KR100366860B1 - Raw material for permanent magnets and production method of the same - Google Patents

Raw material for permanent magnets and production method of the same Download PDF

Info

Publication number
KR100366860B1
KR100366860B1 KR1019960003645A KR19960003645A KR100366860B1 KR 100366860 B1 KR100366860 B1 KR 100366860B1 KR 1019960003645 A KR1019960003645 A KR 1019960003645A KR 19960003645 A KR19960003645 A KR 19960003645A KR 100366860 B1 KR100366860 B1 KR 100366860B1
Authority
KR
South Korea
Prior art keywords
powder
boron
alloy
melting point
samarium
Prior art date
Application number
KR1019960003645A
Other languages
Korean (ko)
Other versions
KR970063291A (en
Inventor
야스노리 다카하시
Original Assignee
다카하시 요시아키
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 다카하시 요시아키 filed Critical 다카하시 요시아키
Priority to KR1019960003645A priority Critical patent/KR100366860B1/en
Publication of KR970063291A publication Critical patent/KR970063291A/en
Application granted granted Critical
Publication of KR100366860B1 publication Critical patent/KR100366860B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0311Compounds
    • H01F1/0313Oxidic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]

Abstract

제조가 용이하고, 자기특성이 우수한 사마륨 ·철 ·붕소계 영구자석원료 및 그 제조법을 제공한다.Provided is a samarium-iron-boron-based permanent magnet material that is easy to manufacture and excellent in magnetic properties, and a method of manufacturing the same.

영구자석원료는 FeOOH(goethite) 침상결정을 수소환원함으로써 얻어지는 침상철분의 표층에 사마륨 및 붕소가 확산하고 있는 것이다. 원료는 FeOOH 침상결정에 사마륨과 코발트와의 합금으로 융점 700℃이하의 저융점합금의 분말, 붕소분말 또는 페로-보론합금분말 및 소망에 의하여 코발트 분말 또는 코발트 ·철합금의 분말을 혼합하고, 수소 및 질소의 혼합가스분위기하에 300℃이상 상기 저융점합금의 융점이하의 온도로 가열하며 FeOOH 침상결정을 환원하여 침상철분으로 하고, 계속 상기 저융점합금의 융점이상 1200℃이하의 온도로 가열하여, 침상철분의 표층에 붕소 및 사마륨을 피복 ·확산시킨 후, 생성물을 분쇄함으로서 제조된다.In the permanent magnet material, samarium and boron diffuse in the surface layer of acicular iron powder obtained by hydrogen reduction of a FeOOH (goethite) acicular crystal. The raw material is FeOOH acicular crystal, alloy of samarium and cobalt, powder of low melting point alloy, melting point of below 700 ℃, boron powder or ferro-boron alloy powder and cobalt powder or cobalt-iron alloy powder as desired. And under a mixed gas atmosphere of nitrogen and heated to a temperature below the melting point of the low-melting alloy of 300 ℃ or more and reducing the FeOOH needle crystal to a needle iron powder, and then heated to a temperature of 1200 ℃ or less above the melting point of the low melting alloy, It is produced by coating and diffusing boron and samarium on the surface layer of acicular iron powder, and then grinding the product.

Description

영구자석원료 및 그 제조법{Raw material for permanent magnets and production method of the same}Raw material for permanent magnets and production method of the same

(산업상의 이용분야)(Industrial use)

본 발명은 자기 특성이 우수한 사마륨 ·철 ·붕소계 영구자석원료 및 그 제조법에 관한 것이다.The present invention relates to a samarium-iron boron-based permanent magnet raw material excellent in magnetic properties and a method for producing the same.

(종래의 기술)(Conventional technology)

희토류·철·붕소계 영구자석은 우수한 자기특성을 갖는 영구자석으로서 상용 (賞用)되고 있다. 일본 특공소 61-34242호에는 Fe-B (원자백분비로 2~28%)-R( 희토류원소: 원자백분비로 8∼30%)성분으로 이루어지는 자기 이방성소결영구자석이 개시되고 희토류원소로서 Sm 도 예시되어 있지만, 제조에 있어서는, 우선 상기 성분을 함유하는 주조합금을 제조하고, 뒤이어 주조합금을 분말화한 후 성형 소결할 필요가 있고, 주조 합금괴의 분말화에 비용이 든다. 또, 배치마다 성능이 다르다는 문제도 있다. 일본 특공평 3-72124호에는 R (다만 R는 Y를 포함하는 희토류원소중 적어도 1종)8원자% ∼30원자%, B 2원자% ~28원자%, Fe 65원자% ∼82원자%를 주성분으로하는 희토류 ·철 ·붕소계 영구자석용 합금분말의 제조방법에 있어서 희토류산화물 가루와 금속가루 및/또는 합금가루로 이루어지는 원료가루를 금속 Ca 또는 CaH2를 환원제로서 환원반응을 행하게 한 후, 불활성가스 분위기중에서 가열하고, 더욱 더 얻어진 반응생성물을 수중에 투입하여 반응부생성물을 제거하는 방법이 개시되어 있지만, 환원제로서 금속 Ca 또는 CaH2을 사용하고 있기 때문에, 반응부생성물의 제거나 건조라는 공정을 필요로 한다. 또,이렇게 하여 얻어진 영구영구자석용 합금분말은 입경 1~10㎛ 인 미세한 분말이므로 공기중의 산소에 의하여 산화되기 쉽고, 불순물로서 산소가 포함되면 최종제품의 자기특성이 열화하므로, 분말의 처리에는 세심한 주의를 기울이지 않으면 안된다. 이 때문에 공기를 차단한 상태에서 계량, 혼합, 가열성형을 행하기 위한 장치나 공정을 필요로 하고, 코스트증가 요인이 된다. 또 희토류를 다량으로 필요로 하기 때문에 고가한 것으로 되지 않을 수 가 없다.Rare earth, iron, and boron permanent magnets are commercially available as permanent magnets having excellent magnetic properties. Japanese Patent Application No. 61-34242 discloses magnetic anisotropic sintered permanent magnets consisting of Fe-B (2-28% by atomic percentage) -R (rare earth element: 8-30% by atomic percentage) and Sm as a rare earth element. Although illustrated, in manufacture, it is necessary to first manufacture the main alloy containing the said component, and then to powder-form and sinter the main alloy, and to cost the powdering of the cast alloy ingot. In addition, there is a problem that the performance is different for each batch. Japanese Patent Publication No. 3-72124 discloses R (but R is at least one of rare earth elements containing Y) 8 atomic%-30 atomic%, B 2 atomic%-28 atomic%, Fe 65 atomic%-82 atomic% In the method for producing an alloy powder for rare earth-iron-boron-based permanent magnets as a main component, a raw material powder consisting of rare earth oxide powder and metal powder and / or alloy powder is subjected to a reduction reaction with metal Ca or CaH 2 as a reducing agent. Although a method of heating in an inert gas atmosphere and further adding the obtained reaction product in water to remove the reaction by-product is disclosed, since metal Ca or CaH 2 is used as a reducing agent, it is necessary to remove or dry the reaction by-product. It requires a process. Since the alloy powder for permanent permanent magnets thus obtained is a fine powder having a particle diameter of 1 to 10 µm, it is easily oxidized by oxygen in the air, and when oxygen is included as an impurity, the magnetic properties of the final product deteriorate. Great care must be taken. For this reason, an apparatus or process for metering, mixing, and heat-molding in the state where air is shut off is required, which increases cost. In addition, since it requires a large amount of rare earth, it is inevitably expensive.

(발명이 해결하려고 하는 과제)(Problem that invention tries to solve)

본 발명은 제조가 용이하고 자기특성이 우수한 사마륨 ·철 ·붕소계 영구자석원료 및 그 제조법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a samarium-iron-boron-based permanent magnet material which is easy to manufacture and excellent in magnetic properties, and a method of manufacturing the same.

(과제를 해결하기 위한 수단)(Means to solve the task)

본 발명에 관한 사마륨 ·철 ·붕소계 영구자석원료는 FeOOH(goethite) 침상절정을 수소 환원함으로써 얻어지는 침상철분의 표층에 사마륨(Sm) 및 붕소(B) 가 확산하고 있는 것을 특징으로 한다. 이에 질소가 확산되어 질화물을 형성한 것은 더욱 우수한 자기특성을 갖는다.The samarium-iron-boron-based permanent magnet material according to the present invention is characterized in that samarium (Sm) and boron (B) diffuse into the surface layer of acicular iron powder obtained by hydrogen reduction of a FeOOH (goethite) needle peak. Nitrogen diffused to form nitride has more excellent magnetic properties.

또, 상기 영구자석원료의 제조법은, FeOOH(goethite)침상결정을 수소환원함으로써 얻어지는 침상철분에 사마륨(Sm)과 코발트(Co)와의 합금으로 융점 700℃이하의 저융점 합금의 분말, 붕소분말 또는 페로-보론 합금분말 및 소망에 의하여 코발트 분말 또는 코발트 ·철합금분말을 혼합하고, 수소 및 질소의 혼합가스 분위기하에서 상기 저융점합금의 융점이상 1200℃이하의 온도로 가열하여 침상철분의 표층에 사마륨 및 붕소를 피복 ·확산시킨 후, 생성물을 분쇄하든가, 혹은 FeOOH(goethite) 침상결정에 사마륨(Sm)과 코발트(Co)와의 합금으로 융점 700℃이하의 저융점 합금의 분말, 붕소분말 또는 페로-보론 합금분말 및 소망에 의하여 코발트 분말 또는 코발트 ·철합금의 분말을 혼합하고, 수소 및 질소의 혼합가스 분위기하에서 300℃이상 상기 저융점 합금의 융점이하의 온도로 가열하여 FeOOH 침상결정을 환원하여 침상철분으로 하고, 계속 상기 저융점합금의 공정이상 1200℃이하의 온도로 가열하여 침상철분의 표층에 붕소 및 사마륨을 피복 ·확산시킨 후 생성물을 분쇄하는 것을 특징으로 한다. 즉 전자는 FeOOH침상결정을 수소환원하여 침상철분으로 한 후 Sm원료 및 붕소원료를 혼합하고 재가열하며 침상철분에의 Sm및 붕소의 확산을 행하는 방법, 후자는 FeOOH 침상결정, Sm원료 및 붕소원료를 최초부터 혼합하고, 단계적으로 침상철분의 생성, Sm 및 붕소의 확산을 행하는 방법이지만, FeOOH침상 결정을 수소환원함으로써 얻어지는 침상철분은 활성이 높고 용이하게 공기중의 산소와 결합하여 산화철로 되기 쉽고, 또 습기의 영향을 받기 쉬으므로, 이들 공정을 동일 반응용기내에서 공기의 접촉되는 일 없이 연속적으로 행하는 후자의 방법이 바람직하다.The method for producing permanent magnets is a powder of a low melting point alloy having a melting point of 700 ° C. or lower, boron powder or the like of alloy of samarium (Sm) and cobalt (Co) in acicular iron powder obtained by hydrogen reduction of FeOOH (goethite) needle crystal. The ferro-boron alloy powder and cobalt powder or cobalt-iron alloy powder are mixed as desired, and heated to a temperature of 1200 ° C. or lower above the melting point of the low-melting alloy in a mixed gas atmosphere of hydrogen and nitrogen, and samarium is deposited on the surface of the acicular iron powder. And after coating and diffusing boron, the product is pulverized, or a powder of low melting point alloy having a melting point of 700 ° C. or less, boron powder or ferro-alloy of FeOH (goethite) needle crystal and alloy of samarium (Sm) and cobalt (Co). Boron alloy powder and cobalt powder or cobalt-iron alloy powder are mixed as desired, and the melting point of the low melting point alloy is 300 ° C. or higher in a mixed gas atmosphere of hydrogen and nitrogen. The FeOOH acicular crystal was reduced by heating to a needle iron powder, and then heated to a temperature not lower than 1200 ° C. above the process of the low melting point alloy to coat and diffuse boron and samarium on the surface layer of the acicular iron powder, and then crush the product. It is characterized by. In other words, the former hydrogen-reduces FeOOH acicular crystals to form acicular iron, mixes and reheats Sm and boron materials, and diffuses Sm and boron to acicular iron, the latter uses FeOOH acicular crystals, Sm raw materials and boron raw materials. Although it is a method of mixing from the beginning and gradually producing needle iron, spreading Sm and boron, needle iron powder obtained by hydrogen reduction of FeOOH needle crystals is highly active and easily binds to oxygen in the air to form iron oxide, In addition, the latter method is preferred, in which these steps are carried out continuously without contacting air in the same reaction vessel, because they are easily affected by moisture.

사마륨(Sm)은 코발트와의 합금으로 융점 700℃이하의 저융점합금의 분말로서 사용한다. Sm의 융점은 1072℃, Co융점은 1492℃인데 대하여 Sm 64원자% 와 Co 36원자% 의 합금의 융점은 575℃, Sm 85원자%과 Co 15원자% 의 합금의 융점은 595℃이다.Samarium (Sm) is an alloy with cobalt and is used as a powder of low melting point alloy having a melting point of 700 ° C or lower. The melting point of Sm is 1072 ° C and the Co melting point is 1492 ° C. The melting point of the alloy of Sm 64 atomic% and Co 36 atom% is 575 ° C, and the melting point of the alloy of Sm 85 atomic% and Co 15 atomic% is 595 ° C.

반드시 최저융점의 합금을 사용할 필요는 없지만, 융점이 낮을수록 처리온도가 낮아서 좋으므로, 열에너지 소비량이 적어서 좋다.It is not necessary to use the lowest melting point alloy, but the lower the melting point is, the better the treatment temperature is, and therefore, the lower the heat energy consumption.

침상철분의 입경은 길이 10㎛이하의 것,예를들면 길이 1.0㎛, 폭 0.1㎛정도의 것이 바람직하다. 소망의 침상철분의 입경에 대응하는 입경을 갖는 FeOOH(geothite) 침상결정을 수소함유가스분위기중에서 300이상 상기 저융점 합금의 융점이하의 온도, 바람직하기는 400∼ 500℃정도로 가열하고 수소환원함으로써 환원로내에서 침상철분이 얻어진다.The particle diameter of the acicular iron powder is preferably 10 µm or less in length, for example, 1.0 µm in length and 0.1 µm in width. The FeOOH (geothite) needle crystal having a particle size corresponding to the particle size of the desired acicular iron powder is reduced by heating to a temperature below the melting point of the low melting point alloy, preferably 400 to 500 ° C., in a hydrogen-containing gas atmosphere, and then reduced by hydrogen reduction. Needle iron powder is obtained in the furnace.

성분비율은, 원자백분율로 사마륨 0.3∼ 7%,붕소 1∼10% 정도를 함유하는 것이 바람직하다. 이 범위보다 적은 경우에는 자기 특성의 향상효과가 적고, 한편 이 범위보다 많게 하더라도 코스트 증가에 상응하는 자기 특성의 향상은 바랄수 없다. 질소의 함유량은 원자백분율로 0~10% 정도가 바람직하다.It is preferable that a component ratio contains about 0.3-7% of samarium and about 1-10% of boron in atomic percentage. If it is less than this range, the effect of improving magnetic properties is less. On the other hand, even if it is more than this range, improvement of magnetic properties corresponding to an increase in cost cannot be expected. As for content of nitrogen, about 0 to 10% is preferable in atomic percentage.

사마륨원으로서 사마륨 ·코발트합금을 사용함으로써 필연적으로 코발트 성분도 함유되는 것으로 되지만, 그 이외에 코발트 분말 또는 코발트 ·철합금의 분말을 가함으로써 코발트성분을 증량하여도 좋다. 코발트의 함유량은 원자 백분율로 1∼15% 정도가 바람직하다. 나머지가 침상철분이다. 붕소원으로서 페로-보론을 사용한 경우는 침상이 아닌 철성분도 포함되는 것으로 되지만 페로-보론에 동반되는정도의 양은 존재하더라도 지장은 없다.Although the cobalt component is inevitably contained by using a samarium cobalt alloy as a samarium source, cobalt component may be increased by adding cobalt powder or the powder of a cobalt iron alloy. The content of cobalt is preferably about 1 to 15% in atomic percentage. The rest is needle iron. In the case of using ferro-boron as a boron source, ferrous-boron is included, but iron is included, but there is no problem even if the amount of accompanying ferro-boron is present.

붕소 (융점 2300℃) 분말 또는 코발트 (융점 1492℃) 분말은 평균입경 1~10㎛정도의 미분이 바람직하다. Sm와 Co의 합금은 그 융점이상의 온도로 처리되므로 반드시 미분일 필요는 없다.Boron (melting point 2300 ° C.) powder or cobalt (melting point 1492 ° C.) powder is preferably a fine powder having an average particle diameter of about 1 to 10 μm. The alloy of Sm and Co is not necessarily fine because it is treated at its melting point or above.

본 발명의 영구자석원료는, Sm을 침상철분의 표층에 확산할 뿐이므로, 희토류원소를 철로 균일하게 혼합한 합금으로 하는 종래의 희토류 ·철 ·붕소계 영구자석에 비하여 고가의 희토류의 사용량이 적더라도 우수한 자기특성을 나타내므로 비용상 유리하다.Since the permanent magnet raw material of the present invention only diffuses Sm to the surface layer of acicular iron powder, the use amount of expensive rare earth is less than that of the conventional rare earth, iron, and boron permanent magnets, which are alloys in which rare earth elements are uniformly mixed with iron. Even if it shows excellent magnetic properties, it is advantageous in cost.

더욱 질소도 확산된 영구자석원료를 제조하는 경우는, 침상철분의 표층에 사마륨 및 붕소를 피복 ·확산시킨 후, 가압질소분위기하에 열처리한다. 이 경우, 사마륨 및 붕소의 확산공정의 온도와 같은 온도로 유지하면서 가압질소분위기로 하여도 좋고, 온도를 내리면서 가압질소분위기로 하여도 좋다. 질소의 압력은 2kg/㎠G 이상이 바람직하다.Further, in the case of producing a permanent magnet material in which nitrogen is also diffused, samarium and boron are coated and diffused on the surface layer of acicular iron powder, and then heat-treated under pressurized nitrogen atmosphere. In this case, the pressurized nitrogen atmosphere may be maintained while maintaining the temperature at the same temperature as the diffusion process of samarium and boron, or may be the pressurized nitrogen atmosphere while the temperature is lowered. As for the pressure of nitrogen, 2 kg / cm <2> G or more is preferable.

상기와 같이 하여 제조된 영구자석 원료를 자장의 존재하에서 압축성형하여 가열 소결함으로써 소결영구자석이 얻어진다. 여기서 자장을 존재시킴으로써 침상철분은 수직 배향한다. 압축성형조건이나 가열소결조건은 종래의 소결자석 제조조건과 같아서 좋다.The permanent magnet raw material manufactured as described above is compression molded in the presence of a magnetic field and heat-sintered to obtain a sintered permanent magnet. Here, the needle iron is vertically oriented by the presence of a magnetic field. Compression molding conditions and heat sintering conditions may be the same as the conventional sintered magnet production conditions.

상기의 영구자석원료와 바인더를 혼합하고, 자장의 존재하에서 가열압축성형함으로써 본드 영구자석이 얻어진다. 여기서 자장을 존재시킴으로써 침상철분은 수직배향한다. 압축성형조건은 통상 본드영구자석의 제조에 사용되는 조건으로 좋다.바인더로서는 에폭시수지, 폴리아미드수지등의 고분자재료계의 것, 또는 글라스화제를 사용한다. 글라스화제로서는, 예를들면 MnO, CuO, Bi2O3, PbO, TI2O3, Sb2O3, Fe2O3등, 혹은 이들의 조합이 열거된다.A bonded permanent magnet is obtained by mixing said permanent magnet raw material and a binder, and carrying out heat compression molding in the presence of a magnetic field. Here, the needle iron is vertically oriented by the presence of a magnetic field. Compression molding conditions are generally used as conditions used for the production of bonded permanent magnets. As the binder, those made of a polymer material such as epoxy resin, polyamide resin, or glassing agent are used. Examples of the glass agent such as MnO, CuO, Bi 2 O 3, PbO is, open the TI 2 O 3, Sb 2 O 3, Fe 2 O 3 or the like, or a combination thereof.

더욱, 분쇄물에 인산 알루미늄을 첨가하여 부착시켜 300∼ 500℃로 가열함으로써, 본 발명의 영구자석원료의 표면에 인산알루미늄 피복층을 설치하면 공기중의 산소나 습기의 영향을 받기 어려워지므로 품질의 안정성이 양호하개 된다.Furthermore, by adding aluminum phosphate to the pulverized product and heating it at 300 to 500 ° C., if the aluminum phosphate coating layer is provided on the surface of the permanent magnet material of the present invention, it is difficult to be affected by oxygen or moisture in the air, thereby ensuring stability of quality. This is good.

이하 실시예에 의하여 본 발명을 구체적으로 설명하지만, 본 발명은 하기의 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following Examples.

(실시예 1∼2)(Examples 1 and 2)

FeOOH(goethite: 티탄공업주식회사제) 침상결정에, 사마륨 82중량% (64 원자%)를 포함하는 Sm ·Co합금 (융점 575℃), 붕소분말, 및 코발트 분말을, Fe-Co-Sm-B 의 중량부 조성이 표 1의 실시예 1또는 실시예 2에 표시하는 값으로 되는 비율로 혼합하고, 이를 로터리 노에 넣어 수소 10용적% 및 질소 90용적% 의 혼합가스를 5ℓ/분의 비율로 흐르게 하면서 2시간에 걸쳐서 460℃까지 승온하고, 이 온도에서 7시간 유지하였다.SmCo alloy (melting point 575 ° C), boron powder, and cobalt powder containing 82% by weight of samarium (64 atomic%) in a needle crystal of FeOOH (goethite: Titanium Industry Co., Ltd.) was added to Fe-Co-Sm-B The weight part of the composition is mixed at a ratio which becomes the value shown in Example 1 or Example 2 of Table 1, and it is put into a rotary furnace and mixed gas of 10% by volume of hydrogen and 90% by volume of nitrogen at a rate of 5 l / min. It heated up to 460 degreeC over 2 hours, flowing, and hold | maintained at this temperature for 7 hours.

그 사이에 FeOOH 침상결정은 환원되어 침상철분 (길이 0.9㎛ 폭 0.09㎛)으로 되었다. 계속 상기 수소 ·질소혼합가스를 흐르게 하면서 1시간에 걸쳐서 700℃까지 승온하여, 이 온도에서 7시간 유지하였다. 그 사이에 Sm ·Co합금 (융점 575℃) 은 용융하여 붕소분말, 및 코발트 분말과 합께 침상철분의 표면에 부착하여, 침상철분의 표층에 확산하였다. 5시간에 걸쳐서 실온으로 냉각한 즉, 괴상의 생성물을 얻었으므로, 이를 볼밀 (알루미늄볼 사용) 으로 분쇄하여 영구자석원료를 얻었다. 이들의 영구자석원료를 자계(10KOe) 중 배향 · 성형(1.5t/㎠로 가압) 하고, 아르곤분위기 중에서 1000∼1200℃ 1시간 가열하여 소결하고, 소결후 방냉하여 얻은 영구자석에 대하여 보자력 iHc, 잔류자속밀도 Br 및 최대에너지 적(BH)max를 측정한 결과를 표 1에 표시한다.In the meantime, the FeOOH acicular crystal was reduced to become acicular iron powder (length 0.9 mu m width 0.09 mu m). It heated up to 700 degreeC over 1 hour, flowing the said hydrogen-nitrogen mixed gas continuously, and hold | maintained at this temperature for 7 hours. In the meantime, SmCo alloy (melting point 575 degreeC) melt | dissolved, it adhered to the surface of acicular iron powder together with boron powder and cobalt powder, and it spread to the surface layer of acicular iron powder. It cooled to room temperature over 5 hours, ie, the mass product was obtained, and it grind | pulverized it by the ball mill (using aluminum ball), and obtained permanent magnet raw material. These permanent magnet raw materials are oriented and molded (pressurized to 1.5t / cm 2) in a magnetic field (10KOe), heated and sintered at 1000 to 1200 ° C for 1 hour in an argon atmosphere, and coercive force iHc, Table 1 shows the results of measuring the residual magnetic flux density Br and the maximum energy product (BH) max.

(실시예 3)(Example 3)

FeOOH(Geothite: 티탄공업주식회사제) 침상결정에, 사마륨 82중량%(64원자%)를 포함하는 Sm ·Co합금 (융점 575℃), 붕소분말, 및 코발트 분말을 Fe-Co-Sm-B의 중량부조성이 표 1의 실시예 3에 표시하는 값으로 되는 비율로 혼합하고, 이를 로터리 노에 넣어 수소 10용적% 및 질소 90용적% 의 혼합가스를 5ℓ/분의 비율로 흐르게 하면서 2시간 걸쳐서 460 ℃까지 승온하고, 이 온도에서 7시간 유지하였다. 그 사이에 FeOOH 침상결정은 환원되어 침상철분 (길이 0.9㎛, 폭 0.09㎛)로 되었다. 계속하여 상기 수소 ·질소 혼합가스를 흐르게 하면서 1시간에 걸쳐서 700℃까지 승온하여, 이 온도에서 7시간 유지하였다. 그 사이에 Sm ·Co합금 (융점 575℃) 은 용융하여 붕소분말, 및 코발트 분말과 함께 침상철분의 표면에 부착하여, 침상철분의 표층으로 확산하였다. 여기서 수소 및 질소의 혼합가스의 방출을 정지하고, 수소 10용적% 및 질소 90용적% 의 혼합가스로 게이지 양 5kg/㎠로 가압한 상태에서 5시간 걸쳐서 실온으로 냉각한 즉, 질소가 확산하여 침상철분의 표층이 질화물로 된 괴상의 생성물을 얻었다. 이 중량부 조성을 표 1에 표시한다. 이를 볼밀 (알루미늄볼 사용) 로 분쇄하여 영구자석원료를 얻었다. 이 영구자석원료를 자계(10KOe) 중 배향 ·성형(1.5t/㎠으로 가압) 하고, 아르곤분위기중에서 1000~1200℃, 1 시간 가열하여 소결하고, 소결후 방냉하여 얻은 영구자석에 대하여 보자력 iHc, 잔류자속밀도 Br및 최대에너지 적(BH)max를 측정한 결과를 표 1에 표시한다.In the FeOOH (Geothite: Titanium Industry Co., Ltd.) needle crystal, SmCo alloy (melting point 575 ° C.), boron powder, and cobalt powder containing 82% by weight (64 atom%) of samarium were added to Fe-Co-Sm-B. The weight coarseness was mixed at a ratio of the value shown in Example 3 of Table 1, and the mixture was placed in a rotary furnace for 2 hours while flowing 10 vol% hydrogen and 90 vol% nitrogen gas at a rate of 5 l / min. It heated up to 460 degreeC, and hold | maintained at this temperature for 7 hours. In the meantime, the FeOOH needle crystal was reduced to obtain needle iron powder (length 0.9 mu m, width 0.09 mu m). Subsequently, it heated up to 700 degreeC over 1 hour, flowing the said hydrogen-nitrogen mixed gas, and hold | maintained at this temperature for 7 hours. In the meantime, SmCo alloy (melting point 575 degreeC) melt | dissolved, it adhered to the surface of acicular iron powder together with boron powder and cobalt powder, and it spread to the surface layer of acicular iron powder. Here, the discharge of the mixed gas of hydrogen and nitrogen was stopped, and cooled to room temperature over 5 hours while pressurized with a mixed gas of 10% by volume of hydrogen and 90% by volume of nitrogen to the gauge amount, i.e., nitrogen diffused into the bed The surface product of iron obtained the mass product of nitride. This weight part composition is shown in Table 1. This was ground by a ball mill (using aluminum balls) to obtain a permanent magnet raw material. The permanent magnet material is oriented and molded in a magnetic field (10KOe) (pressurized to 1.5t / cm 2), heated in a argon atmosphere at 1000-1200 ° C. for 1 hour, and sintered, and the coercive force iHc, Table 1 shows the results of measuring the residual magnetic flux density Br and the maximum energy product (BH) max.

실시예는 모두 보자력 iHc가 3kOe 이상으로 영구자석으로서 필요한 조건을 구비하여 있고, 잔류자속밀도 Br가 10KG이상, 최대에너지적(BH)max 가 50MGOe이상이라는 우수한 성능을 표시하고 있다. 표 1에 중량부로 표시한 조성을 원자백분율로 표시한 것이 표 2, 중량백분율로 표시한 것이 표 3이다. 더욱, iHc,Br 및(BH)max의 값은 2개의 샘플의 평균치이다.All of the examples had the necessary conditions as a permanent magnet with coercive force iHc of 3 kOe or more, and exhibited excellent performances with a residual magnetic flux density Br of 10 KG or more and a maximum energy product (BH) max of 50 MGOe or more. Table 2 shows the composition expressed in parts by weight in Table 1 in Table 2, and Table 3 shows the percentages in Weight. Moreover, the values of iHc, Br and (BH) max are the average of two samples.

코발트의 증량 (실시예 2), 혹은 질소의 확산 (실시예 3)에 의하여 iHc는 변화하지 않지만 Br및 (BH)max는 매우 높은값을 나타내게 된다.The increase in cobalt (Example 2) or the diffusion of nitrogen (Example 3) does not change iHc but Br and (BH) max show very high values.

(발명의 효과)(Effects of the Invention)

제조가 용이하고 동시에 고가한 사마륨의 사용량이 적어서 좋은 자기특성이우수한 사마륨 ·철 ·붕소계 영구자석원료가 얻어진다.Samarium, iron, and boron-based permanent magnet raw materials are obtained, which are easy to manufacture and have a low amount of expensive samarium, and have excellent magnetic properties.

Claims (3)

FeOOH(goethite) 침상결정에 사마륨(Sm)과 코발트와의 합금으로 융점 700℃이하의 저융점 합금의 분말, 붕소분말 또는 페로-보론합금분말 및 코발트 분발 또는 코발트 철합금의 분말을 혼합하고, 수소 및 질소의 혼합가스 분위기하에서 300℃이상 상기 저융점 합금의 융점이하의 온도로 가열하여 FeOOH 침상결정을 환원하여 침상철분으로 하고, 계속하여 상기 저융점합금의 융점이상 1200℃이하의 온도로 가열하여 침상철분의 표층에 붕소 및 사마륨을 피복 ·확산시킨 후 생성물을 분쇄하는 것을 특징으로 하는 사마륨 ·철 ·붕소계 영구자석원료의 제조법.FeOOH (goethite) acicular crystal is mixed with alloy of samarium (Sm) and cobalt with low melting point powder below 700 ℃, boron powder or ferro-boron alloy powder, cobalt powder or cobalt iron alloy powder, and mixed with hydrogen. And heating to a temperature below the melting point of the low melting point alloy in a mixed gas atmosphere of nitrogen to reduce the FeOOH acicular crystal to form acicular iron powder, and then to a temperature below the melting point of the low melting point alloy above 1200 ° C. A method for producing a samarium-iron-boron-based permanent magnet material, characterized in that the product is ground after coating and diffusing boron and samarium on the surface of acicular iron powder. 제1항에 있어서, 원자백분율로 사마륨 0.3~7%, 붕소 1~10%를 함유하도록 원료를 배합하는 것을 특징으로 하는 영구자석원료의 제조법.The method of producing a permanent magnet raw material according to claim 1, wherein the raw material is blended so as to contain 0.3-7% of samarium and 1-10% of boron in atomic percentage. 제1항 또는 제2항에 있어서, 침상철분의 표층에 사마륨 및 붕소를 피복 ·확산시킨 후, 가압질소분위기하에서 열처리하는 것을 특징으로 하는 영구자석원료의 제조법.The method for producing a permanent magnet raw material according to claim 1 or 2, wherein the surface layer of acicular iron powder is coated and diffused with samarium and boron, and then heat-treated under a pressurized nitrogen atmosphere.
KR1019960003645A 1996-02-15 1996-02-15 Raw material for permanent magnets and production method of the same KR100366860B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960003645A KR100366860B1 (en) 1996-02-15 1996-02-15 Raw material for permanent magnets and production method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960003645A KR100366860B1 (en) 1996-02-15 1996-02-15 Raw material for permanent magnets and production method of the same

Publications (2)

Publication Number Publication Date
KR970063291A KR970063291A (en) 1997-09-12
KR100366860B1 true KR100366860B1 (en) 2003-03-15

Family

ID=49381585

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960003645A KR100366860B1 (en) 1996-02-15 1996-02-15 Raw material for permanent magnets and production method of the same

Country Status (1)

Country Link
KR (1) KR100366860B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR880002199A (en) * 1986-07-18 1988-04-29 이반 밀러 레르너 Hard magnetic material
KR950027854A (en) * 1994-03-30 1995-10-18 야스노리 다카하시 Permanent magnet raw material, its manufacturing method and permanent magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR880002199A (en) * 1986-07-18 1988-04-29 이반 밀러 레르너 Hard magnetic material
KR950027854A (en) * 1994-03-30 1995-10-18 야스노리 다카하시 Permanent magnet raw material, its manufacturing method and permanent magnet

Also Published As

Publication number Publication date
KR970063291A (en) 1997-09-12

Similar Documents

Publication Publication Date Title
US11942245B2 (en) Grain boundary engineering of sintered magnetic alloys and the compositions derived therefrom
EP0239031A1 (en) Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet
US5443617A (en) Powdery raw material composition for a permanent magnet
EP0249973B1 (en) Permanent magnetic material and method for producing the same
US5569333A (en) Process for producing a material for a permanent magnet
JPS60254708A (en) Manufacture of permanent magnet
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
JP2014132599A (en) Rare earth magnet powder, method for manufacturing the same, compound thereof, and bond magnet thereof
JPH01219143A (en) Sintered permanent magnet material and its production
JPH08203715A (en) Raw material for permanent magnet and manufacture thereof
JP4702522B2 (en) R-T-B system sintered magnet and manufacturing method thereof
KR100366860B1 (en) Raw material for permanent magnets and production method of the same
CA1036842A (en) Copper-hardened permanent-magnet alloy
JPH04241402A (en) Permanent magnet
JP2926161B2 (en) Manufacturing method of permanent magnet
JPS60254707A (en) Manufacture of permanent magnet
JPS62134907A (en) R-b-fe system sintered magnet and manufacture thereof
JPS6398107A (en) Manufacture of rare earth permanent magnet
JP2023007042A (en) Permanent magnet and manufacturing method thereof
JP3184355B2 (en) Alloy powder for sintered magnet and method for producing the same
JPH10229006A (en) Rare earth metal-iron-boron magnetic material and its manufacture
KR100394992B1 (en) Fabricating Method of NdFeB Type Sintered Magnet
KR100262674B1 (en) Method of manufacturing nd-fe-b type bonded magnets
JP2004071949A (en) Manufacturing method of rare earth sintered magnet
JPH0732200A (en) Production of sn-containing ndfeb sintered magnet having excellent corrosion resistance

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee