)함량을 매우 낮추고 또 조직미세화를 통한 강의 강도와 인성을 개선시키기 위해 니오븀이 소량 첨가된 것이다. 이 비조질강 선재는 냉간신선 및 압조용 소재로 사용하기에는 적합하나 쾌삭성원소가 함유되지 않아 절삭가공용으로 사용하기에 부적합하며 또한 탄소함량이 낮아 고주파소입성도 좋지 않다.
지금까지 제안된 비조질강선재는 소입-소려열처리를 생략하여 원가절감을 꾀할 수는 있으나, 절삭가공성 또는 고주파소입성이 좋지 않아 고주파소입용 선재로 사용할 수 없다는 문제가 있다.
따라서, 본 발명자들은 상기와 같은 선행기술들이 갖는 문제점들을 해결하여 자동차 조향장치의 랙바에 적합한 선재를 개발하기 위해 연구와 실험을 행하고 그 결과에 근거하여 본 발명을 제안하게 이르렀다.
본 발명은 강성분을 적절히 조정하고 열간선재압연과 냉각조건을 적절히 제어함으로써 소입-소려열처리를 생략하고도 조질강 선재와 동등한 가공특성 및 기계적성질을 나타내고 특히, 충격인성을 개선된 고강도 고주파소입용 비조질강 선재의 제조방법을 제공하는데, 그 목적이 있다.
도 1은 자동차 조향장치의 개략도
도 2는 발명강의 미세조직사진
상기 목적을 달성하기 위한 본 발명의 선재 제조방법은, 중량%로, C:0.30-0.60%, Si:0.10-0.40%, Mn:0.8-1.5%, Cr:0.03-1.0%, V:0.03-0.15%, Ti:0.010-0.040%, Al:0.01-0.10%, P:0.030%이하, S:0.020-0.10%, N:0.005-0.030%, Ni:0.10-0.30%와 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 조성되는 빌레트를 950-1100℃로 가열하여 열간선재압연하고 코일형태로 권취한다음, 550-750℃ 구간을 0.1-1.0℃/sec의 속도로 냉각한 후, 5.0-30%의 단면감소율로 냉간인발하는 것을 포함하여 구성된다.
상기와 같이 냉각인발한 선재는 절삭가공을 하고 마지막으로 고주파소입 및 소려처리를 실시하여 표면을 경화시켜 제품화된다.
이하, 본 발명을 상세히 설명한다.
본 발명은 소입소려열처리를 생략하면서도 선재의 용도에 적합하도록 강선분계를 조정하는데 특히, 선재의 절삭성을 확보하기 위해 [S]을 적정수준으로 관리하고 충격인성을 개선하기 위해 [Ni]를 적정량 첨가하는 한편, 제조공정을 제어하는데, 그 특징이 있다. 이러한 본 발명은 강 성분과 제조공정의 유기적인 결합으로 달성되는 바, 이를 다음이하에 세분하여 설명한다.
[강 성분]
상기 탄소(C)는 소재의 강도를 결정짓는 주요원소로, 탄소함량이 너무 낮은 경우에는 필요강도의 확보가 불가능하고 너무 높은 경우에는 필요한 인성 및 연성의 확보가 불가능하므로 탄소의 함량은 0.30-0.60%로 제한하는 것이 바람직하다.
규소(Si)는 고용강화에 의해 필요강도를 확보하고 또 탈산을 충분히 해주기 위해서 0.10%이상 첨가하나, 0.40%이상 첨가하게 되면 소재에 표면탈탄이 발생하므로 0.10-0.40%로 첨가한다.
망간(Mn)은 소입성증가 및 고용강화 효과에 의하여 강의 강도를 증가시키기 위해 0.8%이상 첨가하나 1.5%이상 첨가될 경우 인성을 감소시킨다. 따라서, 인성을 크게 저하시키지 않고 필요강도를 얻기 위해서는 상기 망간의 함량은 0.8-1.5%로 한정하는 것이 바람직하다.
크롬(Cr)은 양호한 소입성을 확보하기 위해 필요한 원소로서 특히 기지조직을 강화하여 강도를 증가시키고 또한 내마모성과 내부식성을 개선시킨다. 이러한 효과를 얻기 위해서는 0.03%이상 첨가할 필요가 있지만 1.0%이상 첨가되면 인성이 저하되고 소재의 가격이 비싸지므로 첨가범위를 0.03-1.0%로 제한하는 것이 바람직하다.
