KR100375131B1 - A vacuum coating apparatus for coating a metallic film on a plastic material and a coating method thereof - Google Patents

A vacuum coating apparatus for coating a metallic film on a plastic material and a coating method thereof Download PDF

Info

Publication number
KR100375131B1
KR100375131B1 KR10-2000-0085820A KR20000085820A KR100375131B1 KR 100375131 B1 KR100375131 B1 KR 100375131B1 KR 20000085820 A KR20000085820 A KR 20000085820A KR 100375131 B1 KR100375131 B1 KR 100375131B1
Authority
KR
South Korea
Prior art keywords
coating
reaction chamber
metal film
gas
plastic substrate
Prior art date
Application number
KR10-2000-0085820A
Other languages
Korean (ko)
Other versions
KR20020058163A (en
Inventor
이헌
Original Assignee
한독진공 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27688955&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR100375131(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 한독진공 주식회사 filed Critical 한독진공 주식회사
Priority to KR10-2000-0085820A priority Critical patent/KR100375131B1/en
Publication of KR20020058163A publication Critical patent/KR20020058163A/en
Application granted granted Critical
Publication of KR100375131B1 publication Critical patent/KR100375131B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/62Plasma-deposition of organic layers

Abstract

자동차용 헤드램프의 반사경과 같이 플라스틱 기판에 금속막을 코팅하기 위한 진공코팅장치 및 코팅방법이 개시되어 있다. 본 발명은 플라스틱 기판에 대한 금속막의 부착력을 향상시키기 위해 저온 플라즈마 전처리 공정과 그 후에 진공코팅장치로 금속막을 증착하고 금속막을 보호하기 위한 보호막 코팅공정을 하나의 반응챔버내에서 연속적으로 작업함으로써, 비용절감과 시간단축을 통해 작업효율을 극대화하고 환경오염을 거의 완벽히 줄일 수 있는 것이다.Disclosed are a vacuum coating apparatus and a coating method for coating a metal film on a plastic substrate such as a reflector of an automotive headlamp. The present invention provides a low-cost plasma pretreatment process to improve adhesion of the metal film to the plastic substrate, followed by a vacuum coating apparatus for depositing the metal film and a protective film coating process for protecting the metal film in a single reaction chamber. Savings and time savings can maximize work efficiency and reduce environmental pollution almost completely.

Description

플라스틱 기판에 금속막을 코팅하기 위한 진공코팅장치 및 코팅방법{A VACUUM COATING APPARATUS FOR COATING A METALLIC FILM ON A PLASTIC MATERIAL AND A COATING METHOD THEREOF}Vacuum coating device and coating method for coating metal film on plastic substrate {A VACUUM COATING APPARATUS FOR COATING A METALLIC FILM ON A PLASTIC MATERIAL AND A COATING METHOD THEREOF}

본 발명은 플라스틱 기판에 금속막을 코팅하기 위한 진공코팅장치 및 코팅방법에 관한 것으로, 특히 헤드램프의 반사경을 제작하기 위해 플라스틱 기판에 금속막을 증착하는데 있어서 금속막의 부착력을 향상시키기 위한 전처리공정, 그 후에 진공코팅장치(예:진공증착기, 스퍼터, 아크이온플레이팅, 등)로 금속막을 코팅하는 공정, 및 코팅된 금속막을 보호하기 위한 보호막 코팅공정을 하나의 반응챔버 내에서 연속적으로 작업함으로써, 비용절감 및 작업시간을 단축하여 작업효율을 극대화하고 환경오염을 거의 완벽히 줄일 수 있는 진공코팅장치 및 코팅방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum coating apparatus and a coating method for coating a metal film on a plastic substrate. In particular, a pretreatment step for improving the adhesion of the metal film in the deposition of the metal film on the plastic substrate for manufacturing the reflector of the headlamp, and thereafter. Cost reduction by continuously working with a vacuum coating device (e.g. vacuum evaporator, sputter, arc ion plating, etc.) and coating a protective film to protect the coated metal film in one reaction chamber And it relates to a vacuum coating apparatus and coating method that can maximize the work efficiency by reducing the working time and almost completely reduce environmental pollution.

일반적으로 헤드램프의 반사경을 제작하기 위해서, 플라스틱 기판에 금속막을 증착하는데 있어서 금속막의 부착력을 높이기 위해 대기중에서 스프레이 방식으로 전처리 코팅을 하고 진공코팅장치를 사용하여 금속막을 증착한 후 다시 대기중에서 금속막을 보호하기 위한 보호막 코팅을 스프레이 방식으로 수행하여 왔다. 이러한 종래의 코팅 방법은 환경오염, 불순물 혼입 문제 뿐만 아니라 비용이 많이 들고 작업시간이 길어져 작업효율이 저하되는 문제점을 가지고 있었다.In general, in order to fabricate the reflector of the headlamp, in order to increase the adhesion of the metal film on the plastic substrate, the pretreatment coating is applied by spraying in the air, and the metal film is deposited in the air using a vacuum coating apparatus. Protective coatings for protection have been carried out by spraying. Such a conventional coating method has a problem that not only environmental pollution, impurity incorporation problems, but also a high cost and a long working time decreases working efficiency.

이러한 문제점에 대해, 본 출원의 발명자는 플라스틱 기판과 금속막의 부착력을 향상시키고, 금속막의 내마모, 내열성 및 습기에 견딜 수 있는 보호막을 코팅하는 장치 및 방법에 대해 지속적으로 연구를 계속하여 왔다.In response to these problems, the inventors of the present application have continued to study the apparatus and method for improving the adhesion between the plastic substrate and the metal film, and coating a protective film that can withstand the wear resistance, heat resistance and moisture of the metal film.

본 발명의 목적은 종래의 문제점을 해소하기 위한 것으로, 플라스틱 기판에 코팅되는 금속막의 부착력을 향상시키기 위한 전처리공정, 금속막 증착공정, 및 금속막 위에 보호막을 코팅하기 위한 보호막 코팅공정을 하나의 반응챔버 내에서 연속적으로 작업할 수 있는 진공코팅장치를 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to solve a conventional problem, and a reaction of a pretreatment process for improving adhesion of a metal film coated on a plastic substrate, a metal film deposition process, and a protective film coating process for coating a protective film on the metal film is one reaction. It is to provide a vacuum coating apparatus that can work continuously in the chamber.

본 발명의 다른 목적은 반응챔버 내에서 중합성 가스를 플라즈마 중합시켜 생기는 친수성 폴리머 박막을 플라스틱 기판에 코팅함으로써 플라스틱 기판과 금속막의 부착력을 향상시키는 전처리 공정을 실시하고, 반응챔버 내에서 금속막을 증착한 후, 다시 전처리 공정과 동일하게 중합성가스를 이용하여 플라스틱 기판 위에 증착된 금속막의 내마모성, 내열성, 내침식성을 향상시키고 금속막 표면의 임계표면장력을 낮추어 습기에 영향을 받지 않는 소수성 폴리머 박막을 코팅하는 보호막 코팅공정을 실시하는 진공코팅방법을 제공하는 것이다.Another object of the present invention is to perform a pretreatment step of improving adhesion between the plastic substrate and the metal film by coating a hydrophilic polymer thin film formed by plasma polymerizing the polymerizable gas in the reaction chamber on the plastic substrate, and depositing the metal film in the reaction chamber. Then, in the same manner as the pretreatment process, the hydrophobic polymer thin film is not affected by moisture by improving the abrasion resistance, heat resistance, and erosion resistance of the metal film deposited on the plastic substrate using the polymerizable gas and lowering the critical surface tension of the metal film surface. It is to provide a vacuum coating method for performing a protective film coating process.

본 발명의 또 다른 목적은 전처리공정과 금속막 증착공정 및 보호막 코팅공정을 하나의 반응챔버에서 연속적으로 작업함으로써 비용절감과 작업시간을 단축하여 작업효율을 높이고 환경오염을 거의 완벽히 줄이는 플라스틱 기판에 금속막을 코팅하는 방법을 제공하는 것이다.It is still another object of the present invention to continuously reduce the cost and work time by operating the pretreatment process, the metal film deposition process and the protective film coating process in one reaction chamber. It is to provide a method for coating a film.

도 1은 본 발명의 일실시예에 따른 진공코팅장치의 개략도.1 is a schematic view of a vacuum coating apparatus according to an embodiment of the present invention.

도 2는 본 발명에 따라 플라스틱 기판에 전처리와 금속막 및 보호막이2 is a pretreatment and a metal film and a protective film on a plastic substrate in accordance with the present invention

코팅된 상태를 도시한 도면.Figure showing the coated state.

도 3은 본 발명의 일실시예에 따른 진공코팅방법의 흐름도.3 is a flow chart of a vacuum coating method according to an embodiment of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1 : RF전원공급기 2 : 반응챔버1: RF power supply 2: Reaction chamber

3 : 확산펌프 4 : 기계식펌프3: diffusion pump 4: mechanical pump

5 : 플라스틱 기판 6 : 회전지그5: plastic substrate 6: rotating jig

7 : 구동모터 8 : 전력공급계7: driving motor 8: power supply meter

9 : 증발원 10 : RF플라즈마전극9 evaporation source 10 RF plasma electrode

11 : 유량계 12 : 액체공급원11 flowmeter 12 liquid supply source

13 : 가스공급원 P1 : 1차폴리머막13: gas supply source P1: primary polymer film

M : 금속막 P2 : 2차폴리머막M: Metal Film P2: Secondary Polymer Film

본 고안의 목적을 달성하기 위하여, 본 발명에 따른 플라스틱 기판에 금속막을 코팅하기 위한 진공코팅장치는 다수의 플라스틱 기판이 장착되고 자전 및 공전할 수 있는 회전지그, 플라즈마를 발생시키는 RF플라즈마전극, 및 금속막 증착을 위한 증발원이 내장된 반응챔버; 상기 회전지그에 회전력을 주기 위한 구동모터;상기 RF플라즈마전극에 전력을 공급하기 위한 RF전원공급기; 상기 증발원에 전원을 공급하는 전력공급계; 상기 반응챔버 내부를 감압시키기 위한 기계식 펌프 및 확산 펌프; 중합성가스가 충진되어 있고 라인을 통해 상기 반응챔버에 연결되는 액체공급원; 불활성가스와 반응성가스가 충진되어 있고 라인을 통해 상기 반응챔버에 연결되는 가스공급원; 및 상기 액체공급원 및 가스공급원으로부터의 가스 유량 및 반응챔버 내부의 압력을 조절하기 위한 유량계를 포함한다.In order to achieve the object of the present invention, a vacuum coating apparatus for coating a metal film on a plastic substrate according to the present invention is a rotary jig that can be rotated and revolved, a plurality of plastic substrates, RF plasma electrode for generating a plasma, and A reaction chamber having an evaporation source for metal film deposition; A driving motor for applying rotational force to the rotary jig; an RF power supply for supplying power to the RF plasma electrode; A power supply system for supplying power to the evaporation source; A mechanical pump and a diffusion pump to depressurize the inside of the reaction chamber; A liquid source filled with a polymeric gas and connected to said reaction chamber via a line; A gas supply source filled with an inert gas and a reactive gas and connected to the reaction chamber through a line; And a flow meter for adjusting the gas flow rate from the liquid supply and the gas supply and the pressure inside the reaction chamber.

또한, 본 발명에 따른 플라스틱 기판에 금속막을 코팅하기 위한 진공코팅방법은 플라스틱 기판을 회전지그에 장착하고 증발원을 반응챔버내에 준비하는 단계; 기계식펌프에 의해 반응챔버를 감압시키는 단계; 중합성가스와 반응성가스를 반응챔버 내로 공급하고 플라즈마 전극에 의해 플라즈마를 발생시킴으로써 상기 플라스틱 기판에 1차 친수성 폴리머막을 코팅하는 전처리 단계; 확산펌프에 의해 반응챔버를 고진공 감압시키는 단계; 증발원을 통해 상기 플라스틱 기판에 금속막을 증착시키는 단계; 확산펌프를 닫고 기계식펌프만으로 반응챔버 내의 압력을 전처리단계의 압력으로 감압시키는 단계; 중합성가스와 불활성가스 및 반응성가스를 반응챔버 내로 공급하고 플라즈마 전극에 의해 플라즈마를 발생시킴으로써 상기 증착된 금속막에 2차 소수성 폴리머막을 코팅하는 보호막 코팅단계; 보호막 코팅을 완료한 후, 기계식펌프에 의해 반응챔버내의 압력을 감압하고, 불활성가스를 일정시간동안 반응챔버내로 공급하여 반응챔버 내부를 퍼징하는 단계; 및 퍼징된 가스를 외부로 배출하는 단계를 포함한다.In addition, the vacuum coating method for coating a metal film on the plastic substrate according to the present invention comprises the steps of mounting the plastic substrate to the rotary jig and preparing an evaporation source in the reaction chamber; Depressurizing the reaction chamber by a mechanical pump; A pretreatment step of coating a primary hydrophilic polymer film on the plastic substrate by supplying a polymerizable gas and a reactive gas into the reaction chamber and generating a plasma by a plasma electrode; High vacuum depressurizing the reaction chamber by a diffusion pump; Depositing a metal film on the plastic substrate through an evaporation source; Closing the diffusion pump and reducing the pressure in the reaction chamber to the pressure of the pretreatment step only with a mechanical pump; A protective film coating step of coating a secondary hydrophobic polymer film on the deposited metal film by supplying a polymerizable gas, an inert gas, and a reactive gas into the reaction chamber and generating a plasma by a plasma electrode; After the protective coating is completed, the pressure in the reaction chamber is reduced by a mechanical pump, and the inert gas is supplied into the reaction chamber for a predetermined time to purge the inside of the reaction chamber; And discharging the purged gas to the outside.

본 발명은 헤드램프의 반사경과 같은 플라스틱 기판(5)과 금속막의 부착력을향상시키기 위해서는 반도체 공정 중에서 실리콘(Si) 웨이퍼를 습식식각하기 위해 감광막을 코팅하는데, 이때 감광막의 부착력을 향상시키기 위해 촉진제를 습식방법으로 코팅하는 것을 진공중에서 플라즈마를 이용하여 코팅한다는 것에 착안하여, 금속막 위에 보호막 코팅을 할 때 종래의 스프레이 방식이 아닌 진공중에서 중합성 가스를 플라즈마 중합시켜 보호막을 형성할 경우 종래의 문제점들을 해결할 수 있다는 것이다.The present invention coats a photosensitive film for wet etching a silicon (Si) wafer during a semiconductor process in order to improve the adhesion between the plastic substrate 5 and the metal film, such as the reflector of the headlamp, wherein an accelerator is provided to improve the adhesion of the photosensitive film. In view of the wet coating method using a plasma coating in a vacuum method, when the protective coating is applied on a metal film, it is possible to solve the conventional problems when forming a protective film by plasma polymerizing a polymerizable gas in a vacuum rather than the conventional spray method. It can be solved.

이하, 도면을 참조하여 본 발명의 일실시예를 상세히 설명한다.Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

도 1은 본 발명의 일실시예에 따른 진공코팅장치의 개략도이고, 도 2는 본 발명에 따라 플라스틱 기판에 금속막 및 보호막이 코팅된 상태를 도시한 도면이다.1 is a schematic view of a vacuum coating apparatus according to an embodiment of the present invention, Figure 2 is a view showing a metal film and a protective film is coated on a plastic substrate in accordance with the present invention.

도 1 및 도 2에 도시된 바와 같이, 본 발명에 따른 진공코팅장치는 코팅할 다수의 플라스틱 기판(5)을 장착한 반응챔버(2)를 포함한다. 상기 반응챔버(2)의 내부에는 상기 플라스틱 기판(5)을 회전시키기 위한 회전지그(6) 및 플라즈마를 형성시키기 위한 RF플라즈마전극(10)이 내장되어 있고, 상기 회전지그(6)는 구동모터(7)에 의해 회전하며 상기 플라즈마전극(10)은 RF전원공급기(1)에 의해 전력을 공급받는다. 상기 반응챔버(2)에는 반응챔버 내를 감압시키기 위해 기계식 펌프(4) 및 확산펌프(3)가 장착되는데, 상기 확산펌프(3)는 반응챔버(2)를 고진공으로 감압시키기 위해 사용된다. 또한, 플라스틱 기판(5)에 금속막(M)을 코팅하기 위해 진공코팅장치(미도시)상에 알루미늄, 크롬, 티타늄, 및 스테인레스스틸 등과 같은 금속증발원(9)이 장착되고, 전력공급계(8)에 의해 상기 진공증착기가 고열을 발생시킴으로써 상기 금속증발원(9)이 용융 및 기화된다. 한편, 상기 진공증착기대신 스퍼터를 사용할 경우에는 금속증발원 대신 타겟이 장착될 수도 있다. 또한, 중합성가스가 충진된 액체공급원(12)이 그 중합성가스를 반응챔버(2)내에 공급하기 위해 라인을 통해 반응챔버(2)에 연결되어 있고, 불활성가스와 반응성가스가 충진된 가스공급원(13)이 그 가스를 반응챔버(2)내에 공급하기 위해 라인을 통해 반응챔버(2)에 연결되어 있다. 상기 액체공급원(12) 및 가스공급원(13)으로부터 공급되는 중합성 가스 및 불활성가스와 반응성가스의 유량은 유량계(11)에 의해 조절된다.As shown in Figs. 1 and 2, the vacuum coating apparatus according to the present invention comprises a reaction chamber 2 equipped with a plurality of plastic substrates 5 to be coated. The reaction chamber 2 has a rotary jig 6 for rotating the plastic substrate 5 and an RF plasma electrode 10 for forming a plasma, and the rotary jig 6 has a driving motor. Rotate by (7) and the plasma electrode 10 is powered by the RF power supply (1). The reaction chamber 2 is equipped with a mechanical pump 4 and a diffusion pump 3 to depressurize the inside of the reaction chamber. The diffusion pump 3 is used to reduce the reaction chamber 2 to a high vacuum. In addition, a metal evaporation source 9 such as aluminum, chromium, titanium, stainless steel, or the like is mounted on a vacuum coating apparatus (not shown) to coat the metal film M on the plastic substrate 5, and a power supply system ( 8), the vacuum evaporator generates high heat so that the metal evaporation source 9 is melted and vaporized. On the other hand, when using a sputter instead of the vacuum evaporator may be mounted a target instead of a metal evaporation source. In addition, a liquid supply source 12 filled with a polymerizable gas is connected to the reaction chamber 2 through a line to supply the polymerizable gas into the reaction chamber 2, and a gas filled with an inert gas and a reactive gas. A source 13 is connected to the reaction chamber 2 via a line for supplying the gas into the reaction chamber 2. The flow rates of the polymerizable gas, the inert gas, and the reactive gas supplied from the liquid supply source 12 and the gas supply source 13 are controlled by the flow meter 11.

중합성가스로는 시스템 압력하에서 충분한 증기압을 형성할 수 있는 것이라면 액체나 고체 화합물도 사용이 가능한데 본 발명의 플라즈마 중합을 위한 중합성 가스로는 실란과 탄소원의 혼합물 또는 유기실란을 사용한다. 이때, 실란을 탄소원과 혼합하여 사용하는 것은 실란 단독으로는 플라즈마 중합되지 않기 때문이고, 메탄, 에탄, 에틸렌, 아세틸렌, 벤젠 등과 같은 탄소원을 함유하는 유기 실란으로는 메틸실란, 에틸실란, 메틸트리클로로실란, 디메틸실란(DMS), 트리메틸실란(TMS), 테트라메틸실란, 트리메틸에톡시실란, 메틸트리에톡시실란, 헥사메틸디실록산(HMDSO), 헥사메틸디실란(HMDS), 테트라메틸디실라잔, 테트라메틸디시록산 등을 사용하는데, 특히, 플라스틱 기판과 금속막의 부착력을 향상시키기 위해서는 헥사메틸실란과 불활성 또는 반응성가스를 플라즈마 중합시켜 친수성 폴리머막을 코팅하는 것이 바람직하고, 금속막의 내마모성, 내열성 및 습기에 대한 저항성 향상에는 헥사메틸디실록산을 플라즈마 중합시켜 금속막에 소수성 폴리머막을 코팅하는 것이 바람직하다. 또한, 상기에 열거된 유기실란 외에도 분자내에 규소,산소, 탄소, 질소, 인, 또는 수소나 이들 중 둘 이상을 함유하는 유기실란을 사용할 수도 있다.As the polymerizable gas, a liquid or a solid compound can be used as long as it can form a sufficient vapor pressure under the system pressure. As the polymerizable gas for plasma polymerization of the present invention, a mixture of silane and a carbon source or an organosilane is used. In this case, the silane is used in combination with a carbon source because the silane alone is not plasma polymerized, and as the organic silane containing a carbon source such as methane, ethane, ethylene, acetylene, benzene, or the like, methylsilane, ethylsilane, methyltrichloro Silane, dimethylsilane (DMS), trimethylsilane (TMS), tetramethylsilane, trimethylethoxysilane, methyltriethoxysilane, hexamethyldisiloxane (HMDSO), hexamethyldisilane (HMDS), tetramethyldisilazane Tetramethyldisiloxane, and the like, in particular, in order to improve the adhesion between the plastic substrate and the metal film, it is preferable to coat the hydrophilic polymer film by plasma polymerizing hexamethylsilane and an inert or reactive gas, and wear resistance, heat resistance and moisture of the metal film. In order to improve the resistance to the plasma coating of the hydrophobic polymer film on the metal film by plasma polymerization of hexamethyldisiloxane. desirable. In addition to the organosilanes listed above, organosilanes containing silicon, oxygen, carbon, nitrogen, phosphorus, hydrogen, or two or more thereof in the molecule may be used.

플라즈마 중합 공정에서는 중합성가스와 함께 운반가스(carrier gas)를 사용하는 것이 유리할 때가 있는데, 특히 중합성가스의 비점이 높을 때 유리하다. 운반가스로는 헬륨이나 아르곤과 같은 불활성가스, 산소, 수소, 질소와 같은 반응성가스, 또는 이들의 혼합물을 사용할 수 있다.In the plasma polymerization process, it is sometimes advantageous to use a carrier gas together with the polymerizable gas, particularly when the boiling point of the polymerizable gas is high. As the carrier gas, an inert gas such as helium or argon, a reactive gas such as oxygen, hydrogen, or nitrogen, or a mixture thereof may be used.

본 발명에 따른 진공코팅장치로 플라스틱 기판(5)에 금속막의 부착력을 향상시키기 위해 플라즈마 중합(plasma polymerization)에 의하여 1차친수성 폴리머(P1)를 형성한 후 금속막(M)을 진공에서 증착하고, 다시 플라즈마로 중합에 의하여 금속막 증착층 표면에 2차소수성 폴리머(P2)인 보호막을 코팅함으로써 금속막 표면의 임계표면 장력이 낮아져서 금속막(M)의 내마모성, 내열성, 내침식성 및 습기에 대한 저항성을 향상시킬 수 있다.In order to improve adhesion of the metal film to the plastic substrate 5 with the vacuum coating apparatus according to the present invention, after forming the first hydrophilic polymer P1 by plasma polymerization, the metal film M is deposited under vacuum. In addition, by coating the protective film of the secondary hydrophobic polymer (P2) on the surface of the metal film deposition layer by polymerizing with plasma, the critical surface tension of the metal film surface is lowered, thereby reducing the wear resistance, heat resistance, corrosion resistance, and moisture of the metal film (M). The resistance can be improved.

플라즈마는 부분적으로는 이온화되어 있으면서 전체적으로는 전기적으로 중성인 기체 상태를 말하며, 저압의 기체 또는 증기내에서 전기적으로 방전시키면 얻어진다. 저온 플라즈마에는 전자, 광자(photon), 이온화된 원자나 분자, 자유 라디칼과 같은 반응종(reactive species)이 존재하며, 저온 플라즈마 공정은 이러한 반응종들을 이용하여 고체 표면을 개질시키는 공정으로서 플라즈마 형성에 이용되는 기체 또는 증기의 종류에 따라 고체 표면에 있는 분자들의 물리화학적 특성을 변화시켜 표면물성을 변화시키는 플라즈마 전처리(plasma pre-treatment) 공정과 고체표면에 폴리머 박막이 코팅되는 플라즈마 중합(plasma polymerization) 공정으로 나누기도 한다. 플라즈마 전처리공정에는 불활성 가스(아르곤:Ar)와 간단한 구조를 갖는 기체(산소, 수소, 질소, 이산화탄소, 수증기, 공기 등)가 이용되며, 플라즈마 중합공정에는 중합성 가스 및 증기(메탄올 탄화수소, 유기실리콘, 불화수소, 실란 등)가 이용된다.Plasma refers to a gaseous state that is partially ionized and wholly electrically neutral, and is obtained by electrically discharging in a low pressure gas or vapor. In low temperature plasma, reactive species such as electrons, photons, ionized atoms or molecules, and free radicals are present. The low temperature plasma process is a process for modifying a solid surface using these reactive species to form plasma. Plasma pre-treatment process to change the surface properties by changing the physical and chemical properties of the molecules on the solid surface according to the type of gas or vapor used and plasma polymerization in which a polymer thin film is coated on the solid surface Sometimes divided into fair. Inert gas (argon: Ar) and gas having simple structure (oxygen, hydrogen, nitrogen, carbon dioxide, steam, air, etc.) are used in the plasma pretreatment process, and polymerizable gas and vapor (methanol hydrocarbon, organosilicon) are used in the plasma polymerization process. , Hydrogen fluoride, silane, etc.) are used.

본 발명에서 사용되는 플라즈마 중합은 일반적 의미의 폴리머 중합과 여러 가지 면에서 다른데, 특히 다른 점은 중합된 폴리머의 물성이 유기물과 무기물의 중간적 특성을 가지고 있다는 점과 반응 메카니즘에 있어서 전구체(precursor)가 되는 중합성 가스의 구조가 중합된 폴리머 내에서 보존되지 않는다는 점이다. 이러한 플라즈마 중합된 폴리머는 교차 결합도가 매우 높고, 열적 및 화학적 안정성이 높으며 다양한 표면에 적용될 수 있다.Plasma polymerization used in the present invention differs from polymer polymerization in a general sense in many respects. In particular, the difference is that the physical properties of the polymerized polymer have intermediate properties between organic and inorganic materials and precursors in the reaction mechanism. The structure of the polymerizable gas to be obtained is not preserved in the polymerized polymer. Such plasma polymerized polymers are highly crosslinked, have high thermal and chemical stability and can be applied to a variety of surfaces.

본 발명은 플라스틱 기판(5)과 금속막(M)의 부착력 향상을 위하여 플라스틱 기판 표면에 중합성 가스와 불화성 또는 반응성 가스를 반응챔버 내에서 글로우 방전에 의해 생성되는 플라즈마로 1차친수성 폴리머막(P1)을 코팅함으로써 전처리하고, 그 후에 진공상태에서 금속막(M)을 증착한 후, 다시 금속막 표면에 중합성 가스와 불화성 또는 반응성 가스를 반응챔버 내에서 글로우 방전시킴으로써 생성되는 2차소수성 폴리머(P2)를 금속막(M) 표면에 코팅하는 단계로 이루어진다.The present invention provides a primary hydrophilic polymer film as a plasma generated by glow discharge in a reaction chamber with a polymerizable gas and a fluorinated or reactive gas on the surface of a plastic substrate to improve adhesion between the plastic substrate 5 and the metal film M. Pretreatment by coating (P1), and then depositing the metal film (M) in a vacuum state, and then secondly generated by glow discharge of the polymerizable gas and the inert or reactive gas in the reaction chamber on the metal film surface. The hydrophobic polymer P2 is coated on the metal film M surface.

이하에서 플라스틱 기판(5) 표면에 1차친수성 폴리머막(P1)을 형성하는 플라즈마 전처리 공정과 금속막 증착 공정 및 금속막(M) 표면에 2차소수성 폴리머막(P2)을 코팅하여 플라스틱과 금속막의 부착력 향상 및 금속막의 내마모, 내열성, 내침식성 및 습기에 대한 저항성을 향상시키기 위한 공정을 단계별로 더욱상세히 설명하면 다음과 같다. 도 3은 본 발명의 일실시예에 따른 진공코팅방법의 흐름도이다.Hereinafter, a plasma pretreatment process for forming a primary hydrophilic polymer film P1 on the surface of the plastic substrate 5, a metal film deposition process, and a second hydrophobic polymer film P2 on the surface of the metal film M may be coated with plastic and metal. The process for improving the adhesion of the film and improving the wear resistance, heat resistance, erosion resistance, and moisture resistance of the metal film will be described in more detail as follows. 3 is a flow chart of a vacuum coating method according to an embodiment of the present invention.

1. 전처리 공정1. Pretreatment Process

먼저, 다수의 코팅용 플라스틱 기판(5)을 반응챔버(2) 내의 회전지그(6)에 고정시킨 후 증발원(9)을 장입한다(S1). 이때, 증발원은 플라스틱 기판(5)에 코팅할 금속으로, 알루미늄, 크롬, 티타늄 및 스테인레스스틸 등과 같은 금속을 증발원으로 사용하여 증착할 수 있다. 그리고 기계식 펌프(4)를 작동시켜 반응챔버(2)의 압력이 10-3torr 이하가 될 때까지 감압시킨다(S2). 반응챔버(2)의 내압이 10-3torr 이하로 되면 전처리 플라즈마를 형성하기 위한 가스를 반응챔버(2) 안으로 공급하여 일정한 압력을 유지시키면서 회전지그(6)로 코팅용 플라스틱 기판(5)을 공전 및 자전시킨다.First, a plurality of coating plastic substrates 5 are fixed to the rotary jig 6 in the reaction chamber 2 and then the evaporation source 9 is charged (S1). At this time, the evaporation source is a metal to be coated on the plastic substrate 5, and may be deposited using a metal such as aluminum, chromium, titanium, stainless steel, or the like as the evaporation source. Then, the mechanical pump 4 is operated to reduce the pressure until the pressure in the reaction chamber 2 becomes 10 −3 torr or less (S2). When the internal pressure of the reaction chamber 2 becomes 10 −3 torr or less, the coating plastic substrate 5 is supplied with the rotary jig 6 while supplying a gas for forming the pretreatment plasma into the reaction chamber 2 and maintaining a constant pressure. Rotate and rotate.

플라스틱 기판(5) 표면의 전처리는 가스공급원(13)에 충진되어 있는 불활성가스(아르곤) 또는 반응성가스(산소, 질소, 공기, 수증기 등)와 액체공급원(12)에 충진되어 있는 중합성가스(12)를 플라즈마 중합시켜 플라스틱의 표면에 폴리머를 코팅한다(S3). 전처리 플라즈마를 형성시키기 위한 가스와 중합성가스는 가스공급라인을 통하여 공급되며 유량계(11)로 유량 및 반응챔버 내부의 압력을 조절한다.The pretreatment of the surface of the plastic substrate 5 includes inert gas (argon) or reactive gas (oxygen, nitrogen, air, water vapor, etc.) filled in the gas supply source 13 and polymerizable gas filled in the liquid supply source 12 ( Plasma polymerization of 12) to coat the polymer on the surface of the plastic (S3). The gas and the polymerizable gas for forming the pretreatment plasma are supplied through the gas supply line, and the flow meter 11 controls the flow rate and the pressure inside the reaction chamber.

그 후에, 플라즈마를 형성시키기 위하여 RF전원공급기(1)를 켜고, 적절한 에너지가 공급되도록 조정하여 작동시킨다. 투입되는 에너지는 가스의 유량, 시료의 크기, 전극간의 거리, 전처리 가스의 분자량, 반응계의 압력 등에 따라 달라진다.통상적으로 플라즈마 전처리는 총 30초에서 60분간 수행하며 RF전원공급기(1)를 끄고 가스밸브를 잠근다.Thereafter, the RF power supply 1 is turned on to form a plasma, and operated to adjust to supply an appropriate energy. The energy input depends on the flow rate of the gas, the size of the sample, the distance between the electrodes, the molecular weight of the pretreatment gas, the pressure of the reaction system, etc. Typically, the plasma pretreatment is performed for 30 to 60 minutes in total and the RF power supply 1 is turned off and Lock the valve.

플라스틱과 금속막의 부착력을 우수하게 만들기 위해서는 전처리 공정에서 형성되는 1차친수성 폴리머막의 물성과 두께가 얼마인가에 따라 결정되기 때문에 가스의 종류를 바꾸어 몇 번이고 반복하여 코팅할 수 있다.In order to improve the adhesion between the plastic and the metal film, it is determined depending on the physical properties and the thickness of the primary hydrophilic polymer film formed in the pretreatment process.

2. 플라스틱 기판 표면에 금속막을 증착하는 공정2. Process of depositing metal film on the surface of plastic substrate

플라즈마 전처리의 완료 후 확산펌프(3)로 반응챔버 내의 압력을 다시 10-6torr 이하로 감압한다(S4). 그리고, 전력공급계(8)의 파워를 켜고 회전지그(6)로 플라스틱 기판(5)을 공전 및 자전시키면서 증발원(9)을 증착한다(S5). 금속막의 두께는 500∼1,000Å가 되도록 하고, 증착시간은 30초에서 30분간 수행하며, 금속막(M)이 원하는 두께로 증착되면 확산펌프(3)를 닫고(S6) 다시 전처리단계와 동일하게 기계식 펌프(4)만으로 반응챔버(2)의 압력을 10-3torr 이하로 감압한다(S7).After the completion of the plasma pretreatment, the pressure in the reaction chamber is again reduced to 10 −6 torr or less by the diffusion pump 3 (S4). Then, the power supply system 8 is turned on and the evaporation source 9 is deposited while rotating and rotating the plastic substrate 5 with the rotary jig 6 (S5). The thickness of the metal film is 500 ~ 1,000Å, the deposition time is carried out for 30 seconds to 30 minutes, if the metal film (M) is deposited to the desired thickness, close the diffusion pump (3) (S6) again in the same way as the pretreatment step Only the mechanical pump 4 reduces the pressure in the reaction chamber 2 to 10 −3 torr or less (S7).

3. 보호막 코팅공정3. Protective film coating process

중합성가스를 플라즈마 중합시켜 생성되는 2차소수성 폴리머(P2)를 금속막(M) 표면에 폴리머 박막을 형성시키는 단계(S8)로 이는 공급되는 중합성가스만 다를 뿐 사용되는 장치와 작동방식은 제 1단계의 플라즈마 전처리 공정과 같다.The second hydrophobic polymer (P2) formed by plasma polymerizing the polymerizable gas is formed on the surface of the metal film (M) (S8). Same as the plasma pretreatment step of the first step.

플라즈마 중합에 의해 폴리머를 코팅하는 공정은 금속막 표면에 형성되는 폴리머 박막이 원하는 물성과 두께가 될 때까지 진행시킨다. 폴리머 박막의 두께는 300∼1,000Å가 되도록 한다.The process of coating the polymer by plasma polymerization proceeds until the polymer thin film formed on the surface of the metal film has a desired physical property and thickness. The thickness of the polymer thin film is 300 to 1,000 mm 3.

플라즈마 중합에 의하여 폴리머를 코팅하는 시간은 30초에서 60분, 파워는 50∼200W 범위 내에서 소수성 폴리머 박막을 코팅한다. 보호막 코팅공정이 완료되면 RF전원공급기(1)를 끄고 가스밸브를 잠그고 중합성가스의 흐름을 차단한다.The coating time of the polymer by plasma polymerization is 30 seconds to 60 minutes, and the power is applied to the hydrophobic polymer thin film within the range of 50 to 200W. When the protective coating process is completed, turn off the RF power supply (1), close the gas valve and block the flow of the polymerizable gas.

효율적인 금속막의 증착과 플라즈마 폴리머의 코팅은 증착된 금속막과 코팅된 폴리머막의 물성과 두께가 얼마인가에 따라 결정되며 가스의 종류를 몇 번이고 반복하여 코팅할 수 있다.Efficient metal film deposition and plasma polymer coating are determined by the physical properties and thickness of the deposited metal film and the coated polymer film, and the type of gas can be repeatedly coated over and over.

4. 반응챔버 정화공정4. Reaction chamber purification process

플라즈마 중합에 의하여 금속막 표면에 소수성 폴리머 박막을 형성하는 보호막 코팅공정이 종료되면 전처리 단계에서와 마찬가지로 기계식펌프(4)로 반응챔버 내의 압력을 다시 10-3torr 이하로 감압한 후 아르곤이나 질소 가스를 적당한 시간 동안 공급하여 반응챔버(2) 내를 퍼징(purging)함으로써(S9) 반응하고 남아 있는 가스들을 제거해 준다(S10).When the protective film coating process of forming a hydrophobic polymer thin film on the surface of the metal film by plasma polymerization is completed, the pressure in the reaction chamber is reduced again to 10 −3 torr or lower with a mechanical pump 4 as in the pretreatment step, followed by argon or nitrogen gas. By supplying for a suitable time to purge the reaction chamber (2) (S9) to remove the remaining gas and the reaction (S10).

상기에 언급된 바와 같은 진공코팅방법에 의해 헤드램프의 반사경을 제작할 수 있지만, 본 발명은 이에 국한 된 것이 아니라 일반적인 플라스틱 위에 금속막을 증착시키거나 금속(또는 세라믹)위에 금속막을 증착하거나 세라믹막을 증착할 경우에도 적용될 수 있다.Although the reflector of the headlamp can be manufactured by the vacuum coating method as mentioned above, the present invention is not limited to this, but the present invention is not limited to the above-described method of depositing a metal film on a general plastic, a metal film on a metal (or ceramic), or a ceramic film. This may also apply.

상기에 언급된 바와 같이, 본 발명에 따른 플라스틱 기판에 금속막을 코팅하기 위한 진공코팅장치 및 코팅방법은 플라스틱에 플라즈마 전처리 공정과 금속막 증착 및 보호막 코팅공정을 하나의 반응챔버내에서 연속적으로 행할 수 있어 비용절감과 시간단축을 통해 작업효율을 극대화 할 수 있으며, 지금까지의 스프레이 방식과는 달리 환경오염 문제를 거의 완벽히 줄일 수 있다.As mentioned above, the vacuum coating apparatus and coating method for coating a metal film on a plastic substrate according to the present invention can be carried out a plasma pretreatment process and a metal film deposition and a protective film coating process on a plastic in one reaction chamber continuously Therefore, it is possible to maximize the work efficiency through cost reduction and time reduction, and unlike the conventional spray method, it can almost completely reduce the environmental pollution problem.

또한, 본 발명은 진공상태의 반응챔버 내에서 일괄적으로 코팅이 이루어짐으로써, 폴리머막 및 금속막이 균일하게 코팅되며, 먼지 등과 같은 이물질을 전혀 함유하지 않으면서 플라스틱 기판에 코팅될 수 있는 장점이 있다.In addition, the present invention has the advantage that the coating is made collectively in the reaction chamber in a vacuum state, the polymer film and the metal film is uniformly coated, it can be coated on the plastic substrate without containing any foreign matter such as dust. .

한편, 전술한 실시예는 단지 예시를 목적으로 한 것으로, 본 발명에 따른 인공지능형 냉난방 환수 온도제어시스템 및 제어방법은 이에 국한되지 아니하며, 본 발명의 요지를 벗어나지 않는 범위 내에서 다양한 변경 및 실시가 가능함은 물론이다.On the other hand, the above-described embodiment is for illustrative purposes only, the intelligent cooling and heating return temperature control system and control method according to the present invention is not limited thereto, and various changes and implementations are possible within the scope of the present invention. Of course it is possible.

Claims (7)

다수의 플라스틱 기판이 장착되고 자전 및 공전할 수 있는 회전지그, 플라즈마를 발생시키는 RF플라즈마전극, 및 금속막 증착을 위한 증발원이 내장된 반응챔버;A reaction chamber equipped with a plurality of plastic substrates, a rotating jig capable of rotating and revolving, an RF plasma electrode generating plasma, and an evaporation source for metal film deposition; 상기 회전지그에 회전력을 주기 위한 구동모터;A drive motor for applying rotational force to the rotary jig; 상기 RF플라즈마전극에 전력을 공급하기 위한 RF전원공급기;An RF power supply for supplying power to the RF plasma electrode; 상기 증발원을 용융 및 기화시키기 위해 전원을 공급하는 전력공급계;A power supply system supplying power to melt and vaporize the evaporation source; 상기 반응챔버 내부를 감압시키기 위한 기계식 펌프 및 확산 펌프;A mechanical pump and a diffusion pump to depressurize the inside of the reaction chamber; 중합성가스가 충진되어 있고 라인을 통해 상기 반응챔버에 연결되는 액체공급원;A liquid source filled with a polymeric gas and connected to said reaction chamber via a line; 불활성가스 및 반응성가스가 충진되어 있고 라인을 통해 상기 반응챔버에 연결되는 가스공급원; 및A gas supply source filled with an inert gas and a reactive gas and connected to the reaction chamber through a line; And 상기 액체공급원 및 가스공급원으로부터의 가스 공급을 조절하기 위한 유량계를 포함하는 것을 특징으로 하는 플라스틱 기판에 금속막을 코팅하기 위한 진공코팅장치.And a flow meter for controlling the gas supply from the liquid supply source and the gas supply source. 플라스틱 기판을 회전지그에 장착하고 증발원을 반응챔버내에 준비하는 단계;Mounting a plastic substrate to the rotary jig and preparing an evaporation source in the reaction chamber; 기계식펌프에 의해 반응챔버를 감압시키는 단계;Depressurizing the reaction chamber by a mechanical pump; 중합성가스와 반응성가스를 반응챔버 내로 공급하고 플라즈마 전극에 의해 플라즈마를 발생시킴으로써 상기 플라스틱 기판에 1차 친수성 폴리머막을 코팅하는 전처리 단계;A pretreatment step of coating a primary hydrophilic polymer film on the plastic substrate by supplying a polymerizable gas and a reactive gas into the reaction chamber and generating a plasma by a plasma electrode; 확산펌프에 의해 반응챔버를 고진공 감압시키는 단계;High vacuum depressurizing the reaction chamber by a diffusion pump; 증발원을 기화시킴으로써 상기 플라스틱 기판에 금속막을 증착시키는 단계;Depositing a metal film on the plastic substrate by vaporizing an evaporation source; 확산펌프를 닫고 기계식펌프만으로 반응챔버 내의 압력을 전처리단계의 압력으로 감압시키는 단계;Closing the diffusion pump and reducing the pressure in the reaction chamber to the pressure of the pretreatment step only with a mechanical pump; 중합성가스와 불활성가스 또는 반응성가스를 반응챔버 내로 공급하고 플라즈마 전극에 의해 플라즈마를 발생시킴으로써 상기 증착된 금속막에 2차 소수성 폴리머막을 코팅하는 보호막 코팅단계;A protective film coating step of coating a secondary hydrophobic polymer film on the deposited metal film by supplying a polymerizable gas and an inert gas or a reactive gas into the reaction chamber and generating a plasma by a plasma electrode; 보호막 코팅을 완료한 후, 기계식펌프에 의해 반응챔버내의 압력을 감압하고, 반응성가스를 일정시간동안 반응챔버내로 공급하여 반응챔버 내부를 퍼징하는 단계; 및After completing the protective film coating, the pressure in the reaction chamber by the mechanical pump to reduce the pressure, and supplying the reactive gas into the reaction chamber for a predetermined time to purge the inside of the reaction chamber; And 퍼징된 가스를 외부로 배출하는 단계를 포함하는 것을 특징으로 하는 플라스틱 기판에 금속막을 코팅하기 위한 코팅방법.Coating method for coating a metal film on a plastic substrate comprising the step of discharging the purged gas to the outside. 제 2항에 있어서, 상기 전처리단계 및 보호막 코팅단계에서 사용하는 중합성 가스는 실란과 탄소원의 혼합물인 것을 특징으로 하는 플라스틱 기판에 금속막을 코팅하기 위한 코팅방법.3. The coating method of claim 2, wherein the polymerizable gas used in the pretreatment step and the protective film coating step is a mixture of silane and a carbon source. 제 3항에 있어서, 상기 탄소원은 메탄, 에탄, 에틸렌, 아세틸렌, 벤젠 중 어느 하나인 것을 특징으로 하는 플라스틱 기판에 금속막을 코팅하기 위한 코팅방법.The method of claim 3, wherein the carbon source is any one of methane, ethane, ethylene, acetylene, and benzene. 제 2항에 있어서, 상기 전처리단계에서는 중합성 가스를 플라즈마 중합시켜 금속막의 부착력을 향상시키는 친수성 폴리머 박막을 플라스틱 기판에 코팅하고, 상기 보호막 코팅단계에서는 금속막의 내마모, 내열성 및 습기에 견딜 수 있는 소수성 폴리머 박막을 금속막에 코팅하는 것을 특징으로 하는 플라스틱 기판에 금속막을 코팅하기 위한 코팅방법.3. The method of claim 2, wherein in the pretreatment step, a hydrophilic polymer thin film is coated on a plastic substrate to improve adhesion of the metal film by plasma polymerizing the polymerizable gas, and the protective film coating step can withstand wear resistance, heat resistance, and moisture of the metal film. A coating method for coating a metal film on a plastic substrate, characterized in that the hydrophobic polymer thin film is coated on a metal film. 제 5항에 있어서, 상기 전처리 단계 및 보호막 코팅단계에서 사용하는 중합성 가스는 메틸실란, 에틸실란, 메틸트리클로로실란, 디메틸실란, 트리메틸실란, 테트라메틸실란, 트리메틸에톡시실란, 메틸트리에톡시실란, 헥사메틸디실록산, 테트라메틸디실라잔, 헥사메틸디실라, 테트라메틸디시록산 중 어느 하나인 것을 특징으로 하는 플라스틱 기판에 금속막을 코팅하기 위한 코팅방법.The polymerizable gas used in the pretreatment step and the protective film coating step is methylsilane, ethylsilane, methyltrichlorosilane, dimethylsilane, trimethylsilane, tetramethylsilane, trimethylethoxysilane, methyltriethoxy. Coating method for coating a metal film on a plastic substrate, characterized in that any one of silane, hexamethyldisiloxane, tetramethyldisilazane, hexamethyldisila, tetramethyldisisiloxane. 플라스틱 기판에 1차 친수성 폴리머막을 코팅하는 전처리 공정, 상기 플라스틱 기판에 금속막을 증착시키는 공정, 및 상기 증착된 금속막에 2차 소수성 폴리머막을 코팅하는 보호막 코팅공정을 하나의 반응챔버 내에서 실행하는 것을 특징으로 하는 플라스틱 기판에 금속막을 코팅하기 위한 진공코팅장치.Performing a pretreatment step of coating a first hydrophilic polymer film on a plastic substrate, a step of depositing a metal film on the plastic substrate, and a protective film coating step of coating a second hydrophobic polymer film on the deposited metal film in one reaction chamber. Vacuum coating device for coating a metal film on a plastic substrate, characterized in that.
KR10-2000-0085820A 2000-12-29 2000-12-29 A vacuum coating apparatus for coating a metallic film on a plastic material and a coating method thereof KR100375131B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0085820A KR100375131B1 (en) 2000-12-29 2000-12-29 A vacuum coating apparatus for coating a metallic film on a plastic material and a coating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0085820A KR100375131B1 (en) 2000-12-29 2000-12-29 A vacuum coating apparatus for coating a metallic film on a plastic material and a coating method thereof

Publications (2)

Publication Number Publication Date
KR20020058163A KR20020058163A (en) 2002-07-12
KR100375131B1 true KR100375131B1 (en) 2003-03-10

Family

ID=27688955

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0085820A KR100375131B1 (en) 2000-12-29 2000-12-29 A vacuum coating apparatus for coating a metallic film on a plastic material and a coating method thereof

Country Status (1)

Country Link
KR (1) KR100375131B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230082300A (en) 2021-12-01 2023-06-08 (주)디아이비 A vacuum coating apparatus for resin coating a coating method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100720742B1 (en) * 2005-12-01 2007-05-22 김명길 Metal coating device and method of coating metal
KR100671474B1 (en) * 2006-09-14 2007-01-19 한국진공주식회사 Automatic coating system of automotive lamps reflector coating and Protective layer
KR100932694B1 (en) * 2009-03-24 2009-12-21 한국진공주식회사 Device and method for coating multi-layer thin film
KR101945841B1 (en) * 2016-02-29 2019-02-11 (주)아이컴포넌트 High-density plasma pretreating apparatus
CN110629169B (en) * 2019-10-29 2024-02-27 苏州华楷微电子有限公司 Revolution type semiconductor evaporation table

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230082300A (en) 2021-12-01 2023-06-08 (주)디아이비 A vacuum coating apparatus for resin coating a coating method thereof

Also Published As

Publication number Publication date
KR20020058163A (en) 2002-07-12

Similar Documents

Publication Publication Date Title
KR100360579B1 (en) A laminate Comprising a substrate material having a surface and adhered to the surface a silicon carbon polymer
US4085248A (en) Method to apply a protective layer to the surface of optical reflectors, and so-made reflectors, particularly automotive vehicle head lamps
US5494712A (en) Method of forming a plasma polymerized film
EP0605534B1 (en) Apparatus for rapid plasma treatments and method
JP3837159B2 (en) Ion beam method for the deposition of advanced wear resistant coatings.
CA1340053C (en) Method of plasma enhanced silicon oxide deposition
EP0841140A2 (en) Method of enhancing releasing effect of mould using low temperature plasma processes
US5824198A (en) Process for barrier coating of plastic objects
US4400410A (en) Coating insulating materials by glow discharge
US6764714B2 (en) Method for depositing coatings on the interior surfaces of tubular walls
JP3726226B2 (en) Insulating film and manufacturing method thereof
US4991822A (en) Valve having ceramic valve bodies with low friction coatings
JP2018018830A (en) Hybrid layer for use in coating on electronic device or other component
US5318928A (en) Method for the surface passivation of sensors using an in situ sputter cleaning step prior to passivation film deposition
JPH1171676A (en) Deposition of silicon dioxide by plasma-activated vaporization process
RU2751017C1 (en) Application of a coating with diamond-like carbon by the magnetronic pecvd method
CA2298697A1 (en) Jet plasma process and apparatus for deposition of coatings and coatings thus obtained
JP2001514328A5 (en)
US6130002A (en) Process for producing organically modified oxide, oxynitride or nitride layers by vacuum deposition
KR100375131B1 (en) A vacuum coating apparatus for coating a metallic film on a plastic material and a coating method thereof
US7897521B2 (en) Low dielectric constant plasma polymerized thin film and manufacturing method thereof
KR100392840B1 (en) Method for making of Polymer thin films by low-temperature plasma enhanced chemical vapor deposition using
US4981071A (en) Machine element with coating
Yu et al. Internal stress in plasma polymer films prepared by cascade arc torch polymerization
WO2024028174A1 (en) Decoratively coated polymer substrates and process for obtaining the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee
R401 Registration of restoration
J204 Request for invalidation trial [patent]
J301 Trial decision

Free format text: TRIAL DECISION FOR INVALIDATION REQUESTED 20120111

Effective date: 20130227

J2X1 Appeal (before the patent court)

Free format text: INVALIDATION

EXTG Extinguishment
J302 Written judgement (patent court)

Free format text: JUDGMENT (PATENT COURT) FOR INVALIDATION REQUESTED 20130328

Effective date: 20130816