KR100372283B1 - A manufacturing process of Lithium cell using inorganic solvent catalyst and metallic catalyst - Google Patents

A manufacturing process of Lithium cell using inorganic solvent catalyst and metallic catalyst Download PDF

Info

Publication number
KR100372283B1
KR100372283B1 KR10-2002-0027882A KR20020027882A KR100372283B1 KR 100372283 B1 KR100372283 B1 KR 100372283B1 KR 20020027882 A KR20020027882 A KR 20020027882A KR 100372283 B1 KR100372283 B1 KR 100372283B1
Authority
KR
South Korea
Prior art keywords
battery
lithium
catalyst
solvent
manufacturing
Prior art date
Application number
KR10-2002-0027882A
Other languages
Korean (ko)
Other versions
KR20020043535A (en
Inventor
고영옥
이진식
나기수
김종성
Original Assignee
주식회사 비츠로셀
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 비츠로셀 filed Critical 주식회사 비츠로셀
Priority to KR10-2002-0027882A priority Critical patent/KR100372283B1/en
Publication of KR20020043535A publication Critical patent/KR20020043535A/en
Application granted granted Critical
Publication of KR100372283B1 publication Critical patent/KR100372283B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 리튬-염화티오닐 전지를 제조할 때 리튬 음극표면에 고분자 물질인 알릴시아노아크릴레이트, 메틸시아노아크릴레이트와 무기 용매(SOLVENT)인 SOCl2, SO2Cl2, SO2등을 첨가하여 도포하고, 전해액에 금속 촉매인 Al, In, Ga 등을 첨가하여 전지를 제조하는 방법에 관한 것으로, 전지의 초기 전압 지연시간을 1초 이하 또는 1~2초 이하로 유지할 수 있고, 전지의 용량이 20~40% 증가하는 효과를 가지는 전지의 제조 방법에 관한 것이다.When manufacturing a lithium-thionyl chloride battery, the present invention uses a polymer material such as allylcyanoacrylate, methylcyanoacrylate and inorganic solvent (SOLVENT) SOCl 2 , SO 2 Cl 2 , SO 2, etc. The present invention relates to a method for manufacturing a battery by adding and applying, and adding Al, In, Ga, or the like as a metal catalyst to an electrolyte solution, wherein the initial voltage delay time of the battery can be maintained at 1 second or less or 1 to 2 seconds, It relates to a method for manufacturing a battery having an effect of increasing the 20 to 40% of the capacity.

Description

고분자 물질에 무기용매 촉매, 전해액에 금속 촉매를 이용한 리튬 전지 제조 방법{A manufacturing process of Lithium cell using inorganic solvent catalyst and metallic catalyst}A manufacturing process of lithium battery using inorganic solvent catalyst in polymer material and metal catalyst in electrolyte {A manufacturing process of Lithium cell using inorganic solvent catalyst and metallic catalyst}

본 발명은 전자기기에 사용되는 Li/SOCl2전지의 제조 방법에 관한 것으로, 특히 전지의 리튬 음극을 제조할 때 리튬 전극 표면에 고분자 화합물인 알릴시아노아크릴레이트(ALLYLCYANOACRYLATE) 및 메틸시아노아크릴레이트(METHYLCYANOACRYLATE) 물질과 함께 용매(SOLVENT) 촉매인 SOCl2, SO2Cl2, SO2를 첨가하여 분사 방법으로 코팅(COATING) 처리하여 제조하고, 전해액에 원소 주기율표의 3족 금속 촉매인 Al, In, Ga 등을 녹여 첨가하여 전지를 제조함으로써 Li/SOCl2전지가 가지고 있는 장기 저장 성능의 장점을 극대화하고 장기 저장후 사용시 전압 지연(VOLTAGE DELAY)의 단점을 극복하기 위한 Li/SOCl2전지 제조법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a Li / SOCl 2 battery used in an electronic device. Particularly, when preparing a lithium negative electrode of a battery, allylcyanoacrylate and methylcyanoacrylate, which are high molecular compounds, are formed on a surface of a lithium electrode. (METHYLCYANOACRYLATE) is prepared by coating (COATING) by adding a solvent (SOLVENT) catalyst SOCl 2 , SO 2 Cl 2 , SO 2 with a (METHYLCYANOACRYLATE) material by spraying method, Al, In, Group 3 metal catalyst of the periodic table of the elements in the electrolyte Li / SOCl 2 battery manufacturing method to maximize the advantages of long-term storage performance of Li / SOCl 2 battery and overcome the disadvantages of voltage delay when used after long-term storage. It is about.

리튬 전지는 소형이면서도 일반 망간전지 또는 니켈 카드뮴 전지에 비하여 용량이 크고 고전압을 얻을 수 있어 각종 전자 기기의 전원으로 널리 쓰이고 있다.Lithium batteries are widely used as power sources for various electronic devices because they are small in size and have a large capacity and high voltages compared to general manganese batteries or nickel cadmium batteries.

Li/SOCl2전지에서의 장점은 5년이상 저장후 전지를 사용 하여도 자가 방전이 아주 적어 보존 용량이 양호하며 다른 전지와 달리 저온 특성(-32℃)이 우수한 특성을 가지는 것이며, 단점으로는 장기 저장후 사용시 자가 방전을 보호해 주는 보호 물질에 의해 전압지연 현상이 일어난다.The advantage of Li / SOCl 2 battery is that its self-discharge is very small even after storage for more than 5 years, so its storage capacity is good. Unlike other batteries, it has low temperature characteristics (-32 ℃). When used after long-term storage, a voltage delay is caused by a protective material that protects self-discharge.

종래에는 고분자 물질을 첨가한 전해액과 시아노아크릴레이트(CYANOACRYLATE)에 유기 용매를 첨가하고, 리튬염을 전해액에 첨가해서 리튬 전지를 제조하였으나 이러한 리튬 전지들도 전압지연 시간을 크게 좁히지 못하였다.Conventionally, an organic solvent is added to an electrolyte solution and a cyanoacrylate (CYANOACRYLATE) to which a polymer material is added, and a lithium salt is added to an electrolyte solution to prepare a lithium battery, but these lithium batteries also do not significantly shorten the voltage delay time.

작동 개시 순간 필요한 전압을 얻지 못하는 전압지연 현상을 전자기기의 원활한 동작을 방해하기 때문에 이 현상을 줄이거나 없애기 위한 많은 노력을 기울여 왔다.Many efforts have been made to reduce or eliminate this phenomenon, since the voltage delay that fails to obtain the required voltage at the start of operation interferes with the smooth operation of the electronic device.

본 발명의 목적은 Li/SOCl2전지 제조에 있어서, 이 전지에서 가지고 있는 장점을 극대화시키고, 단점을 극복하는데 있다.An object of the present invention is to maximize the advantages of the Li / SOCl 2 battery, and to overcome the disadvantages.

본 발명의 제조방법은 이러한 장단점을 모두 장점화하기 위해 5년이상 장기 성능 확보, -32℃이하 초저온 상태에서도 상온 성능 대비 75% 이상 확보, 전압 지연도 종전 5초 이상에서 1초 이내로 작동 할 수 있도록 하는데 있다.The manufacturing method of the present invention secures long-term performance for more than 5 years to make all of these advantages and disadvantages, more than 75% compared to room temperature performance even in ultra-low temperature below -32 ℃, voltage delay can be operated within 1 second from the previous 5 seconds. To make it work.

본 발명은 리튬-티오닐크로라이드 전지의 제조에 관한 것으로, 리튬/SOCl2전지의 리튬 음극 표면에 고분자 물질인 알릴시아노아크릴레이트(ALLYLCANOACRYLATE) 및 메틸시아노아크릴레이트(METHYLCYANOACRYLATE)에 용매(SOLVENT) 촉매인 SOCl2, SO2Cl2, SO2등 황화물 계열을 첨가하여 도포하여 전극을 제조하는 방법이며 또한 전지 조립시 전해액에 금속 촉매인 Al, In, Ga 등을 녹여 전해액을 제조하는 방법으로 완성된 전지의 특성으로도 장기 저장 성능의 우수성과 초저온(-32℃) 상태에서도 상온 성능 대비 75% 이상을 발휘할 수 있으며, 이 전지에서 가장 단점인 전압지연 현상을 1초 이내로 극소화 시킬 수 있도록 해주는 리튬-티오닐크로라이드 전지 제조법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the fabrication of lithium-thionyl chromide batteries. The present invention relates to allylcyanoacrylate (ALLYLCANOACRYLATE) and methylcyanoacrylate (METHYLCYANOACRYLATE), which are polymers on the surface of a lithium anode of a lithium / SOCl 2 battery. ) A method of manufacturing an electrode by adding sulfide-based catalysts such as SOCl 2 , SO 2 Cl 2 , and SO 2 , which are catalysts.In addition, a method of preparing an electrolyte by dissolving Al, In, and Ga, which are metal catalysts, in an electrolyte during battery assembly. The characteristics of the finished battery are excellent in long-term storage performance and at least 75% compared to room temperature performance even at ultra-low temperature (-32 ℃), and minimizes the voltage delay phenomenon, which is the most disadvantage of this battery, within 1 second. The present invention relates to a lithium-thionyl chloride battery manufacturing method.

도 1은 본 발명의 제조방법에 따른 전지와 종래의 방법에 따른 전지를 비교하여 리튬 음극 표면 처리시 고분자 물질에 용매(SOLVENT) 촉매 및 전해액에 금속 촉매 첨가후 전지를 제조한 방법에 따라 72℃에서 45일간 저장한 다음 전압 지연을 나타내는 그래프.1 is 72 ° C. according to a method of preparing a battery after adding a metal catalyst to a solvent (SOLVENT) catalyst and an electrolyte in a polymer material during surface treatment of a lithium negative electrode by comparing a battery according to a manufacturing method of the present invention with a battery according to a conventional method. Graph showing voltage delay after 45 days of storage at.

도 2는 본 발명의 제조방법에 따른 전지와 종래의 방법에 따른 전지를 비교하여 리튬 음극 표면 처리시 고분자 물질에 용매(SOLVENT) 촉매 및 전해액에 금속 촉매 첨가후 전지를 제조한 방법에 따라 상온에서 성능을 나타내는 그래프.Figure 2 compares the battery according to the manufacturing method of the present invention and the battery according to the conventional method at room temperature according to the method of manufacturing a battery after the addition of a metal catalyst to the solvent (SOLVENT) catalyst and electrolyte in the polymer material during the lithium negative electrode surface treatment Graph showing performance.

도 3은 본 발명의 제조방법에 따른 전지와 종래의 방법에 따른 전지를 비교하여 리튬 음극 표면 처리시 고분자 물질에 용매(SOLVENT) 촉매 및 전해액에 금속 촉매 첨가후 전지를 제조한 방법에 따라 저온에서 성능을 나타내는 그래프.Figure 3 compares the battery according to the manufacturing method of the present invention and the battery according to the conventional method at a low temperature according to the method of manufacturing a battery after the addition of a metal catalyst to the solvent (SOLVENT) catalyst and electrolyte in the polymer material during the lithium negative electrode surface treatment Graph showing performance.

도 4는 본 발명의 제조방법에 따라 제조된 리튬 음극 표면을 도시하는 단면도.4 is a sectional view showing a surface of a lithium negative electrode prepared according to the manufacturing method of the present invention.

<도면의 부호에 대한 설명><Description of Symbols in Drawings>

1: 리튬 음극 2: 도포층1: lithium cathode 2: coating layer

본 발명은 상기의 문제점을 개선하기 위한 것으로써 리튬 전지의 리튬 음극(두께 0.3~1.5mm) 표면에 알릴시아노아크릴레이트(ALLYLCYANOACRYLATE)와 메틸시아노아크릴레이트(METHYLCYANOACRYLATE) 고분자 물질과 무기 용매(SOLVENT)인 SOCl2, SO2Cl2, SO2등 황화물을 0.1~10% 범위로 혼합하여 0.1~30㎛ 두께로 분사법을 이용하여 도포하는 방법이며, 전해액에 금속 촉매인 Al, In, Ga 등을 0.01~0.5% 농도로 녹혀 전지를 제조하는 기술로써 리튬 전지의 전압지연 현상을 1초 이내로 최소화하고 초저온(-32℃)에서도 상온 성능 대비 75% 이상을 확보하여, 장기 저장시 자가 방전을 년간 0.5% 이내로 줄이도록 하는 기술 특징이다.The present invention is to improve the above problems, allylcyanoacrylate (ALLYLCYANOACRYLATE) and methylcyanoacrylate (METHYLCYANOACRYLATE) polymer material and inorganic solvent (SOLVENT) on the surface of the lithium negative electrode (thickness 0.3 ~ 1.5mm) of the lithium battery Sulfides such as SOCl 2 , SO 2 Cl 2 , and SO 2 are mixed in a range of 0.1 to 10% and coated with a spraying method with a thickness of 0.1 to 30 μm. Is a technology to manufacture batteries by dissolving at 0.01 ~ 0.5% concentration, minimizing the voltage delay phenomenon of lithium battery within 1 second and securing more than 75% of room temperature performance even at very low temperature (-32 ℃). It is a technical feature to reduce it to within 0.5%.

도면을 참조하여 본 발명을 설명하면 다음와 같다.Hereinafter, the present invention will be described with reference to the accompanying drawings.

도 4는 본 발명의 제조방법에 따라 제조된 리튬 음극 표면을 도시하는 단면도.4 is a sectional view showing a surface of a lithium negative electrode prepared according to the manufacturing method of the present invention.

리튬 - 염화 티오닐전지의 리튬 음극(1)은 두께 0.3~1.5mm의 리튬포일(FOIL)을 사용하여 제조하며, 이 포일 표면에 보호피막을 형성하기 위하여 톨로엔과 알릴시아노아크릴레이트(ALLYLCYANOACRYLATE),메틸시아노아크릴레이트(METHYLCYANOACRYLATE)를 2.0~5.0 : 1의 부피비로 혼합하며 이 혼합된 물질에 무기 용매(SOLVENT)인 SOCl2, SO2Cl2, SO2황화물을 0.1~10% 범위로 혼합하여 리튬 포일 표면에 분사법을 이용하여 0.1~ 30㎛ 두께로 도포한 후 12시간 이상 진공 또는 상온에서 건조시켜 도포층(2)이 형성되게 음극을 제작한다.The lithium negative electrode (1) of a lithium-thionyl chloride battery is manufactured by using a lithium foil (FOIL) having a thickness of 0.3 to 1.5 mm, and toluene and allylcyanoacrylate (ALLYLCYANOACRYLATE) are formed to form a protective film on the surface of the foil. ), Methylcyanoacrylate (METHYLCYANOACRYLATE) is mixed in a volume ratio of 2.0 to 5.0: 1, and the inorganic solvent SOLV 2 , SO 2 Cl 2 , and SO 2 sulfides in the range of 0.1 to 10% After mixing and coating the surface of the lithium foil using a spraying method to a thickness of 0.1 ~ 30㎛ and then dried in a vacuum or room temperature for 12 hours or more to prepare a cathode to form the coating layer (2).

전지는 제작된 양극과 분리막, 음극을 감아 전지 케이스에 삽입히여 조립된다.The battery is assembled by winding the manufactured positive electrode, separator, and negative electrode into a battery case.

이렇게 도포한 리튬 음극과 양극을 조합하여 본 발명에 따라 제조된 전해액을 주입하면 전지가 완성되는데 전해액 주입후 리튬 음극 표면에 부동태 피막이 형성되는데 부동태 피막은 전지를 저장한다든가, 전자기기에 장착한 후 오랜 시간 방치되었을때 전원이 자연 소모되는 자가 방전(SELF-DISCHARGE) 현상을 억제시키기 위한 것으로 리튬 전지의 성능 강화를 위해 필수적이지만 종래의 기술에 있어서 시아노아크릴레이트(CYANOACRYLATE)를 리튬 음극에 도포하여 제조한 경우 이런 특성을 향상시키는데 한계가 있어 전지가 장시간 방치된 후 전지를 재 사용할 경우 정상 전압이 출력될 때까지 일정 시간이 지연되는 현상을 완전히 극복하지 못하였다.When the electrolyte prepared according to the present invention is injected by combining the coated lithium negative electrode and the positive electrode, the battery is completed. After the injection of the electrolyte, a passivation film is formed on the surface of the lithium negative electrode. It is to suppress the self-discharge (SELF-DISCHARGE) phenomenon that power is naturally consumed when left for a long time. It is essential for enhancing the performance of lithium batteries, but in the prior art, it is manufactured by applying CYANOACRYLATE to a lithium anode In one case, there is a limit to improving these characteristics, and when the battery is left for a long time, the battery does not completely overcome the delay of a certain time until the normal voltage is output.

본 발명의 전해액 제조는 0.85~1.5M LiAlCl4염의 SOCl2에 금속 촉매인 Al, In, Ga 등을 0.01~ 0.5% 농도로 녹여 전해액을 제조한 다음 조립된 전지에 전해액을 주입함으로써 전지를 완성하였다.In preparing the electrolyte solution of the present invention, Al, In, Ga, etc., metal catalysts were dissolved in SOCl 2 of 0.85 to 1.5M LiAlCl 4 salt at a concentration of 0.01 to 0.5% to prepare an electrolyte solution, and then the electrolyte was injected into the assembled battery to complete the battery. .

도 1은 리튬 음극 표면 처리시 고분자 물질에 용매(SOLVENT) 촉매 및 전해액에 금속 촉매 첨가후 전지를 제조한 방법에 따라 72℃에서 45일간 저장한 다음 전압 지연을 나타내는 그래프이다.FIG. 1 is a graph showing voltage delay after storage at 72 ° C. for 45 days according to a method of manufacturing a battery after adding a solvent (SOLVENT) catalyst to a polymer material and a metal catalyst to an electrolyte during surface treatment of a lithium negative electrode.

본 발명의 실시예1,2는 셀(Cell)1,2로 표시되고, 종래의 방법에 따라 제조된 비교예3,4,5는 셀3,4,5로 표시된다.Examples 1 and 2 of the present invention are represented by Cells 1 and 2, and Comparative Examples 3, 4 and 5 manufactured according to the conventional method are represented by Cells 3, 4 and 5.

도 2는 리튬 음극 표면 처리시 고분자 물질에 용매(SOLVENT) 촉매 및 전해액에 금속 촉매 첨가후 전지를 제조한 방법에 따라 상온에서 성능을 나타내는 그래프이다.FIG. 2 is a graph showing performance at room temperature according to a method of manufacturing a battery after adding a solvent (SOLVENT) catalyst to a polymer material and a metal catalyst to an electrolyte during surface treatment of a lithium negative electrode.

도 3은 본 발명의 제조방법에 따른 전지와 종래의 방법에 따른 전지를 비교하여 리튬 음극 표면 처리시 고분자 물질에 용매(SOLVENT) 촉매 및 전해액에 금속 촉매 첨가후 전지를 제조한 방법에 따라 저온에서 성능을 나타내는 그래프이다.Figure 3 compares the battery according to the manufacturing method of the present invention and the battery according to the conventional method at a low temperature according to the method of manufacturing a battery after the addition of a metal catalyst to the solvent (SOLVENT) catalyst and electrolyte in the polymer material during the lithium negative electrode surface treatment Graph showing performance.

도 4는 리튬 음극에 고분자 물질인 알릴시아노아크릴레이트(ALLYLCYANOACRYLATE), 메틸시아노아크릴레이트(METHYLCYANOACRYLATE)에 용매(SOLVENT) 촉매인 SOCl2, SO2Cl2, SO2등을 함께 도포한 후에 단면도이다.Figure 4 is a cross-sectional view after the application of a solvent (SOLVENT) catalyst, such as allylcyanoacrylate (ALLYLCYANOACRYLATE), methylcyanoacrylate (METHYLCYANOACRYLATE) to the lithium anode SOLV 2 , SO 2 Cl 2 , SO 2, etc. to be.

[표1]은 리튬-염화티오닐 전지의 리튬 음극을 이루는 포일 표면에 알릴사이노아크릴 레이트, 메틸시아노아크릴레이트와 무기 용매(SOLVENT)인 SOCl2, SO2Cl2, SO2등을 혼합하여 도포 유, 무 및 전해액에 금속 촉매인 Al, In, Ga 등을 첨가 유무에 따라 전지 제조후 성능의 편차가 나타나고 있음을 보여준다.Table 1 shows the mixture of allylcyanoacrylate, methylcyanoacrylate and SOCl 2 , SO 2 Cl 2 , SO 2, etc., on the foil surface of the lithium negative electrode of a lithium-thionyl chloride battery. The results show that the variation in performance after the battery production is observed depending on the presence, absence, and addition of Al, In, and Ga, which are metal catalysts, to the coating.

이는 알릴시아노아크릴레이트, 메틸시아노아크릴레이트 화합물내에 있는 알릴기 및 메틸기가 양전하 상태로 존재하고 그 주위에 전해액에 존재하는 음이온 들이 대전되어 장기 저장후에도 전류의 흐름을 원활히 하는 것으로 판단되며, 첨가한 무기 용매(SOLVENT)인 SOCl2, SO2Cl2, SO2등이 리튬과 미리 반응하여 벌크(BULK)한 구조의 보호 피막을 형성함으로써 전하이동시 쉽게 깨어 지므로서 리튬 표면으로 부터 이온 교환이 쉽게 일어남을 알 수 있다.The allyl and methyl groups in the allylcyanoacrylate and methylcyanoacrylate compounds are present in a positively charged state, and the anions present in the electrolyte solution around them are charged to smooth the flow of current even after long-term storage. One inorganic solvent (SOLVENT), SOCl 2 , SO 2 Cl 2 , SO 2, etc. reacts with lithium in advance to form a bulk protective film, which easily breaks during charge transfer, making ion exchange from the lithium surface easy. You can see it happening.

또한 전해액에 첨가한 금속 촉매들이 착물을 형성하여 보호피막의 벌크(BULK) 구조를 만드는데 기여한 것으로 생각된다.It is also believed that the metal catalysts added to the electrolyte contributed to the formation of the complex to form the bulk structure of the protective film.

도 1, 2, 3은 이런 고분자 물질에 무기 용매(SOLVENT) 촉매를 첨가하여 도포하는 유, 무 및 전해액에 금속 촉매를 첨가하는 유, 무에 따라 저온 성능 및 장기 저장시 처리 전보다 20~40%이상 용량 증가를 보였다. 이러한 용량 증가와 저온 성능 향상, 전압 지연 감소는 알릴시아노아크릴레이트, 메틸시아노아크릴레이트에 용매(SOLVENT) 촉매인 SOCl2, SO2Cl2, SO2첨가 도포와 전해액에 금속 촉매인 Al, In, Ga 등을 첨가하여 나타난 결과라고 말할 수 있다.1, 2, and 3 are 20 to 40% lower temperature performance and long-term storage depending on the presence or absence of the addition of an inorganic solvent (SOLVENT) catalyst to the polymer material and the presence or absence of the addition of a metal catalyst to the electrolyte. Over dose showed an increase. Of this capacity increase and low temperature performance improve, voltage delay reduction is allyl cyano acrylate, methyl-dicyano solvent for acrylate (SOLVENT) catalyst, SOCl 2, SO 2 Cl 2, SO 2 added to the coating and the metal in the electrolyte catalyst Al, It can be said that the result of adding In, Ga, etc. was added.

<표 1>TABLE 1

상기와 같은 본 발명은 리튬-염화티오닐 전지를 제조할 때 리튬 음극 표면에 알릴시아 노아크릴레이트, 메틸시아노아크릴레이트와 무기 용매(SOLVENT)인 SOCl2, SO2Cl2, SO2등을 첨가하여 도포하고, 전해액에 금속 촉매인 Al, In, Ga등을 첨가하여 전지를 제조 했을 때 초기 전압 지연을 1초 이하 또는 1~2초 이하로 유지할 수 있고, 20~40%의 용량 증가 효과를 얻을 수 있다.As described above, the present invention provides allylcyanoacrylate, methylcyanoacrylate and SOCl 2 , SO 2 Cl 2 , SO 2, etc., on the surface of a lithium negative electrode when manufacturing a lithium-thionyl chloride battery. When the battery is manufactured by adding Al, In, and Ga, which are metal catalysts, to the electrolyte, the initial voltage delay can be maintained at 1 second or less or 1 to 2 seconds or less, and the effect of increasing the capacity by 20 to 40% is achieved. Can be obtained.

Claims (2)

3 ~ 1.5㎜ 두께의 리튬 포일로 음극을 구성하는 리튬-염화티오닐 전지에 있어서, 음극을 구성하는 리튬 포일의 표면에, 고분자 물질인 아릴 시아노 아크릴레이트 (ALLYLCYANOACRYLATE), 메틸 시아노 아크릴레이트 (METHYLCYANOACRYLATE)에 무기 용매(SOLVENT) 촉매인 SOCl2, SO2Cl2, SO2등을 0.1~10% 범위로 첨가 한 후 분사법을 사용하여 0.1~30㎛ 두께로 도포하여 구성되는 것을 특징으로 하는 전지 제조 방법.In a lithium-thionyl chloride battery constituting a negative electrode with a lithium foil having a thickness of 3 to 1.5 mm, aryl cyano acrylate (ALLYLCYANOACRYLATE), methyl cyano acrylate (high molecular material) on the surface of the lithium foil constituting the negative electrode ( METHYLCYANOACRYLATE) is an inorganic solvent (SOLVENT) catalyst SOCl 2 , SO 2 Cl 2 , SO 2 and the like is added in a range of 0.1 ~ 10%, and then applied by a spray method to a thickness of 0.1 ~ 30㎛ Battery manufacturing method. 제 1항에서 제조된 부품에 0.85~1.5M LiAlCl4염농도를 가진 전해액에 금속 촉매인 Al, In, Ga 등을 0.01~0.5% 농도로 용해한 전해액을 특징으로 하는 전지 제조 방법.A battery manufacturing method comprising an electrolyte solution in which Al, In, Ga, and the like, which are metal catalysts, are dissolved in an electrolyte solution having a concentration of 0.85 to 1.5 M LiAlCl 4 in a component prepared in claim 1 at a concentration of 0.01 to 0.5%.
KR10-2002-0027882A 2002-05-20 2002-05-20 A manufacturing process of Lithium cell using inorganic solvent catalyst and metallic catalyst KR100372283B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0027882A KR100372283B1 (en) 2002-05-20 2002-05-20 A manufacturing process of Lithium cell using inorganic solvent catalyst and metallic catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0027882A KR100372283B1 (en) 2002-05-20 2002-05-20 A manufacturing process of Lithium cell using inorganic solvent catalyst and metallic catalyst

Publications (2)

Publication Number Publication Date
KR20020043535A KR20020043535A (en) 2002-06-10
KR100372283B1 true KR100372283B1 (en) 2003-02-17

Family

ID=27726415

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0027882A KR100372283B1 (en) 2002-05-20 2002-05-20 A manufacturing process of Lithium cell using inorganic solvent catalyst and metallic catalyst

Country Status (1)

Country Link
KR (1) KR100372283B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100945903B1 (en) * 2006-06-28 2010-03-05 정진태 Lithium thionyl chloride battery using solvent-soluble polyimide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263289A (en) * 2011-06-29 2011-11-30 王君龙 Application of porphyrin as catalyser in Li/SOCI2 (Lithium Thionyl Chloride) battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100945903B1 (en) * 2006-06-28 2010-03-05 정진태 Lithium thionyl chloride battery using solvent-soluble polyimide

Also Published As

Publication number Publication date
KR20020043535A (en) 2002-06-10

Similar Documents

Publication Publication Date Title
CN110380111B (en) Dual in-situ polymerization preparation method of solid-state battery containing solid-state electrolyte
KR100233394B1 (en) Multilayered electrolyte and electrochemical cells using same
KR100413816B1 (en) Electrode active materials for lithium secondary batteries, method for preparing the same, and lithium secondary batteries using the same
CN1327548C (en) Negative electrode for lithium metal battery and lithium metal battery comprising the same
KR100441518B1 (en) Lithium secondary battery and method of preparing same
GB2329513A (en) A method of preparing an electrode for lithium based secondary cell
CN110212251B (en) Preparation method of solid lithium ion battery containing solid electrolyte
KR101017305B1 (en) Nonaqueous electrolyte battery
CN112599774A (en) Flexible all-solid-state organic secondary battery and preparation method and application thereof
KR100669314B1 (en) Lithium secondary battery and method of preparing same
JP4168241B2 (en) Non-aqueous electrolyte battery
KR100416150B1 (en) Method of preparing lithium secondary battery and lithium secondary battery prepared by same
KR100372283B1 (en) A manufacturing process of Lithium cell using inorganic solvent catalyst and metallic catalyst
JPH1083838A (en) Whole solid lithium battery
JP3292220B2 (en) Lithium battery
KR101858933B1 (en) Heterogeneous metal nanowire electrode and preparing method thereof
KR20200132491A (en) Secondary battery including metal anode on which protective layer is formed
KR20010037101A (en) Lithium secondary battery cathode composition, lithium secondary battery cathode and lithium secondary battery employing the same, and method for preparing the same
KR20150062084A (en) Lithium sulfur battery comprising electrode protective film, and method for preparing the same
JP2004071244A (en) Nonaqueous electrolyte battery
KR19990063320A (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
KR100432669B1 (en) Negative active material for rechargeable lithium batteries and preparing for same
KR100467704B1 (en) Active material composition for lithium battery anode, anode electrode prepared by the composition, and lithium battery comprising the electrode
KR100322373B1 (en) Polymer solid electrolyte and lithium secondary battery using the same
KR100346552B1 (en) A Lithium Sulfur secondary batteries

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130201

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140203

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20150204

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160201

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20170201

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20180202

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20190201

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20200203

Year of fee payment: 18