바나듐(V)은 강중에서 탄소 및 질소와 결합하여 바나듐탄질화물을 형성한다. 냉각과정에서 생성되는 미세한 바나듐탄질화물은 강도향상에 매우 효과적이다. 필요한 효과를 얻기 위해서는 최소한 0.03%이상 첨가할 필요가 있지만 0.15%이상 첨가되면 강도가 필요이상 증가하고 인성 및 연성이 저하되기 때문에 첨가범위를 0.03-0.15%로 제한하는 것이 바람직하다.
티타늄(Ti)은 강중에서 질소와 결합하여 티타늄질화물을 형성한다. 티타늄질화물은 재가열과정에서 오스테나이트 입성장을 억제시켜 강의 충격인성을 개선시킨다. 티타늄첨가량이 너무 적으면 티타늄질화물의 절대량이 적어 효과적으로 입성장을 억제시키기 곤란하고 첨가량이 일정량을 넘으면 효과가 포화되거나 오히려 감소하게 된다. 따라서 적정 첨가량은 0.010-0.040% 범위가 바람직하다.
알루미늄(Al)은 탈산을 위하여 첨가하며 또한 알루미늄질화물을 형성시켜 오스테나이트를 미세화하여 강의 충격인성을 개선시키기 위해 첨가한다. 첨가량이 적으면 필요로 하는 효과를 얻지 못하고, 첨가량이 많으면 효과가 포화되므로 첨가량은 0.01-0.10%범위로 제한하는 것이 바람직하다.
인(P)은 오스테나이트 결정입계에 편석되어 인성을 저하시키므로 그 상한을 0.030%로 제한하는 것이 바람직하다.
황(S)은 강중에서 망간과 결합하여 망간황화물을 형성한다. 망간황화물은 강의 쾌삭성을 향상시킨다. 이러한 효과를 얻기 위해서는 0.020%이상 첨가하는 것이 바람직하다. 그러나, 황은 충격인성을 저하시키므로 그 상한을 0.10%로 제한하는 것이 바람직하다.
질소(N)는 강중에서 티타늄, 바나듐, 알루미늄과 결합하여 티타늄질화물 바나듐질화물 및 알루미늄 질화물을 형성하여 강도와 인성을 개신시킨다. 첨가량이 적으면 이러한 효과를 얻을 수 없고 첨가량이 지나치게 많으면 효과가 포화되므로 첨가범위는 0.005-0.030%가 바람직하다.
니켈(Ni)은 강중에 0.15%이상 첨가시 강의 오스테나이트 영역을 확대시켜 충격인성을 개선시키나 첨가량 증대시 저온변태조직인 베이나이트나 마르텐사이트가 조직에 발생하여 제품 절삭가공에 악영향을 미침으로 0.30%이하로 한정한다.
[제조공정]
상기와 같은 조성의 강을 통상의 방법으로 주조한 다음, 재가열시 조대하게 석출된 바나듐탄질화물을 재고용가열 시키기 위해 1200-1300℃로 가열하고 강편압연하여 빌레트를 제조하였다. 이 빌레트를 열간선재압연 하는데, 이때의 재가열온도는 9500-1100℃가 바람직하다. 그 이유는 재가열온도가 950℃이상이 되어야 조대하게 석출된 바나듐질화물을 재고용시킬 수 있으며, 1100℃를 넘으면 오스테나이트가 조대해지고 탈탄이 심해지기 때문이다.
상기와 같이 재가열한 후 열간선재압연하고 코일형태로 권취한 다음 냉각하는데, 이때의 냉각은 상변태 구간인 550-750℃구간을 0.1-1.0℃/sec의 냉각속도로 냉각시키는 것이 바람직하다. 냉각속도가 0.1℃/sec 보다 느리면 페라이트와 펄라이트 조직이 너무 조대하여져서 강도와 인성을 떨어뜨릴 뿐만 아니라 냉각과정에서 석출되는 바나듐탄질화물도 너무 성장하여 강도증가에 효과적으로 기여하지 못하게 된다. 그리고 냉각속도가 1.0℃/sec 이상으로 빨라지게 되면 저온변태조직이 생성되어 강을 취약하게 만든다.
이와 같은 방법으로 제조한 선재는 선재표면에 압축잔류응력을 발생시켜 주기 위하여 최종제품의 치수에 맞도록 냉간인발을 실시하는데 이때의 단면감소율은 5.0-30%로 하는 것이 바람직하다.
냉간인발을 마친 선재는 적당한 길이로 절단한 후 필요한 절삭가공을 거친 뒤 표면을 고주파소입 및 소려처리로 경화시켜 준다.
이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.
[실시예 1]
본 발명의 실시예에 적용된 발명강 및 종래강의 화학성분은 아래 표 2와 같다.
구분 화학조성(중량%) 비고
C Si Mn P S Cr Al V Nb Ti N Ni
발명강 0.45 0.25 1.20 0.015 0.050 0.09 0.032 0.10 - 0.016 0.0085 0.15
종래강1 0.43 0.25 0.85 - 0.025 0.13 - 0.10 - - 0.01 - 일본 특개소59-136420
종래강2 0.15 0.25 1.15 - - 0.12 0.02 - 0.11 0.015 - - 일본 특개평7-54040
비교강 0.45 0.24 1.19 0.016 0.044 0.08 0.032 0.10 - 0.016 0.0105 -
표 2와 같이 조성되는 강으로 주조된 주편(250×330mm)을 가열로에 장입하여 1250℃의 온도로 가열하여 빌레트를 제조하였다. 이 빌레트를 가열로에 장입하여 1시간 30분 동안 가열한 후 추출하였으며, 이때의 추출온도는 950℃였다. 추출된 빌레트을 열간선재압연기를 이용하여 직경 30mm로 압연한 후 코일형태로 권취하였다. 권취한 선재는 냉각설비를 이용하여 550-750℃ 구간을 냉각속도 0.25-0.10℃/sec로 냉각시켰다. 상기와 같이 열간선재압연 및 조정냉각을 완료한 본 발명강의 미세조직을 도 1에 나타내었다.
도 1에 나타난 본 발명강(도 1(a)는 200배율, 도 1(b)는 500배율임)은, 베이나이트와 같이 재질에 유해한 저온변태조직은 존재하지 않고 미세한 페라이트와 펄라이트로 구성된 양호한 미세조직을 보이고 있다.
또한, 상기와 같이 열간선재압연을 마친 상태에서 발명강, 종래강 등의 선경별 인장강도 및 경도실적을 아래 표 3에 나타내었다.
구분 인장강도(kg/mm2) 연신율(%) 경도(HRc) 충격치(kg.m/cm2)
발명강 89.1-97.0 11.0-17.0 23.4-25.3 6.5-7.5
종래강 1 - - 15.7-22.2 -
종래강 2 69 - - -
비교강 86.0-96.0 12.0-18.0 21.4-24.3 5.5-7.0
상기 표 3에 나타난 바와 같이, 본 발명에 따라 제조된 발명강이 종래강 및 비교강에 비해 기계적성질이 향상되는 것을 알 수 있다.
상기와 같이 본 발명에 따라 코일상태로 권취한 선재를 냉간상태에서 5-15% 정도의 감면율로 냉간신선한 다음, 일정길이로 절단하였다. 이후 선재의 한쪽면에 치차가공을 하고 선재중심부를 길이 방향으로 드릴 가공을 하여 자동차 조향장치 부품인 랙바를 제조하였다. 축부와 치차부의 표면은 내마모성을 개선시키기 위해 고주파 소입소려 열처리를 실시하였다. 본 발명에 따라 제조된 랙바의 물성치를 기존 소입소려 열처리한 선재(조질강선재)의 물성치를 규격치로 하여 아래 표 4에 함께 나타내었다.
구분 규격 발명강
소재직진도 0.40/1000mm이하 0.26/1000-0.30/1000mm
브로치(Broach)가공 후 휨방향 정방향 정방향
치부경도(HRc) 58-62 58.5-59.0
축부경도(HRc) 55-64 60-61
상기 표 4에 나타난 바와 같이, 본 발명강이 기존 조질강 선재에 비해 랙바의 물성치가 동등이상임을 알 수 있었다.
상술한 바와 같이, 본 발명은 원가절감 및 제조공정이 단순화되는 고주파소입용 비조질강선재의 제조방법을 제공할 수 있으며, 제공된 비조질강선재는 자동차 랙바 등에 적용될 수 있는 유용한 효과가 있는 것이다.

Claims (1)

  1. 중량%로, C:0.30-0.60%, Si:0.10-0.40%, Mn:0.8-1.5%, Cr:0.03-1.0%, V:0.03-0.15%, Ti:0.010-0.040%, Al:0.01-0.10%, P:0.030%이하, S:0.020-0.10%, N:0.005-0.030%, Ni:0.10-0.30%와 나머지 Fe 및 기타 불가피하게 함유되는 불순물로 조성되는 빌레트를 950-1100℃로 가열하여 열간선재압연하고 코일형태로 권취한다음, 550-750℃ 구간을 0.1-1.0℃/sec의 속도로 냉각한 후, 5.0-30%의 단면감소율로 냉간인발하는 것을 포함하여 이루어지는 충격특성이 우수한 샤프트용 선재의 제조방법.
KR10-1998-0057105A 1998-12-22 1998-12-22 충격특성이 우수한 샤프트용 선재의 제조방법 KR100398388B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0057105A KR100398388B1 (ko) 1998-12-22 1998-12-22 충격특성이 우수한 샤프트용 선재의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0057105A KR100398388B1 (ko) 1998-12-22 1998-12-22 충격특성이 우수한 샤프트용 선재의 제조방법

Publications (2)

Publication Number Publication Date
KR20000041269A KR20000041269A (ko) 2000-07-15
KR100398388B1 true KR100398388B1 (ko) 2003-12-18

Family

ID=19564506

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0057105A KR100398388B1 (ko) 1998-12-22 1998-12-22 충격특성이 우수한 샤프트용 선재의 제조방법

Country Status (1)

Country Link
KR (1) KR100398388B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100398375B1 (ko) * 1998-08-27 2003-12-18 주식회사 포스코 고주파소입용비조질강선재의제조방법
KR100779912B1 (ko) * 2006-07-19 2007-11-29 신수정 냉간압연과 냉간인발을 이용한 이형강봉의 제조방법
KR100838624B1 (ko) * 2007-01-26 2008-06-16 신수정 전기유도가열을 이용한 이형봉강의 열간압연 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235253A (ja) * 1990-12-28 1992-08-24 Kawasaki Steel Corp 曲げ加工性、衝撃特性の良好な超強度冷延鋼板及びその製造方法
JPH06145808A (ja) * 1992-11-12 1994-05-27 Nkk Corp 耐衝撃性の優れた複合組織冷延鋼板の製造方法
JPH10251799A (ja) * 1997-03-12 1998-09-22 Kawasaki Steel Corp 開蓋性とリベット成形性に優れるイージーオープン缶蓋用鋼板およびその製造方法、ならびにイージーオープン缶蓋

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235253A (ja) * 1990-12-28 1992-08-24 Kawasaki Steel Corp 曲げ加工性、衝撃特性の良好な超強度冷延鋼板及びその製造方法
JPH06145808A (ja) * 1992-11-12 1994-05-27 Nkk Corp 耐衝撃性の優れた複合組織冷延鋼板の製造方法
JPH10251799A (ja) * 1997-03-12 1998-09-22 Kawasaki Steel Corp 開蓋性とリベット成形性に優れるイージーオープン缶蓋用鋼板およびその製造方法、ならびにイージーオープン缶蓋

Also Published As

Publication number Publication date
KR20000041269A (ko) 2000-07-15

Similar Documents

Publication Publication Date Title
KR101113575B1 (ko) 가공성이 우수한 표면 경화 강관과 그 제조 방법
EP3631021B1 (en) Method for producing a steel part and corresponding steel part
EP3715478B1 (en) Wire rod for cold heading, processed product using same, and manufacturing method therefor
KR102476628B1 (ko) 베이나이트강의 단조 부품 및 그 제조 방법
JP4802435B2 (ja) 材質異方性が小さくかつ強度、靱性および被削性に優れる非調質鋼およびその製造方法
KR100428581B1 (ko) 강도 및 인성이 우수한 비조질강 및 이를 이용한 선재의 제조방법
US9394580B2 (en) High-toughness cold-drawn non-heat-treated wire rod, and method for manufacturing same
EP3168319B1 (en) Microalloyed steel for heat-forming high-resistance and high-yield-strength parts
JP5459064B2 (ja) 高周波焼入れ用圧延鋼材およびその製造方法
JP4448047B2 (ja) 耐結晶粒粗大化特性と冷間加工性に優れ、軟化焼鈍の省略可能な肌焼用鋼
JP5206056B2 (ja) 非調質鋼材の製造方法
JP3554506B2 (ja) 機械構造用熱間圧延線材・棒鋼の製造方法
KR100398388B1 (ko) 충격특성이 우수한 샤프트용 선재의 제조방법
KR101518571B1 (ko) 고강도 및 고인성 비조질 선재 및 그 제조방법
KR101458348B1 (ko) 열간 단조용 비조질강 및 열간 단조 비조질품 및 그 제조 방법
KR100398375B1 (ko) 고주파소입용비조질강선재의제조방법
KR101091511B1 (ko) 강도와 인연성이 우수한 비조질 강선재의 제조방법 및 그로부터 제조된 비조질 강선재
KR20020034474A (ko) 냉간 압조가공성이 우수한 비조질강의 제조방법
JPH0425343B2 (ko)
JP2756535B2 (ja) 強靭棒鋼の製造方法
JPH0762204B2 (ja) 高靭性熱間鍛造用非調質鋼およびその棒鋼・部品の製造方法
JP2008144270A (ja) 疲労特性と靭性に優れた機械構造用非調質鋼およびその製造方法、並びに、機械構造用部品およびその製造方法
JP2000160285A (ja) 高強度高靱性非調質鋼材
KR100398378B1 (ko) 피로특성이우수한자동차스테빌라이저용비조질강선재의제조방법
KR100419648B1 (ko) 초고장력강의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120813

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20130830

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140828

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20150902

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160905

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20170904

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee