KR100353385B1 - Aluminum Nitride Sintered Body and Method of Preparing the Same - Google Patents

Aluminum Nitride Sintered Body and Method of Preparing the Same Download PDF

Info

Publication number
KR100353385B1
KR100353385B1 KR1020020018176A KR20020018176A KR100353385B1 KR 100353385 B1 KR100353385 B1 KR 100353385B1 KR 1020020018176 A KR1020020018176 A KR 1020020018176A KR 20020018176 A KR20020018176 A KR 20020018176A KR 100353385 B1 KR100353385 B1 KR 100353385B1
Authority
KR
South Korea
Prior art keywords
aluminum nitride
weight
sintered body
carbon
powder
Prior art date
Application number
KR1020020018176A
Other languages
Korean (ko)
Other versions
KR20020036985A (en
Inventor
야스히사 유시오
히로히꼬 나까따
가즈따까 사사끼
마스히로 나쯔하라
모또유끼 다나까
야스히로 무라세
Original Assignee
스미토모덴키고교가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스미토모덴키고교가부시키가이샤 filed Critical 스미토모덴키고교가부시키가이샤
Publication of KR20020036985A publication Critical patent/KR20020036985A/en
Application granted granted Critical
Publication of KR100353385B1 publication Critical patent/KR100353385B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

본 발명은 내열 충격성 및 강도가 우수하고, 파워 모듈용 방열 기판 및 반도체 제조 장치용 지그 등의 엄격한 가열 사이클 하에서 사용되는 용도에 적용가능한 질화알루미늄 소결체를 제공한다. 희토류 원소-알칼리 토류 원소 화합물계를 소결 조제로 하여 얻어지는 질화알루미늄 소결체로, 알칼리 토류 원소 화합물을 그 산화물로 환산하여 0.01 내지 5 중량%, 희토류 원소 화합물을 그 산화물로 환산하여 0.01 내지 10 중량% 포함하고, 소결체 중에 잔류하는 탄소량을 0.005 내지 0.1 중량%로 제어함으로써 입자 성장이 억제되고 소결체의 내열 충격성 및 강도가 개선된다.The present invention provides an aluminum nitride sintered body which is excellent in thermal shock resistance and strength and is applicable to applications used under strict heating cycles such as heat dissipation substrates for power modules and jigs for semiconductor manufacturing apparatuses. Aluminum nitride sintered body obtained by using rare earth element-alkaline earth element compound as sintering aid, 0.01 to 5% by weight of alkaline earth element compound as its oxide, 0.01 to 10% by weight of rare earth element compound as its oxide In addition, by controlling the amount of carbon remaining in the sintered body to 0.005 to 0.1% by weight, grain growth is suppressed and the thermal shock resistance and strength of the sintered body are improved.

Description

질화알루미늄 소결체 및 그 제조 방법 {Aluminum Nitride Sintered Body and Method of Preparing the Same}Aluminum Nitride Sintered Body and Method of Preparing the Same

본 발명은 질화알루미늄 소결체에 관한 것으로, 특히 저온 소결이 가능하고 고강도 및 고 열전도율을 갖는 질화알루미늄 소결체 및 그의 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum nitride sintered body, and more particularly, to an aluminum nitride sintered body capable of low temperature sintering and having a high strength and high thermal conductivity, and a method of manufacturing the same.

최근, 각종 전자 부품용 절연 기판으로서 종래부터 사용되어 온 알루미나 대신에 높은 열전도율과 낮은 저 열팽창율을 갖는 질화알루미늄(AlN)이 사용되고 있다.In recent years, aluminum nitride (AlN) having high thermal conductivity and low thermal expansion rate has been used in place of alumina which has conventionally been used as an insulating substrate for various electronic components.

그러나, 질화알루미늄의 소결 온도는 일반적으로 1800 ℃ 이상으로 비교적 높기 때문에 이에 충분히 대응할 수 있는 소결로 및 지그 부품 등이 없으며, 자주 소결로를 보수하고 지그 부품을 폐기 교환해야만 한다. 또한, 질화알루미늄이 고온에서 소결되기 때문에, 보다 많은 소결 에너지가 필요하다. 따라서, 질화알루미늄 소결체는 알루미나 소결체에 비해 고가이며, 이것이 질화알루미늄의 보급을 방해하는 한 요인이 되고 있다.However, since the sintering temperature of aluminum nitride is generally relatively high, such as 1800 ° C. or higher, there are no sintering furnaces and jig parts that can sufficiently cope with this, and the sintering furnace must be frequently repaired and the jig parts must be discarded and replaced. In addition, since aluminum nitride is sintered at a high temperature, more sintering energy is required. Therefore, the aluminum nitride sintered body is more expensive than the alumina sintered body, which is one factor that hinders the diffusion of aluminum nitride.

질화알루미늄 소결은 일반적으로 알루미나에 비해 어렵기 때문에, 그 소결에는 주로 알칼리 토류 원소 화합물 및 희토류 원소 화합물의 소결 조제가 사용되고 있다. 특히, 소결 온도를 낮추기 위해, 구체적으로는 1700 ℃ 이하의 소결을 가능하게 하기 위하여 알칼리 토류 원소 화합물과 희토류 원소 화합물의 병용이 검토되고 있다. 대표적으로, 칼슘 화합물과 이트륨 화합물을 조합한 소결 조제에 대하여 많은 연구가 행해져 왔다.Since aluminum nitride sintering is generally more difficult than alumina, sintering aids of alkaline earth element compounds and rare earth element compounds are mainly used for the sintering. In particular, in order to lower the sintering temperature, the use of an alkaline earth element compound and a rare earth element compound is specifically investigated in order to enable sintering at 1700 ° C. or lower. Typically, many studies have been conducted on sintering aids combining a calcium compound and a yttrium compound.

예를 들면, 특개소 61-117160호 공보에 CaCO3등의 알칼리 토류 원소 화합물과, La2O3등의 희토류 원소 화합물을 병용하여 제조한 소결 조제와 함께 1700 ℃ 이하에서 상압 소결하여 얻어지는 질화알루미늄 소결체가 기재되어 있다. 또한, 특개소 63-190761호 공보에는 CaO와 Y2O3를 병용하여 제조한 질화알루미늄의 소결 조제가 기재되어 있다.For example, aluminum nitride obtained by atmospheric pressure sintering at 1700 ° C. or lower with an sintering aid prepared by using an alkali earth element compound such as CaCO 3 and rare earth element compound such as La 2 O 3 in Japanese Patent Application Laid-Open No. 61-117160. Sintered bodies are described. Further, Japanese Patent Laid-Open No. 63-190761 describes a sintering aid of aluminum nitride produced by using CaO and Y 2 O 3 in combination.

질화알루미늄 소결체의 열전도율을 향상시키기 위하여, 탄소 및 탄소를 유리하는 물질을 이용하여 소결체 중의 알루미늄 산화물을 환원시키는 기술이 알려져 있다. 예를 들면, 특공평 7-5372 내지 6호의 각 공보에 이트륨 산화물을 소결 조제로 하고 유리 탄소를 이용하여 탄화알루미늄 중의 산화물을 질화시켜 질화알루미늄의 열전도율을 높이는 방법이 개시되어 있다. 또한, 특개소 58-55377호 공보에는 알칼리 금속 화합물을 소결 조제로 하고, 탄소 분말 등을 첨가함으로써 산소를 환원 제거하는 방법이 기술되어 있다.In order to improve the thermal conductivity of an aluminum nitride sintered compact, the technique of reducing the aluminum oxide in a sintered compact using the carbon and carbon free material is known. For example, a method of increasing the thermal conductivity of aluminum nitride is disclosed in each publication of Japanese Patent Application Laid-Open Nos. 7-5372 to 6 as a sintering aid and nitriding an oxide in aluminum carbide using free carbon. Further, Japanese Patent Application Laid-Open No. 58-55377 describes a method of reducing and removing oxygen by using an alkali metal compound as a sintering aid and adding carbon powder or the like.

그 밖에, 질화알루미늄 소결체 중의 희토류 원소 및 알칼리 토류 원소를 함유시킴으로써, 고강도의 두꺼운 금속막을 형성할 수 있는 것이 알려져 있다. 예를들면, 특공평 5-76795호 공보에 희토류 원소 및 알칼리 토류 원소로부터 선택되는 1종 이상을 함유하는 질화알루미늄 소결체 상에 Ag를 포함하는 페이스트 또는 Au를 포함하는 페이스트 중 적어도 하나로부터 제조된 도체부 또는 유전체부가 형성된 회로 기판이 개시되어 있다. 또한, 특공평 7-38491호 공보에는 희토류 원소 및 알칼리 토류 원소로부터 선택되는 1종 이상을 함유하는 질화알루미늄 소결체에 텅스텐, 몰리브덴 등의 고융점 금속의 도전층을 형성하는 방법이 기재되어 있다.In addition, it is known that a high strength thick metal film can be formed by containing a rare earth element and an alkaline earth element in an aluminum nitride sintered body. For example, a conductor prepared from at least one of a paste containing Ag or a paste containing Au on an aluminum nitride sintered body containing at least one selected from rare earth elements and alkaline earth elements in Japanese Patent Publication No. 5-76795 A circuit board in which portions or dielectric portions are formed is disclosed. Further, Japanese Patent Application Laid-Open No. 7-38491 describes a method of forming a conductive layer of a high melting point metal such as tungsten or molybdenum in an aluminum nitride sintered body containing at least one selected from rare earth elements and alkaline earth elements.

이와 같이, 알칼리 토류 원소 화합물과 희토류 원소 화합물을 배합하여 제조되는 새로운 소결 조제의 개발에 의해 1700 ℃ 이하의 저온에서 질화알루미늄의 소결이 가능하게 되었다. 이에 따라, 질화알루미늄 소결체의 열전도율이 향상된고, 파워 소자 등의 고발열성 반도체 소자 기판으로서 질화알루미늄 소결체의 사용이 점점 늘어나고 있다.As described above, the development of a new sintering aid prepared by blending the alkaline earth element compound and the rare earth element compound enables sintering of aluminum nitride at a low temperature of 1700 ° C or lower. Accordingly, the thermal conductivity of the aluminum nitride sintered body is improved, and the use of the aluminum nitride sintered body as a high heat generating semiconductor element substrate such as power devices is increasing.

그러나, 상기한 희토류 원소-알칼리 토류 원소계의 소결 조제를 사용하는 종래의 방법에서는, 질화알루미늄 소결체 중에 존재하는 산화물과 소결 조제 사이에 희토류 알루미늄 산화물, 알칼리 토류 알루미늄 산화물, 희토류 알칼리 토류 알루미늄 산화물 등이 생성된다. 이러한 산화물의 생성은 상술한 1700 ℃ 이하의 저온 소결을 위해 필요하지만, 한편 이들이 원인이 되어 소결체의 입경이 증가한다.However, in the conventional method using the rare earth element-alkaline earth element-based sintering aid, rare earth aluminum oxide, alkaline earth aluminum oxide, rare earth alkaline earth aluminum oxide, etc., are formed between the oxide present in the aluminum nitride sintered body and the sintering aid. Is generated. The production of such oxides is necessary for the low temperature sintering of 1700 ° C. or lower described above, but on the other hand, these cause the particle size of the sintered body to increase.

최근, 질화알루미늄은 파워 모듈용 방열 기판 및 반도체 제조 장치용 지그 등, 엄격한 가열 사이클하에서 사용되는 용도에 많이 적용되고 있다. 따라서, 내열 충격성, 나아가서는 세라믹스로서의 강도를 향상시킬 필요가 있다. 또한, 이와관련하여, 질화알루미늄 소결체의 평균 입경은 3 ㎛ 이하, 바람직하게는 2 ㎛ 이하이어야 한다. 그러나, 종래의 방법에서는 다량의 산화물이 생성됨으로써 입경이 증가되기 때문에 소결체 강도를 추가 향상시킬 수 없었다.In recent years, aluminum nitride has been widely applied to applications used under strict heating cycles, such as heat dissipation substrates for power modules and jigs for semiconductor manufacturing apparatuses. Therefore, it is necessary to improve the heat shock resistance, and also the strength as ceramics. In this regard, the average particle diameter of the aluminum nitride sintered body should be 3 µm or less, preferably 2 µm or less. However, in the conventional method, since a large amount of oxide is generated, the particle size is increased, so that the sintered body strength cannot be further improved.

본 발명은 이러한 종래의 사정을 고려하여, 소결 조제로서 희토류 원소와 알칼리 토류 원소를 사용하는 경우 입자 성장을 억제함으로써, 내열 충격성 및 강도가 우수하고 엄격한 가열 사이클 하에서 사용되는 파워 모듈용 방열 기판 및 반도체 제조 장치용 지그 등에 적용 가능한 질화알루미늄 소결체 및 그의 제조 방법을 제공하는 것을 목적으로 한다.In view of such a conventional situation, the present invention suppresses particle growth when using rare earth elements and alkaline earth elements as sintering aids, thereby providing excellent heat shock resistance and strength, and being used for power module heat dissipation substrates and semiconductors. It is an object of the present invention to provide an aluminum nitride sintered body applicable to a jig for a manufacturing apparatus and the like and a method of manufacturing the same.

상기 목적을 달성하기 위하여, 본 발명자들은 예의 연구를 거듭한 결과, 희토류 원소와 알칼리 토류 원소 화합물을 함유하는 소결 조제를 사용하는 경우에 그 배합량을 적절히 선택하고, 동시에 소결체 중에 잔류하는 탄소량을 제어함으로써 입자 성장을 억제할 수 있고, 질화알루미늄 소결체의 내열 충격성 및 강도를 크게 개선시킬 수 있음을 발견하고 본 발명을 구성하기에 이르렀다.In order to achieve the above object, the present inventors earnestly studied, and when using the sintering aid containing a rare earth element and an alkaline earth element compound, it selects the compounding quantity suitably and simultaneously controls the amount of carbon remaining in a sintered compact. It was found that the particle growth can be suppressed, and that the thermal shock resistance and strength of the aluminum nitride sintered body can be greatly improved, and the present invention has been made.

본 발명에 따른 질화알루미늄 소결체는 탄소를 0.005 중량% 이상 0.1 중량% 이하, 알칼리 토류 금속 원소를 그 산화물로 환산하여 0.01 중량% 이상 5 중량% 이하, 희토류 원소를 그 산화물로 환산하여 0.01 중량% 이상 10 중량% 이하로 포함하고, 나머지 주성분이 질화알루미늄이다.The aluminum nitride sintered body according to the present invention has a carbon content of 0.005% by weight or more and 0.1% by weight or less, 0.01% by weight or more and 5% by weight or less of an alkaline earth metal element, and 0.01% by weight or more of a rare earth element in terms of its oxide. 10 wt% or less, and the remaining main component is aluminum nitride.

바람직하게는, 알칼리 토류 금속 원소가 Ca, Sr 및 Ba로 이루어지는 군으로부터 선택되는 1종 이상을 포함한다.Preferably, the alkaline earth metal element contains at least one member selected from the group consisting of Ca, Sr and Ba.

바람직하게는, 희토류 원소가 Y, La, Ce, Sc, Yb, Nd, Er 및 Sm으로 이루어지는 군으로부터 선택되는 1종 이상을 포함한다.Preferably, the rare earth element contains at least one member selected from the group consisting of Y, La, Ce, Sc, Yb, Nd, Er and Sm.

바람직하게는, 소결체를 구성하는 질화알루미늄 입자의 평균 입경이 3 ㎛ 이하이다.Preferably, the average particle diameter of the aluminum nitride particle which comprises a sintered compact is 3 micrometers or less.

바람직하게는, 질화알루미늄 소결체는 후막 페이스트법에 의해 표면에 형성된 도전층 또는 절연층을 더 포함한다.Preferably, the aluminum nitride sintered body further includes a conductive layer or an insulating layer formed on the surface by a thick film paste method.

본 발명의 한 양태에 따른 질화알루미늄 소결체의 제조 방법은, 탄소 분말을 0.01 중량% 이상 2 중량% 이하, 알칼리 토류 금속 원소를 그 산화물로 환산하여 0.01 중량% 이상 5 중량% 이하, 희토류 원소를 그 산화물로 환산하여 0.01 중량% 이상 10 중량% 이하로 포함하고, 나머지 주성분이 질화알루미늄의 분말인 혼합 분말을 준비하는 단계, 혼합 분말을 사용하여 성형체를 형성하는 단계, 및 성형체를 소결시켜 소결체를 형성하는 단계를 포함한다.In the method for producing an aluminum nitride sintered body according to one embodiment of the present invention, at least 0.01% by weight and at most 2% by weight of carbon powder, and at least 0.01% by weight and at most 5% by weight of an alkaline earth metal element are converted into oxides thereof. Preparing a mixed powder comprising 0.01 wt% or more and 10 wt% or less in terms of oxide, wherein the remaining main component is a powder of aluminum nitride; forming a molded body using the mixed powder; and sintering the molded body to form a sintered body It includes a step.

바람직하게는, 소결 과정 중 온도 1500 ℃에서 소결체 중의 탄소 함유율이 0.01 중량% 이상 0.1 중량% 이하이다.Preferably, the carbon content in the sintered body is 0.01% by weight or more and 0.1% by weight or less at a temperature of 1500 ° C during the sintering process.

바람직하게는, 소결 온도가 1700 ℃ 이하이다.Preferably, the sintering temperature is 1700 ° C. or less.

바람직하게는, 질화알루미늄 분말의 평균 입경이 0.5 ㎛ 이상 2.0 ㎛ 이하이다.Preferably, the average particle diameter of aluminum nitride powder is 0.5 micrometer or more and 2.0 micrometers or less.

바람직하게는, 질화알루미늄 분말 중의 산소 함유율이 질화알루미늄 분말의 중량에 대하여 0.8 중량% 이상 1.5 중량% 이하이다.Preferably, the oxygen content in the aluminum nitride powder is 0.8 wt% or more and 1.5 wt% or less with respect to the weight of the aluminum nitride powder.

본 발명의 다른 양태에 따른 질화알루미늄 소결체의 제조 방법은, 탄소를 유리하는 화합물을 0.01 중량% 이상 20 중량% 이하, 알칼리 토류 금속 원소를 그 산화물로 환산하여 0.01 중량% 이상 5 중량% 이하, 희토류 원소를 그 산화물로 환산하여 0.01 중량% 이상 10 중량% 이하로 포함하고, 나머지 주성분이 질화알루미늄 분말인 혼합 분말을 준비하는 단계, 혼합 분말을 사용하여 성형체를 형성하는 단계, 성형체를 비산화성 분위기 하에 온도 150 ℃ 이상 1500 ℃ 이하의 조건으로 열처리하여 탄소를 유리시키는 단계, 및 열처리된 성형체를 소결시켜 소결체를 형성하는 단계를 포함한다.According to another aspect of the present invention, there is provided a method for producing an aluminum nitride sintered compact, wherein the carbon-free compound is 0.01% by weight to 20% by weight, and an alkaline earth metal element is converted into an oxide thereof by 0.01% by weight to 5% by weight, rare earth Preparing a mixed powder containing the elements in an amount of 0.01 wt% or more and 10 wt% or less, the remaining main component being aluminum nitride powder, forming a molded article using the mixed powder, and forming the molded article under a non-oxidizing atmosphere. Heat-treating to a temperature of 150 ° C. or higher and 1500 ° C. or lower to liberate carbon; and sintering the heat-treated molded body to form a sintered body.

바람직하게는, 탄소를 유리하는 화합물이 폴리아크릴로니트릴, 폴리비닐알코올, 폴리비닐부티랄, 폴리에틸렌테레프탈레이트, 글루코오스, 프룩토오스, 사카로스, 페놀-포름알데히드 수지 및 스테아린산으로 이루어지는 군으로부터 선택되는 1종 이상을 포함한다.Preferably, the compound that liberates carbon is selected from the group consisting of polyacrylonitrile, polyvinyl alcohol, polyvinyl butyral, polyethylene terephthalate, glucose, fructose, saccharose, phenol-formaldehyde resins and stearic acid It contains 1 or more types.

바람직하게는, 소결 과정 중 온도 1500 ℃에서 성형체 중의 탄소 함유율이 0.01 중량% 이상 0.1 중량% 이하이다.Preferably, the carbon content in the molded body is at least 0.01 wt% and at most 0.1 wt% at a temperature of 1500 ° C. during the sintering process.

바람직하게는, 소결 온도가 1700 ℃ 이하이다.Preferably, the sintering temperature is 1700 ° C. or less.

바람직하게는, 질화알루미늄 분말의 평균 입경이 0.5 ㎛ 이상 2.0 ㎛ 이하이다.Preferably, the average particle diameter of aluminum nitride powder is 0.5 micrometer or more and 2.0 micrometers or less.

바람직하게는, 질화알루미늄 분말 중의 산소 함유율이 질화알루미늄 분말의 중량에 대하여 0.8 중량% 이상 1.5 중량% 이하이다.Preferably, the oxygen content in the aluminum nitride powder is 0.8 wt% or more and 1.5 wt% or less with respect to the weight of the aluminum nitride powder.

본 발명의 또 다른 양태에 따른 질화알루미늄 소결체의 제조 방법은, 알칼리 토류 금속 원소를 그 산화물로 환산하여 0.01 중량% 이상 5 중량% 이하, 희토류 원소를 그 산화물로 환산하여 0.01 중량% 이상 10 중량% 이하로 포함하고, 나머지 주성분이 질화알루미늄 분말인 혼합 분말을 준비하는 단계, 혼합 분말을 사용하여 성형체를 형성하는 단계, 및 일산화탄소 및 탄화수소 1종 이상의 함유율이 10 체적% 이상 100 체적% 이하인 비산화성 분위기 하에 성형체를 소결시켜 소결체를 형성하는 단계를 포함한다.According to another aspect of the present invention, there is provided a method for producing an aluminum nitride sintered body, in which an alkaline earth metal element is converted into an oxide of 0.01% by weight or more and 5% by weight or less, and a rare earth element is converted into an oxide of 0.01% by weight or more and 10% by weight. A non-oxidizing atmosphere including the following, preparing a mixed powder in which the remaining main component is aluminum nitride powder, forming a molded body using the mixed powder, and having a content of at least 10% by volume and at most 100% by volume of carbon monoxide and hydrocarbons Sintering the molded body to form a sintered body.

바람직하게는, 소결 과정 중 온도 1500 ℃에서 성형체 중의 탄소 함유율이 0.01 중량% 이상 0.1 중량% 이하이다.Preferably, the carbon content in the molded body is at least 0.01 wt% and at most 0.1 wt% at a temperature of 1500 ° C. during the sintering process.

바람직하게는, 소결 온도가 1700 ℃ 이하이다.Preferably, the sintering temperature is 1700 ° C. or less.

바람직하게는, 질화알루미늄 분말의 평균 입경이 0.5 ㎛ 이상 2.0 ㎛ 이하이다.Preferably, the average particle diameter of aluminum nitride powder is 0.5 micrometer or more and 2.0 micrometers or less.

바람직하게는, 질화알루미늄 분말 중의 산소 함유율이 질화알루미늄 분말의 중량에 대하여 0.8 중량% 이상 1.5 중량% 이하이다.Preferably, the oxygen content in the aluminum nitride powder is 0.8 wt% or more and 1.5 wt% or less with respect to the weight of the aluminum nitride powder.

본 발명에 따르면, 희토류 원소와 알칼리 토류 금속 원소를 포함하는 소결 조제를 사용한 저온 소결에서도, 소결 조제의 양을 엄격히 제어하고, 동시에 소결체 중에 잔류하는 탄소량을 제어함으로써, 입자 성장을 억제하여 고 열전도율 등의 우수한 기본 성질을 유지한 채 안정된 강도를 갖는 질화알루미늄 소결체를 얻을 수 있다.According to the present invention, even at low temperature sintering using a sintering aid containing a rare earth element and an alkaline earth metal element, the amount of the sintering aid is strictly controlled, and at the same time, the amount of carbon remaining in the sintered body is controlled, thereby suppressing grain growth and high thermal conductivity. An aluminum nitride sintered body having stable strength can be obtained while maintaining excellent basic properties such as the like.

일반적으로, 소결체 중에 잔존하는 산화물은 소결 조제로서 배합되는 희토류 원소 또는 알칼리 토류 원소와 반응하여 희토류 알루미늄 산화물 또는 알칼리 토류 알루미늄 산화물을 생성하고, 결정 입계에 액상을 형성하여 소결을 촉진시킨다.그런데, 본 발명자들의 연구에 의하면, 적당한 양의 탄소가 존재하지 않는 경우에는 액상이 과잉 형성되어 그를 통한 물질 이동이 활발해지기 때문에, 결과적으로 소결체의 입경이 불필요하게 증대하는 것으로 밝혀졌다.In general, the oxide remaining in the sintered body reacts with the rare earth element or alkaline earth element to be blended as a sintering aid to produce rare earth aluminum oxide or alkaline earth aluminum oxide, and forms a liquid phase at the grain boundaries to promote sintering. According to the researches of the inventors, it is found that in the absence of a suitable amount of carbon, the liquid phase is excessively formed and the mass transfer through the active material becomes active. As a result, the particle size of the sintered body is unnecessarily increased.

본 발명은 상기한 질화알루미늄 소결체 중에 잔존하는 탄소량과 소결체의 입경 및 강도 사이에 밀접한 관계가 있다는 새로운 사실에 근거하여 이루어진 것이다. 즉, 소결체 중에 소정량의 탄소가 잔존하도록 탄소를 첨가함으로써 액상에 의한 저온 소결이 가능함과 동시에 소결체의 입경을 원하는 범위로 제한하는 것이 가능해졌다.The present invention is made based on the new fact that there is a close relationship between the amount of carbon remaining in the aluminum nitride sintered body and the particle size and strength of the sintered body. That is, by adding carbon so that a predetermined amount of carbon remains in the sintered body, low-temperature sintering is possible in the liquid phase, and the particle size of the sintered body can be limited to a desired range.

본 발명에 따르면, 질화알루미늄 소결체 중에 잔존하는 탄소가 0.005 내지 0.1 중량%가 되도록 제어하고, 소결 조제로부터 유래된 알칼리 토류 원소를 산화물로 환산하여 0.01 내지 5 중량% 및 희토류 원소 화합물을 그 산화물로 환산하여 0.01 내지 10 중량%로 조정한다. 그리하여, 입자 성장을 억제하여 입경의 증대를 없애고 소결체의 강도를 향상시킬 수 있다.According to the present invention, the carbon remaining in the aluminum nitride sintered body is controlled to be 0.005 to 0.1 wt%, and the alkaline earth element derived from the sintering aid is converted into an oxide to convert 0.01 to 5 wt% and a rare earth element compound into the oxide. To 0.01 to 10% by weight. Thus, the growth of the sintered body can be improved by suppressing the growth of the particle by suppressing the growth of the particles.

질화알루미늄 소결체 중에 존재하는 탄소량이 0.005 중량% 미만이면, 소결시에 존재하는 탄소량이 지나치게 적기 때문에 산화물이 충분히 환원될 수 없다. 따라서, 질화알루미늄 소결체의 입자 성장이 필요 이상으로 발생하여 큰 입자가 늘어나고, 그 결과 소결체의 강도가 저하된다. 또한, 탄소가 0.1 중량%를 넘게 잔존하면, 과잉 탄소에 의해 소결체 중의 산화물이 부족해진다. 따라서, 1700 ℃ 이하의 저온에서는 소결이 충분히 진행하지 않는다.If the amount of carbon present in the aluminum nitride sintered body is less than 0.005% by weight, the amount of carbon present in the sintering is too small, so that the oxide cannot be sufficiently reduced. Therefore, grain growth of the aluminum nitride sintered compact occurs more than necessary, and large particles increase, and as a result, the strength of the sintered compact decreases. Moreover, when carbon exceeds 0.1 weight%, the oxide in a sintered compact will run short by excess carbon. Therefore, sintering does not fully advance in low temperature below 1700 degreeC.

알칼리 토류 원소와 희토류 원소의 함유량을 상기 범위로 한정하는 것은, 각각의 함유량 미만에서는 소결 조제의 부족으로 인해 1700 ℃ 이하의 저온 소결에서 소결체 밀도가 저하되는 등 양질의 소결체를 얻지 못하기 때문이다. 또한, 반대로 상기 각 범위를 넘으면 질화알루미늄 소결체의 결정 입계 상에 과잉 알칼리 토류 알루미늄 산화물, 희토류 알루미늄 산화물, 알칼리 토류 희토류 알루미늄 산화물이 석출되어 열전도율을 저해하기 때문이다.The content of the alkaline earth element and rare earth element is limited to the above range because it is not possible to obtain a high quality sintered body such as lowering of the sintered body density at low temperature sintering of 1700 ° C or lower due to the lack of a sintering aid. On the contrary, it is because excess alkali earth aluminum oxide, rare earth aluminum oxide, and alkaline earth rare earth aluminum oxide precipitate on the crystal grain boundaries of the aluminum nitride sintered compact, and the thermal conductivity is inhibited.

알칼리 토류 원소는 Ca, Sr 및 Ba로 이루어지는 군으로부터 선택되는 1종 이상의 원소를 포함하는 것이 바람직하다. 희토류 원소는 Y, La, Ce, Sc, Yb, Nd, Er 및 Sm으로 이루어지는 군으로부터 선택되는 1종 이상의 원소를 포함하는 것이 바람직하다. 이들 알칼리 토류 원소 및 희토류 원소를 사용하면 열전도율 및 그 외 다른 여러 특성이 우수한 질화알루미늄 소결체를 얻을 수 있다.It is preferable that an alkaline earth element contains 1 or more types of elements chosen from the group which consists of Ca, Sr, and Ba. The rare earth element preferably comprises at least one element selected from the group consisting of Y, La, Ce, Sc, Yb, Nd, Er and Sm. By using these alkaline earth elements and rare earth elements, an aluminum nitride sintered body having excellent thermal conductivity and other various properties can be obtained.

본 발명의 질화알루미늄 소결체에서는 상기한 바와 같이 탄소에 의한 산화물 환원에 의해 입자 성장이 억제되기 때문에, 소결체의 평균 입경이 작아진다. 특히, 소결체의 평균 입경이 3 ㎛ 이하인 것이 바람직하고, 2 ㎛ 이하가 더욱 바람직하다. 평균 입경이 3 ㎛를 넘으면 질화알루미늄 소결체의 강도 및 내열 충격성이 저하되어, 특히 심한 가열 사이클 하에서 사용되는 파워 모듈용 방열 기판 및 반도체 제조 장치용 지그 등의 용도에 부적합해질 수 있기 때문이다.In the aluminum nitride sintered body of the present invention, grain growth is suppressed by the oxide reduction with carbon as described above, so that the average particle diameter of the sintered body becomes small. It is preferable that especially the average particle diameter of a sintered compact is 3 micrometers or less, and 2 micrometers or less are more preferable. This is because when the average particle diameter exceeds 3 µm, the strength and thermal shock resistance of the aluminum nitride sintered compact are lowered, which may make it unsuitable for applications such as power module heat dissipation substrates and jigs for semiconductor manufacturing apparatuses used under particularly severe heating cycles.

이하, 본 발명에 따른 질화알루미늄 소결체의 제조 방법에 대하여 설명한다. 본 발명 방법에서는 우선, 질화알루미늄 분말에 소결 조제로서 알칼리 토류 원소를 산화물로 환산하여 0.01 중량% 이상 5 중량% 이하, 희토류 원소를 산화물로 환산하여 0.01 중량% 이상 10 중량% 이하 첨가하고, 탄소 또는 탄소를 유리하는 화합물을추가로 첨가하여 혼합 분말을 제조한다. 이 혼합 분말로부터 성형체를 형성하고, 이 성형체를 소결한다. 이로써, 탄소가 잔존하는 질화알루미늄 소결체를 얻을 수 있다.Hereinafter, the manufacturing method of the aluminum nitride sintered compact which concerns on this invention is demonstrated. In the method of the present invention, first, at least 0.01% by weight and at most 5% by weight, in terms of oxides, are added to the aluminum nitride powder as an sintering aid, and at least 0.01% by weight and 10% or less, in terms of oxides, are added to carbon or A compound that liberates carbon is further added to form a mixed powder. A molded article is formed from this mixed powder, and the molded article is sintered. Thereby, the aluminum nitride sintered compact in which carbon remains can be obtained.

또는, 질화알루미늄 분말에 소결 조제를 상기 비율로 첨가하여 혼합 분말을 제조한다. 이 혼합 분말로부터 성형체를 형성하고, 이 성형체를 일산화탄소 가스 또는 탄화수소 가스를 포함하는 분위기 하에서 소결한다. 이로써, 탄소가 잔존하는 질화알루미늄 소결체를 얻을 수 있다.Alternatively, a sintering aid is added to the aluminum nitride powder in the above ratio to prepare a mixed powder. A molded article is formed from this mixed powder, and the molded article is sintered under an atmosphere containing carbon monoxide gas or hydrocarbon gas. Thereby, the aluminum nitride sintered compact in which carbon remains can be obtained.

본 발명의 방법은 얻어지는 질화알루미늄 소결체 중에 탄소를 잔존시키는 수단에 따라 3종류의 방법으로 나누어진다. 제1 방법에서는 소결 전의 질화알루미늄 분말과 소결 조제의 원료 분말에 탄소 분말을 카본 블랙 및 코크스 분말, 흑연 분말, 다이아몬드 분말 등의 형태로 첨가하여 소결한다. 첨가하는 탄소 분말의 양은 0.01 내지 2 중량%가 필요하다. 탄소 분말의 첨가량이 이 범위를 벗어나면 소결체 중에 잔존하는 탄소를 0.005 내지 0.1 중량%로 제어하는 것이 어렵고, 결과적으로 입경의 증대를 억제함으로써 소결체 강도를 향상시키는 것이 곤란해진다.The method of this invention is divided into three types of methods according to the means which remain | survives carbon in the obtained aluminum nitride sintered compact. In the first method, carbon powder is added to the aluminum nitride powder before sintering and the raw material powder of the sintering aid in the form of carbon black and coke powder, graphite powder, diamond powder and the like to sinter. The amount of carbon powder to be added needs 0.01 to 2% by weight. When the addition amount of the carbon powder is out of this range, it is difficult to control the carbon remaining in the sintered body to 0.005 to 0.1% by weight, and as a result, it is difficult to improve the strength of the sintered body by suppressing the increase in the particle size.

본 발명의 제2 방법은 질화알루미늄 소결시에 상기 탄소 분말 대신 탄소를 유리하는 화합물을 사용하는 방법이다. 구체적으로는 폴리아크릴로니트릴, 폴리비닐알코올, 폴리비닐부티랄, 폴리에틸렌테레프탈레이트, 글루코오스, 프룩토오스, 사카로스, 페놀-포름알데히드 수지 및 스테아린산으로 이루어지는 군으로부터 선택되는 1종 이상의 화합물을 선택하는 것이 바람직하다. 이들 화합물은 유기 용제 또는 물 중에 용해한 후, 질화알루미늄 분말을 첨가하여 혼합할 수 있기 때문에,탄소 분말을 첨가하는 상기 방법보다 소결체 중에 탄소를 균일하게 분산시킬 수 있다. 스테아린산은 소결 조제를 형성하는 희토류 원소 화합물로서 희토류염 형태로 첨가할 수 있다.The second method of the present invention is a method of using a compound which liberates carbon instead of the carbon powder in sintering aluminum nitride. Specifically, at least one compound selected from the group consisting of polyacrylonitrile, polyvinyl alcohol, polyvinyl butyral, polyethylene terephthalate, glucose, fructose, saccharose, phenol-formaldehyde resin and stearic acid is selected. It is preferable. Since these compounds can be dissolved in an organic solvent or water and then mixed with aluminum nitride powder, carbon can be more uniformly dispersed in the sintered body than the above method of adding carbon powder. Stearic acid may be added in the form of a rare earth salt as a rare earth element compound forming a sintering aid.

탄소를 유리하는 화합물을 사용하는 제2 방법에서는, 성형체를 비산화성 분위기 하에 150 내지 1500 ℃로 가열함으로써, 이들 화합물로부터 탄소를 유리시키고 산화물의 환원에 작용시킨다. 탄소를 유리하는 화합물의 첨가량은 0.01 내지 20 중량%의 범위이면 탄소 분말을 직접 첨가하는 상기 경우와 동등한 효과를 얻을 수 있다.In the second method using a compound that liberates carbon, the molded body is heated to 150 to 1500 ° C. under a non-oxidizing atmosphere, thereby freeing carbon from these compounds and acting on reduction of oxides. If the amount of the compound that liberates carbon is in the range of 0.01 to 20% by weight, the same effect as in the above case of directly adding carbon powder can be obtained.

본 발명의 제3 방법은 질화알루미늄 분말과 소결 조제의 혼합 분말로부터 제조된 성형체를 일산화탄소 가스 및 탄화수소 가스로부터 선택되는 1종 이상의 가스를 10 체적 % 이상 포함하는 비산화성 분위기 하에서 소결하는 방법이다. 이 경우에는 이들 가스의 반응성이 높기 때문에, 상술한 제1 방법과 제2 방법보다도 단시간에 소결체 중의 산화물을 환원시킬 수 있다. 또한, 이 방법에서는 가스의 조성을 상술한 범위 내로 제어함으로써, 최적량의 탄소를 간단히 소결체 중에 잔존시킬 수 있다.A third method of the present invention is a method of sintering a molded product made from a mixed powder of aluminum nitride powder and a sintering aid under a non-oxidizing atmosphere containing 10 vol% or more of at least one gas selected from carbon monoxide gas and hydrocarbon gas. In this case, since the reactivity of these gases is high, the oxide in a sintered compact can be reduced in a shorter time than the 1st method and the 2nd method mentioned above. In addition, in this method, by controlling the composition of the gas within the above-mentioned range, the optimum amount of carbon can be easily left in the sintered compact.

본 발명자들은 본 발명의 방법의 소결 과정을 상세히 관찰하여 검토한 결과, 결과 과정의 1500 ℃에서 성형체 또는 소결체 중의 탄소량이 0.01 내지 0.1 중량%일 때, 강도 등이 특히 우수한 질화알루미늄 소결체를 얻을 수 있음을 알았다. 소결이 시작되는 단계인 1500 ℃에서 탄소량이 0.01 중량% 미만이면, 이후의 산화물 환원 공정에서 탄소가 더 소비되기 때문에, 최종적으로 소결체 중에 잔존하는 탄소가 0.005 중량% 미만이 된다. 또한, 이 단계에서 탄소량이 0.1 중량%보다 많으면, 소결 후에 소결체의 입계 중에 탄소가 잔존하여, 불균일한 투과성에 의해 색 얼룩이 발생시키거나, 소결이 완전히 진행되지 않아 소결 밀도 불량을 초래한다. 따라서, 1300 내지 1500 ℃의 온도 범위에서 승온 속도를 1 ℃/분으로 하거나, 성형체를 이 온도 범위에 1 내지 10시간 유지함으로써 Al2O3+3C+N2→2AlN+3CO의 반응을 충분히 진행시켜 1500 ℃에서 잔류 탄소량을 제어할 필요가 있다.The inventors have observed and examined the sintering process of the method of the present invention in detail, and as a result, when the carbon content in the molded body or the sintered body is 0.01 to 0.1% by weight at 1500 ° C of the resultant process, the aluminum nitride sintered body having particularly high strength and the like can be obtained. I knew. If the amount of carbon is less than 0.01% by weight at 1500 ° C, at which the sintering starts, since carbon is further consumed in the subsequent oxide reduction step, the carbon remaining in the sintered body is finally less than 0.005% by weight. In addition, if the amount of carbon is more than 0.1% by weight at this stage, carbon remains in the grain boundary of the sintered body after sintering, causing color unevenness due to uneven permeability, or sintering does not proceed completely, resulting in poor sintering density. Therefore, the reaction of Al 2 O 3 + 3C + N 2 → 2AlN + 3CO is sufficiently proceeded by increasing the temperature increase rate to 1 ° C / min in the temperature range of 1300 to 1500 ° C or by maintaining the molded body in this temperature range for 1 to 10 hours. It is necessary to control the residual carbon amount at 1500 ° C.

본 발명의 방법에 따른, 상기 방법에서 질화알루미늄의 소결 온도는 1700 ℃ 이하인 것이 바람직하다. 소결 온도가 1700 ℃를 넘으면, 질화알루미늄 소결체 중에 잔존하는 탄소량이 0.005 내지 0.1 중량%가 되도록 탄소 등의 첨가를 제어한다고 해도 질화알루미늄 소결체 중의 입자 성장이 필요 이상 발생한다. 그 결과, 소결체의 평균 입경이 3 ㎛를 넘어 소결체의 강도가 저하된다.According to the method of the present invention, the sintering temperature of the aluminum nitride in the method is preferably 1700 ℃ or less. When the sintering temperature exceeds 1700 ° C., even if the addition of carbon or the like is controlled so that the amount of carbon remaining in the aluminum nitride sintered body becomes 0.005 to 0.1% by weight, grain growth in the aluminum nitride sintered body occurs more than necessary. As a result, the average particle diameter of a sintered compact exceeds 3 micrometers, and the intensity | strength of a sintered compact falls.

사용되는 질화알루미늄 분말의 평균 입경(d50)은 0.5 ㎛ 이상 2.0 ㎛ 이하의 범위가 바람직하다. 여기에서 평균 입경(d50)이란 입경 중, 가장 출현 빈도가 높은 입경을 말한다. 그 평균 입경이 2.0 ㎛를 넘으면, 초기 입경이 너무 커기지 때문에, 특히 평균 입경 3 ㎛ 이하의 미세한 입경을 갖는 소결체를 얻는 것이 곤란해진다. 반대로, 질화알루미늄 분말의 평균 입경이 0.5 ㎛ 미만이면 분말 성형시의 부피 밀도가 커져 성형 밀도를 높이는 것이 곤란해지고, 그 결과 성형체의 강도가 저하된다.The average particle diameter d 50 of the aluminum nitride powder to be used is preferably in the range of 0.5 µm or more and 2.0 µm or less. Here, the average particle diameter (d 50 ) means the particle diameter with the highest appearance frequency among the particle diameters. When the average particle diameter exceeds 2.0 µm, the initial particle size becomes too large, and therefore, it becomes difficult to obtain a sintered compact having a fine particle diameter of, in particular, an average particle diameter of 3 µm or less. On the contrary, when the average particle diameter of aluminum nitride powder is less than 0.5 micrometer, the bulk density at the time of powder shaping | molding becomes large and it becomes difficult to raise a shaping density, As a result, the intensity | strength of a molded object falls.

또한, 질화알루미늄 분말 중의 산소량은 0.8 중량% 이상 1.5 중량% 이하의범위가 바람직하다. 산소량이 0.8 중량% 미만이면 소결시에 소결 조제와 산화물 사이에 형성되는 액상량이 불충분하여 소결성이 저하될 수 있다. 산소량이 1.5 중량%를 넘으면 상기 액상량, 즉, 입계상의 양이 증가되어 소결 중에 과도한 입자 성장이 발생하기 쉽다.In addition, the amount of oxygen in the aluminum nitride powder is preferably in the range of 0.8% by weight to 1.5% by weight. If the amount of oxygen is less than 0.8% by weight, the amount of liquid phase formed between the sintering aid and the oxide at the time of sintering may be insufficient and the sinterability may be reduced. When the amount of oxygen exceeds 1.5% by weight, the amount of the liquid phase, that is, the amount of grain boundary phase is increased, and excessive grain growth is likely to occur during sintering.

특히, 본 발명에 따른 질화알루미늄 소결체에서는 후막 페이스트법에 의해 형성되는 도전층 또는 절연층의 밀착 강도가 향상되는 것이 입증되었다. 그 이유는 첫째로, 소결체의 평균 입경이 작아지기 때문에, 특히 3 ㎛ 이하가 되기 때문이고, 둘째로는 잔류 탄소에 의해 질화알루미늄 입자의 습윤성이 향상되기 때문이라고 생각된다.In particular, in the aluminum nitride sintered body according to the present invention, it has been proved that the adhesion strength of the conductive layer or the insulating layer formed by the thick film paste method is improved. The reason for this is, firstly, that the average particle diameter of the sintered compact becomes small, particularly 3 µm or less, and second, it is considered that the wettability of the aluminum nitride particles is improved by the residual carbon.

소결 조제로서의 알칼리 토류 원소 및 희토류 원소는 질화알루미늄 입자끼리의 밀착성 및 질화알루미늄 입자와 절연층 및 그 위에 형성되는 도전층 간의 밀착성을 향상시키는 효과가 있다. 알칼리 토류 원소 및 희토류 원소의 화합물은 일반적으로 소결체 중의 질화알루미늄 입자의 입계상 부근에 존재한다. 도전층과 절연층의 밀착 강도를 미세한 관점에서 보았을 경우, 소결 조제를 통해 질화알루미늄 입자끼리 결합하고 있는 입계상과 도전층이 접촉되어 있는 부분에서는 절연층과 도전층 사이의 밀착성이 높다. 그러나, 질화알루미늄 결정 입자가 절연층에 직접 접촉되어 있는 부분에서는, 밀착성이 낮다고 생각할 수 있다. 특히 평균 입경이 3 ㎛보다 큰 경우에는 큰 입경의 질화알루미늄이 소결체 중에 존재하기 때문에, 밀착성이 높은 입계상의 분포가 듬성등성해진다. 따라서, 밀착 강도가 불충분한 부분이 발생하며, 박리 강도 측정시와 같이 질화알루미늄 소결체와 도전층 또는 절연층사이에 인장 응력이 가해졌을 때, 이 부분에서 박리가 발생하기 쉽고 그 결과 밀착 강도가 저하될 수 있다.Alkaline earth elements and rare earth elements as sintering aids have the effect of improving the adhesion between the aluminum nitride particles and the adhesion between the aluminum nitride particles and the insulating layer and the conductive layer formed thereon. Compounds of alkaline earth elements and rare earth elements generally exist near the grain boundaries of aluminum nitride particles in the sintered body. When the adhesion strength of a conductive layer and an insulating layer is seen from a minute viewpoint, the adhesiveness between an insulating layer and a conductive layer is high in the part which the grain boundary phase which the aluminum nitride particles couple | bonded with the sintering aid, and the conductive layer contact. However, it can be considered that the adhesiveness is low in the portion where the aluminum nitride crystal particles are in direct contact with the insulating layer. In particular, when the average particle size is larger than 3 µm, aluminum nitride having a large particle size exists in the sintered compact, so that the distribution of the grain boundary phase with high adhesiveness becomes poor. Therefore, a portion where adhesion strength is insufficient is generated, and when tensile stress is applied between the aluminum nitride sintered body and the conductive layer or the insulating layer as in the peel strength measurement, peeling is likely to occur at this portion, and as a result, the adhesion strength is lowered. Can be.

이에 대하여, 본 발명에서는 상기 제1 이유로서, 질화알루미늄 소결체의 평균 입경이 작게, 바람직하게는 3 ㎛ 이하로 제어할 수 있다. 따라서, 이처럼 작은 입자 주위의 결정 입계에 넓은 범위에 걸쳐 알칼리 토류 원소 및 희토류 원소의 화합물이 균일하게 분포하고, 일부에 편재되는 일이 없어져 질화알루미늄 입자와 도전층 또는 절연층 사이의 밀착 강도가 한층 향상된다.On the other hand, in this invention, as said 1st reason, the average particle diameter of an aluminum nitride sintered compact is small, Preferably it can control to 3 micrometers or less. Therefore, the compound of the alkaline earth element and the rare earth element is uniformly distributed over a wide range in the grain boundary around such small particles, and it is not localized partially, and the adhesion strength between the aluminum nitride particles and the conductive layer or the insulating layer is further increased. Is improved.

이러한 화합물의 입계 분포와 별도로, 상기 제2의 이유와 같이 질화알루미늄 소결체에 탄소가 잔존함으로써 질화알루미늄 입자의 표면을 개질시키고, 도전층 및 절연층의 습윤성이 개선된다. 특히, 금속 성분과 절연층 사이의 습윤성이 향상되어 밀착 강도의 추가 향상이 달성된다. 그러나, 탄소가 과잉되면, 소결성이 저하되기 때문에 소결체 중에 잔존하는 탄소량은 0.005 중량% 이상 내지 0.1 중량% 이하의 범위가 바람직하다.Apart from the grain boundary distribution of such a compound, carbon remains in the aluminum nitride sintered body as in the second reason, thereby modifying the surface of the aluminum nitride particles and improving the wettability of the conductive layer and the insulating layer. In particular, the wettability between the metal component and the insulating layer is improved to achieve further improvement of the adhesion strength. However, when carbon is excessive, since sinterability falls, the amount of carbon remaining in a sintered compact is preferable in the range of 0.005 weight% or more and 0.1 weight% or less.

후막 페이스트법에 사용하는 페이스트는, 도전층 및 절연층 형성에 통상 사용되고 있는 것이 좋으며, 예를 들면, Ag, Ag-Pt, Ag-Pd 페이스트 등의 Ag계 페이스트, Cu계 페이스트, Au계 페이스트와 같은 전도 페이스트, RuO2, Ru, Bi2Ru2O7등의 저항 페이스트, 붕소규산납 유리 등을 주성분으로 하는 유도체 페이스트, W, Mo, TiN, ZrN 등의 고융점 페이스트를 사용할 수 있다.The paste used for the thick film paste method is preferably used for the formation of the conductive layer and the insulating layer. Examples of the paste include Ag-based pastes such as Ag, Ag-Pt, and Ag-Pd pastes, Cu-based pastes, and Au-based pastes. The same conductive paste, resistance pastes such as RuO 2 , Ru, Bi 2 Ru 2 O 7 , derivative pastes based on lead borosilicate glass, and the like, and high melting point pastes such as W, Mo, TiN, and ZrN can be used.

도전층 및 절연층의 형성 방법은 통상과 같이 질화알루미늄 소결체의 표면에페이스트를 스크린 인쇄하고, 소정의 온도에서 이를 가열함으로써 후막층을 형성하면 된다. 또는 W, Mo, TiN, ZrN 등의 고융점 페이스트를 소결 전의 성형체 표면에 도포하고, 성형체를 소결시킴과 동시에 소성시켜 도전층 또는 절연층을 형성할 수도 있다.In the method of forming the conductive layer and the insulating layer, a thick film layer may be formed by screen printing a paste on the surface of the aluminum nitride sintered body as usual and heating it at a predetermined temperature. Alternatively, a high melting point paste such as W, Mo, TiN, or ZrN may be applied to the surface of the molded body before sintering, and the molded body may be sintered and then fired to form a conductive layer or an insulating layer.

상기 본 발명의 목적 및 다른 목적, 특징, 양태 및 잇점이 하기 발명의 상세한 설명으로부터 보다 분명해질 것이다.The above and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the invention.

<바람직한 실시예의 형태><Mode of Preferred Embodiment>

<실시예 1><Example 1>

탄소 분말로서 하기 표 1에 기재된 양의 카본 블랙(BET 값(BET 등온 흡착식에 의해 계산한 단위 질량 당 표면적) 500 ㎡/g)과 산화칼슘 1 중량%와 산화이트륨 6 중량%에 직접 산화법에 의한 산화알루미늄 분말(평균 입경: 1.8 ㎛, 질화알루미늄에 대한 산소 함유율: 1.4 %)를 첨가하여 전체를 100 중량%로 하여 혼합 분말을 제조하였다. 혼합 분말에 결합제로서 폴리메틸메타크릴레이트, 가소제로서 디부틸프탈레이트와 벤질부틸프탈레이트의 혼합물, 용제로서 메틸에틸케톤과 톨루엔 혼합물을 첨가하고, 볼 밀에 의해 혼합하여 슬러리로 하였다.As a carbon powder, the carbon black (BET value (surface area per unit mass calculated by BET isothermal adsorption formula) 500 m 2 / g), 1% by weight of calcium oxide and 6% by weight of yttrium oxide by the direct oxidation method An aluminum oxide powder (average particle diameter: 1.8 mu m, oxygen content ratio to aluminum nitride: 1.4%) was added to prepare a mixed powder of 100 wt% in total. To the mixed powder, a mixture of polymethyl methacrylate as a binder, dibutyl phthalate and benzyl butyl phthalate as a plasticizer, and methyl ethyl ketone and toluene mixture as a solvent were added and mixed by a ball mill to obtain a slurry.

얻어진 슬러리를 탈포하고, 닥터 블레이드법에 의해 성형체로서의 질화알루미늄의 그린 시트를 제조하였다. 이 그린 시트 표면에 평균 입경 1 ㎛의 텅스텐 분말을 주성분으로 하고 동시에 5 중량%의 SiO2계 플릿을 포함하는 페이스트를 도포하고, 탈가스하였다. 그 후, 질소 분위기 하에서 온도 1700 ℃로 5시간 소성함으로써, 페이스트의 베이킹과 동시에 질화알루미늄의 소결을 행하였다. 또, 각 시료의 일부는 소결 과정 중의 온도 1500 ℃의 단계에서 꺼내, 그 시점에서 탄소량을 측정하였다.The obtained slurry was defoamed and the green sheet of aluminum nitride as a molded object was manufactured by the doctor blade method. On the green sheet surface, a paste containing tungsten powder having an average particle diameter of 1 mu m as a main component and 5 wt% of SiO 2 based flits was applied and degassed. Thereafter, by baking at a temperature of 1700 ° C. for 5 hours under a nitrogen atmosphere, aluminum nitride was sintered simultaneously with baking of the paste. In addition, a part of each sample was taken out at the stage of the temperature of 1500 degreeC during a sintering process, and the carbon amount was measured at that time.

이와 같이 하여 가로 및 세로 모두 25 mm이고 두께가 0.635 mm인 질화알루미늄 소결체의 편면 전면에 두께 10 ㎛의 텅스텐 금속화층을 형성하였다. 이들 각 시료에 대하여 그 텅스텐 금속화층상에 Ni-P 도금을 행한 후, 질소 분위기 하에서 600 ℃로 30분간 유지하여 같은 도금층을 소결하였다. 얻어진 금속화층과 도금층에는 부풀음, 박리 등의 이상은 보이지 않았다. 또, 모든 도금층의 두께도 6±0.3 ㎛의 범위에 들어 있었다.In this way, a tungsten metallization layer having a thickness of 10 μm was formed on the entire surface of one side of the aluminum nitride sintered body having a width of 25 mm and a thickness of 0.635 mm. Each of these samples was subjected to Ni-P plating on the tungsten metallization layer, and then held at 600 ° C. for 30 minutes in a nitrogen atmosphere to sinter the same plating layer. Abnormalities, such as swelling and peeling, were not seen in the obtained metallization layer and plating layer. Moreover, the thickness of all the plating layers was also in the range of 6 +/- 0.3 micrometer.

이들 각 시료에 길이 및 폭 모두 질화알루미늄 소결체와 동일하고, 동시에 두께가 1 mm인 JIS 호칭 C 1020의 전기 구리 소재를 얹고, 이들을 로(爐) 중의 세터에 나란히 배치하고, 질소 기류 중에서 온도 970 ℃로 30분간 무부하에서의 로중 접합을 행하였다. 이상과 같이 제작된 시험편(각 시료 10개)을 온도 0 ℃로 15분 유지한 후, 온도 100 ℃로 15분 유지하는 사이클을 100 사이클 반복하였다. 그 후, 이로 인해 발생한 질화알루미늄 소결체의 균열 비율(균열 발생 시료 수/시료 10개)로 소결체 강도를 상대 비교하였다. 또, 도전층을 형성하지 않은 질화알루미늄 소결체도 동일하게 제조하고, 각 시료마다 소결체의 평균 입경, 상대 밀도, 열전도율을 평가하였다. 이들 결과를 표 1에 나타내었다.On each of these samples, an electrical copper material of JIS nominal C 1020 having the same length and width as that of the aluminum nitride sintered body and having a thickness of 1 mm was placed, and these were placed side by side in a setter in a furnace, and the temperature was 970 ° C. in a nitrogen stream. Furnace bonding was performed at no load for 30 minutes. The test piece (10 samples each) produced as mentioned above was hold | maintained at the temperature of 0 degreeC for 15 minutes, and the cycle which hold | maintains at the temperature of 100 degreeC for 15 minutes was repeated 100 cycles. Then, the sintered compact strength was compared comparatively by the crack ratio (number of crack generation | generation samples / ten samples) of the aluminum nitride sintered compact which generate | occur | produced thereby. Moreover, the aluminum nitride sintered compact in which the conductive layer was not formed was similarly manufactured, and the average particle diameter, relative density, and thermal conductivity of the sintered compact were evaluated for each sample. These results are shown in Table 1.

시료sample 탄소분말 첨가량 (중량%)Carbon powder added amount (wt%) 1500℃ 탄소량 (중량%)1500 ℃ Carbon content (wt%) 소결체 탄소량 (중량%)Sintered body carbon amount (wt%) 균열발생Cracking AlN 소결체의 특성Characteristics of AlN Sintered Body 평균 입경 (㎛)Average particle size (㎛) 상대 밀도 (%)Relative Density (%) 열전도율 (W/mK)Thermal Conductivity (W / mK) 1One 0.0080.008 0.0070.007 0.0040.004 7/107/10 3.53.5 100100 100100 22 0.0130.013 0.0110.011 0.0070.007 2/102/10 2.92.9 100100 150150 33 0.030.03 0.030.03 0.020.02 1/101/10 2.82.8 100100 160160 44 0.10.1 0.070.07 0.060.06 0/100/10 2.72.7 100100 160160 55 0.30.3 0.080.08 0.070.07 0/100/10 2.52.5 100100 165165 66 1.01.0 0.090.09 0.080.08 0/100/10 1.81.8 9999 170170 77 1.91.9 0.0950.095 0.090.09 0/100/10 1.71.7 9999 170170 88 3.03.0 0.300.30 0.200.20 8/108/10 1.51.5 9595 160160

이 결과로부터 알 수 있는 바와 같이, 카본 블랙의 첨가량이 0.01 중량% 미만인 경우에는, 소결시의 산화물 환원이 불충분하기 때문에 소결체 중의 결정 입자의 성장이 일어나고, 소결체 강도가 저하되어 열 충격에 의해 균열이 발생한다. 또, 카본 블랙의 첨가량이 2 중량%을 넘는 경우에는 소결이 저해되어 소결체의 밀도가 저하되고, 역시 균열 발생이 많아지는 경향이 있다. 또, 소결 과정 중의 온도 1500 ℃에서 탄소량은 0.01 중량% 이상 0.1 중량% 이하의 범위로 하는 것이 바람직한 것을 알았다.As can be seen from this result, when the addition amount of carbon black is less than 0.01% by weight, since the oxide reduction during sintering is insufficient, growth of crystal grains in the sintered compact occurs, the sintered compact strength is lowered, and cracks are caused by thermal shock. Occurs. Moreover, when the addition amount of carbon black exceeds 2 weight%, sintering is inhibited and the density of a sintered compact falls, and also there exists a tendency for crack generation to increase. Moreover, it turned out that it is preferable to make carbon amount into the range of 0.01 weight% or more and 0.1 weight% or less at the temperature of 1500 degreeC during a sintering process.

<실시예 2><Example 2>

실시예 1과 동일하게, 질화알루미늄 소결체에 텅스텐 금속화층 및 Ni-P 도금층이 구비된 시료 1 내지 8를 형성하였다. 이 Ni-P 도금층상에 두께 0.2 mm x 폭 5.0 mm의 금속층을 접합 길이 3 mm가 되도록 접합하고, 접합부의 한쪽 끝에서 위쪽으로 직각으로 돌출시킨 금속층의 파지부를 20 mm/분의 속도로 위쪽으로 끌어당김으로써 금속화에 의한 도체층의 박리 강도를 측정하였다. 그 결과를 표 2에 나타내었다.In the same manner as in Example 1, Samples 1 to 8 provided with a tungsten metallization layer and a Ni-P plating layer were formed on the aluminum nitride sintered body. A metal layer having a thickness of 0.2 mm and a width of 5.0 mm was bonded on the Ni-P plated layer so as to have a joining length of 3 mm, and the gripped portion of the metal layer projected upwardly at right angles from one end of the joined portion at a rate of 20 mm / min. The peeling strength of the conductor layer by metallization was measured by pulling in. The results are shown in Table 2.

시료sample 박리 강도 (㎏/㎜)Peel Strength (kg / mm) 1One 1.3 내지 2.01.3 to 2.0 22 1.8 내지 2.51.8 to 2.5 33 2.0 내지 2.32.0 to 2.3 44 2.3 내지 2.62.3 to 2.6 55 2.4 내지 2.62.4 to 2.6 66 2.5 내지 2.82.5 to 2.8 77 2.4 내지 2.62.4 to 2.6 88 1.5 내지 1.71.5 to 1.7

이 결과로부터 알 수 있는 바와 같이, 카본 블랙의 첨가량이 0.01 중량% 이상 내지 2 중량% 이하인 시료 2 내지 7은 소결체 중의 입자 성장이 억제되고, 알칼리 토류 원소-희토류 원소 화합물의 분포가 균일해지기 때문에, 또 탄소의 존재에 의해 질화알루미늄 입자와 금속 사이의 습윤성이 향상되기 때문에, 도체층의 밀착 강도가 향상된다.As can be seen from these results, in the samples 2 to 7 in which the amount of carbon black added was 0.01% by weight or more and 2% by weight or less, grain growth in the sintered body was suppressed, and the distribution of the alkaline earth element-rare earth element compound became uniform. Moreover, since wettability between aluminum nitride particles and a metal improves by presence of carbon, the adhesive strength of a conductor layer improves.

그러나, 카본 블랙의 첨가량이 0.01 중량% 미만인 시료 1에서는, 입자 성장때문에 알칼리 토륨 원소-희토류 원소 화합물의 편재가 일어나고, 미세한 관점에서 보아 금속화 강도가 부족한 부분이 발생한다. 또한, 소결체 중의 탄소량도 저하되기 때문에 금속과 질화알루미늄 입자 사이의 습윤성도 저하된다. 이들 두가지 효과에 의해 박리 강도가 저하된다. 또한, 카본 블랙의 첨가량이 2 중량%를 넘는 시료 8에서는 소결성이 저하되어 소결체의 강도가 저하된다. 따라서, 박리 강도 평가를 수행하면 질화알루미늄 소결체 내부에서 균열이 일어나고, 역시 측정치도 저하되어 간다.However, in Sample 1 in which the amount of carbon black added is less than 0.01% by weight, uneven distribution of the alkaline thorium element-rare earth element compound occurs due to grain growth, and a part where the metallization strength is insufficient from a fine viewpoint occurs. Moreover, since the amount of carbon in a sintered compact also falls, the wettability between a metal and aluminum nitride particle also falls. By these two effects, peeling strength falls. Moreover, in sample 8 in which the addition amount of carbon black exceeds 2 weight%, sinterability falls and the strength of a sintered compact falls. Therefore, when peeling strength evaluation is performed, a crack will arise inside an aluminum nitride sintered compact, and also a measured value will fall.

<실시예 3><Example 3>

탄소를 유리하는 화합물로서 하기 표 3에 기재한 첨가량의 폴리비닐부티랄 (PVB)과 탄산칼슘을 산화물로 환산하여 1.13 중량%, 산화네오듐 3 중량%에 환원 질화법에 의한 질화알루미늄 분말(평균 입경 0.8 ㎛, 산소량 1.0 중량%)을 첨가하여 합계 100 중량%로 하여 혼합 분말로 하였다. 이 원료 분말을 실시예 1과 동일한 방법에 의해 성형체로서의 그린 시트를 제조한 후, 실시예 1과 동일하게 텅스텐 페이스트를 인쇄하였다. 이것을 질소 분위기 하에서 온도 1000 ℃로 10시간 열처리함으로써 탄소를 유리시킨 후, 온도 1650 ℃에서 5시간 소성하여 가로 및 세로 모두 25 mm이고 두께가 0.635 mm이고, 그 표면에 두께 10 ㎛의 텅스텐 금속화층이 형성된 질화알루미늄 소결체를 형성하였다.Aluminum nitride powder obtained by reduction nitriding in 1.13% by weight and 3% by weight of neodium oxide in terms of oxides containing polyvinyl butyral (PVB) and calcium carbonate in the amounts shown in Table 3 0.8 micrometer of particle diameters, 1.0 weight% of oxygen) were added, and it was set as 100 weight% in total, and it was set as the mixed powder. After producing this green powder as a molded object by the method similar to Example 1, tungsten paste was printed similarly to Example 1. The carbon was liberated by heat treatment at 1000 ° C. for 10 hours under nitrogen atmosphere, and then calcined at 1650 ° C. for 5 hours to be 25 mm wide and 0.635 mm thick, and a 10 μm thick tungsten metallization layer was formed on the surface thereof. The formed aluminum nitride sintered body was formed.

얻어진 각 질화알루미늄 소결체의 텅스텐 금속화층 상에 실시예 1과 동일한 Ni-P 도금층을 형성한 후, 실시예 1과 동일한 평가를 행하였다. 또, 이들 금속화층 및 도금층을 형성하지 않은 질화알루미늄 소결체도 동일하게 제조하고, 실시예 1과 동일하게 평가하였다. 이들 결과를 표 3과 함께 나타내었다.After forming Ni-P plating layer similar to Example 1 on the tungsten metallization layer of each obtained aluminum nitride sintered compact, it evaluated similarly to Example 1. Moreover, the aluminum nitride sintered compact in which these metallization layers and the plating layer were not formed was similarly manufactured, and evaluated similarly to Example 1. These results are shown in Table 3.

시료sample PVB 첨가량 (중량%)PVB addition amount (wt%) 1500℃ 탄소량 (중량%)1500 ℃ Carbon content (wt%) 소결체 탄소량 (중량%)Sintered body carbon amount (wt%) 균열 발생Cracks AlN 소결체의 특성Characteristics of AlN Sintered Body 평균 입경 (㎛)Average particle size (㎛) 상대 밀도 (%)Relative Density (%) 열전도율 (W/mK)Thermal Conductivity (W / mK) 99 0.0040.004 0.0070.007 0.0040.004 6/106/10 3.23.2 100100 9090 1010 0.0130.013 0.010.01 0.0070.007 2/102/10 2.82.8 100100 140140 1111 0.0400.040 0.0300.030 0.0210.021 1/101/10 2.62.6 100100 150150 1212 0.150.15 0.0590.059 0.0440.044 1/101/10 2.52.5 100100 152152 1313 0.500.50 0.0650.065 0.0510.051 0/100/10 2.42.4 9999 158158 1414 2.02.0 0.0710.071 0.0630.063 0/100/10 2.32.3 9999 162162 1515 6.06.0 0.0800.080 0.0710.071 1/101/10 2.22.2 9999 164164 1616 10.010.0 0.0890.089 0.0810.081 1/101/10 1.91.9 9999 166166 1717 18.018.0 0.0950.095 0.0920.092 2/102/10 1.81.8 9999 170170 1818 25.025.0 0.300.30 0.150.15 7/107/10 1.51.5 9696 150150

이것으로부터, 탄소원으로서 폴리비닐부티랄을 사용하고, 알카릴 토류 원소 화합물로서 탄산칼슘을, 희토류 원소 화합물로서 산화네오듐을 사용하는 경우에도 실시예 1과 동일하게 질화알루미늄 소결체 중에 탄소가 0.005 중량% 이상 0.10 중량% 이하의 범위에서 잔존하도록 제어하면, 강도가 우수한 질화알루미늄 소결체를 얻을 수 있음을 알았다.From this, even when polyvinyl butyral is used as the carbon source, calcium carbonate is used as the alkaline earth element compound and neodium oxide is used as the rare earth element compound, carbon is 0.005% by weight in the aluminum nitride sintered body as in Example 1. It was found that the aluminum nitride sintered body having excellent strength can be obtained by controlling to remain within the range of 0.10 wt% or more.

<실시예 4><Example 4>

탄산바륨을 산화물로 환산하여 3.14 중량%, 산화네오듐 8 중량%에 환원 질화법에 의한 질화알루미늄 분말(평균 입경: 1.5 ㎛, 질화알루미늄 분말의 중량에 대한 산소의 함유율: 1.2 중량%)을 첨가하고, 합계 100 중량%로 하여 혼합 분말을 준비하였다. 이 혼합 분말을 사용하여 실시예 1과 동일하게 닥터 블리드법에 의해 성형체로서의 그린 시트를 제조하였다. 각 그린 시트에 평균 입경 1 ㎛의 텅스텐 분말을 주성분으로 하고, 동시에 5 중량%의 SiO2계 플릿을 포함하는 페이스트를 도포하고, 탈가스한 후, 하기 표 4에 나타낸 분위기 하에서 온도 1600 ℃로 6시간 소성하여 페이스트의 베이킹과 동시에 질화알루미늄의 소결을 행하였다.Aluminum nitride powder (average particle size: 1.5 탆, oxygen content relative to the weight of aluminum nitride powder: 1.2% by weight) was added to 3.14% by weight of barium carbonate in terms of oxide and 8% by weight of neodymium by reduction nitriding. And mixed powder was prepared as 100 weight% in total. Using this mixed powder, the green sheet as a molded object was manufactured by the doctor bleeding method similarly to Example 1. Each green sheet contains tungsten powder having an average particle diameter of 1 μm as a main component, and at the same time is coated with a paste containing 5 wt% of SiO 2 based flits, degassed, and then heated to a temperature of 1600 ° C. under an atmosphere shown in Table 4 below. It baked for time and baked aluminum paste and sintered simultaneously.

이와 같이 가로 및 세로 모두 25 mm이고 두께 0.635 mm인 각 질화알루미늄 소결체의 평면 전면에 두께 10 ㎛의 텅스텐 금속화층을 형성하였다. 그 후, 텅스텐 금속화층상에 실시예 1과 동일한 Ni-P 도금층을 형성하고, 실시예 1과 동일한 평가를 행하였다. 또, 이들 금속화층 및 도금층을 형성하지 않은 질화알루미늄 소결체도 동일하게 제조하여 실시예 1과 동일하게 평가하였다. 이들 결과를 표 4에 함께 나타내었다.Thus, a tungsten metallization layer having a thickness of 10 µm was formed on the entire surface of the planar surface of each aluminum nitride sintered body having a width of 25 mm and a thickness of 0.635 mm. Then, the Ni-P plating layer similar to Example 1 was formed on the tungsten metallization layer, and the same evaluation as Example 1 was performed. Moreover, the aluminum nitride sintered compact in which these metallization layers and the plating layer were not formed was similarly produced, and evaluated similarly to Example 1. These results are shown together in Table 4.

시료sample 소결시의 분위기 (체적%)Atmosphere during sintering (% by volume) 소결체 탄소량 (중량%)Sintered body carbon amount (wt%) 균열 발생Cracks AlN 소결체 특성AlN Sintered Body Characteristics 평균 입경 (㎛)Average particle size (㎛) 상대 밀도 (%)Relative Density (%) 열전도율 (W/mK)Thermal Conductivity (W / mK) 1919 질소 (100)Nitrogen (100) 0.0010.001 8/108/10 3.73.7 100100 8585 2020 메탄 (5) + 질소 (95)Methane (5) + Nitrogen (95) 0.0030.003 3/103/10 3.33.3 100100 110110 2121 부탄 (15) + 암모니아 (85)Butane (15) + Ammonia (85) 0.0070.007 1/101/10 2.82.8 100100 120120 2222 아세틸렌 (30) + 질소 (70)Acetylene (30) + Nitrogen (70) 0.010.01 0/100/10 2.52.5 100100 120120 2323 부탄 (50) + 질소 (50)Butane (50) + Nitrogen (50) 0.020.02 0/100/10 2.32.3 100100 140140 2424 아세틸렌 (60) + 질소 (40)Acetylene (60) + Nitrogen (40) 0.040.04 0/100/10 2.42.4 100100 130130 2525 메탄 (80) + 암모니아 (20)Methane (80) + Ammonia (20) 0.060.06 0/100/10 1.91.9 100100 140140 2626 부탄 (100)Bhutan (100) 0.080.08 0/100/10 1.81.8 100100 130130

이들의 결과로부터, 소성 분위기 중의 탄화수소량에 의해 소결체 중에 잔존하는 탄소량을 제어할 수 있는 것, 또 탄화수소 가스가 10 체적% 이상의 분위기 하에서 소결함으로써 소결체 중의 탄소량은 0.005 중량% 이상 0.10 중량% 이하로 제어할 수 있고, 양호한 강도를 가진 질화알루미늄 소결체를 얻을 수 있음을 알았다.From these results, the amount of carbon remaining in the sintered compact can be controlled by the amount of hydrocarbons in the firing atmosphere, and the amount of carbon in the sintered compact is 0.005% by weight or more and 0.10% by weight or less by sintering the hydrocarbon gas in an atmosphere of 10% by volume or more. It was found that the aluminum nitride sintered body having a good strength can be obtained by controlling it with

<실시예 5>Example 5

실시예 3의 시료 (15)의 제조 방법과 동일한 방법에 의해 사용하는 질화알루미늄 분말의 평균 입경만을 하기 표 5와 같이 설정하여 질화알루미늄 소결체를 제조하고, 실시예 3과 동일한 평가를 행하였다. 그 결과를 표 5에 나타내었다.Only the average particle diameter of the aluminum nitride powder used by the manufacturing method of the sample 15 of Example 3 was set as Table 5 below, the aluminum nitride sintered compact was manufactured, and the same evaluation as Example 3 was performed. The results are shown in Table 5.

시료sample AlN 분말의 평균 입경 (㎛)Average particle size of AlN powder (㎛) 1500℃ 탄소량 (중량%)1500 ℃ Carbon content (wt%) 소결체 탄소량 (중량%)Sintered body carbon amount (wt%) 균열 발생Cracks AlN 소결체의 특성Characteristics of AlN Sintered Body 평균 입경 (㎛)Average particle size (㎛) 상대 밀도 (%)Relative Density (%) 열전도율 (W/mK)Thermal Conductivity (W / mK) 2727 0.40.4 (성형체에 균열 발생, 소결되지 않음)(Cracks in the molding, not sintered) 2828 0.60.6 0.130.13 0.110.11 4/104/10 1.91.9 9797 140140 1515 0.80.8 0.0800.080 0.0710.071 1/101/10 2.22.2 9999 164164 2929 1.31.3 0.0720.072 0.0420.042 1/101/10 2.62.6 9999 160160 3030 1.81.8 0.0440.044 0.0300.030 1/101/10 2.82.8 100100 152152 3131 2.42.4 0.0220.022 0.0150.015 5/105/10 3.53.5 100100 130130

(주) 시료(15)는 실시예 3의 시료(15)와 동일하다.(Note) The sample 15 is the same as the sample 15 of Example 3. As shown in FIG.

이 결과로부터, 원료의 질화알루미늄 분말의 평균 입경이 0.8 ㎛ 미만이면, 결합제가 질화알루미늄 분말 사이의 미세한 극간에 들어가, 결과적으로 성형체의 강도가 저하되어 균열이 발생하거나, 또는 탈지가 곤란해져 소결체 중에 과잉 탄소가 잔류하여 소결성이 저하되는 것을 알았다. 또한, 질화알루미늄 분말의 평균 입경이 2 ㎛를 넘으면, 소결체의 평균 입경이 3 ㎛를 넘고 결과적으로 소결체의 강도가 저하된다.From this result, if the average particle diameter of the aluminum nitride powder of a raw material is less than 0.8 micrometer, a binder will enter into the fine gap between aluminum nitride powders, As a result, the strength of a molded object will fall, a crack will arise, or degreasing will become difficult and it will be in a sintered compact. It was found that excess carbon remained and the sinterability decreased. Moreover, when the average particle diameter of aluminum nitride powder exceeds 2 micrometers, the average particle diameter of a sintered compact will exceed 3 micrometers, and as a result, the intensity | strength of a sintered compact will fall.

<실시예 6><Example 6>

실시예 4의 시료 (26)의 제조 방법과 동일한 방법에 의해 질화알루미늄 분말의 산소량만을 하기 표 6에 나타낸 바와 같이 설정하여 질화알루미늄 소결체를 제조하고, 실시예 4와 동일한 평가를 행하였다. 그 결과를 표 6에 나타내었다.By the same method as the manufacturing method of the sample 26 of Example 4, only the amount of oxygen of the aluminum nitride powder was set as shown in following Table 6, the aluminum nitride sintered compact was manufactured, and the same evaluation as Example 4 was performed. The results are shown in Table 6.

시료sample AlN 분말 산소량 (중량%)AlN powder oxygen content (wt%) 소결체 탄소량 (중량%)Sintered body carbon amount (wt%) 균열 발생Cracks AlN 소결체의 특성Characteristics of AlN Sintered Body 평균 입경 (㎛)Average particle size (㎛) 상대 밀도 (%)Relative Density (%) 열전도율 (W/mK)Thermal Conductivity (W / mK) 3232 0.50.5 0.090.09 5/105/10 1.71.7 9595 110110 3333 0.80.8 0.080.08 0/100/10 1.81.8 100100 133133 2626 1.21.2 0.080.08 0/100/10 1.81.8 100100 130130 3434 1.51.5 0.040.04 1/101/10 2.92.9 100100 122122 3535 2.02.0 0.030.03 6/106/10 3.33.3 100100 120120

(주) 시료(26)은 실시예 4의 시료(26)과 동일하다.(Note) The sample 26 is the same as the sample 26 of Example 4. FIG.

이것으로부터, 질화알루미늄 분말의 산소량이 0.8 중량% 미만에서는 소결성이 저하되기 때문에 소결체 강도도 열화되는 경우가 있고, 또 1.5 중량%을 넘는 경우에는 산소량을 제어할 수 없어 소결체의 평균 입경이 커진다. 따라서, 역시 소결체 강도가 저하되는 경우가 있는 것을 알았다.As a result, when the amount of oxygen of the aluminum nitride powder is less than 0.8% by weight, the sinterability is lowered because the sinterability is lowered. When the amount of oxygen is more than 1.5% by weight, the amount of oxygen cannot be controlled and the average particle diameter of the sintered body becomes large. Therefore, it turned out that the sintered compact strength may fall also.

<실시예 7><Example 7>

실시예 1의 시료 (3)의 제조 방법과 동일한 방법에 의해, 소결 온도만을 하기 표 7에 나타낸 바와 같이 설정하여 질화알루미늄 소결체를 제조하고, 실시예 1과 동일한 평가를 행하였다. 그 결과를 표 7에 나타내었다.By the method similar to the manufacturing method of the sample (3) of Example 1, only the sintering temperature was set as shown in following Table 7, the aluminum nitride sintered compact was manufactured, and the same evaluation as Example 1 was performed. The results are shown in Table 7.

시료sample 소결 온도 (℃)Sintering Temperature (℃) 1500℃ 탄소량 (중량%)1500 ℃ Carbon content (wt%) 소결체 탄소량 (중량%)Sintered body carbon amount (wt%) 균열 발생Cracks AlN 소결체의 특성Characteristics of AlN Sintered Body 평균 입도 (㎛)Average particle size (㎛) 상대 밀도 (%)Relative Density (%) 열전도율 (W/mK)Thermal Conductivity (W / mK) 3636 16001600 0.030.03 0.020.02 2/102/10 1.91.9 9999 120120 3737 16501650 0.030.03 0.020.02 2/102/10 2.32.3 100100 150150 33 17001700 0.030.03 0.020.02 1/101/10 2.82.8 100100 160160 3838 17501750 0.030.03 0.020.02 7/107/10 3.73.7 100100 180180 3939 18001800 0.030.03 0.020.02 8/108/10 4.04.0 100100 200200

(주) 시료(3)은 실시예 1의 시료(3)과 동일하다.(Note) The sample 3 is the same as the sample 3 of Example 1. FIG.

이 결과로부터, 소결 온도가 1700 ℃를 넘는 경우에는 소결체의 평균 입경이 3 ㎛보다 커지기 때문에, 소결체의 강도가 저하되어 결과적으로 실시예 1에서 설명한 가열 사이클 평가에서 균열 비율이 증대되는 것을 알았다.From this result, when the sintering temperature exceeds 1700 degreeC, since the average particle diameter of a sintered compact becomes larger than 3 micrometers, it turned out that the intensity | strength of a sintered compact falls and the crack ratio increased in the heating cycle evaluation demonstrated in Example 1 as a result.

<실시예 8><Example 8>

실시예 1의 제조 방법과 동일한 방법에 의해 산화이트륨과 산화칼슘의 소결체 중의 탄소 잔존량을 표 8에 나타낸 바와 같이 설정하여 제조하고, 실시예 1과 동일한 평가를 행하였다. 그 결과를 표 8에 나타내었다.By the method similar to the manufacturing method of Example 1, carbon residual amount in the sintered compact of yttrium oxide and calcium oxide was set as shown in Table 8, and it manufactured, and evaluated similarly to Example 1. The results are shown in Table 8.

시료sample 함유율Content 소결체 탄소량 (중량%)Sintered body carbon amount (wt%) 균열 발생Cracks 소결체 특성Sintered Body Characteristics Y2O3(중량%)Y 2 O 3 (% by weight) CaO (중량%)CaO (% by weight) 탄소 분말 (중량%)Carbon powder (wt%) 평균 입경 (㎛)Average particle size (㎛) 상대 밀도 (%)Relative Density (%) 열전도율 (W/mK)Thermal Conductivity (W / mK) 1One 0.0050.005 1.01.0 0.10.1 0.060.06 9/109/10 1.61.6 85.085.0 8080 22 0.050.05 1.01.0 0.10.1 0.060.06 1/101/10 2.42.4 99.099.0 152152 33 1One 1.01.0 0.10.1 0.060.06 0/100/10 2.62.6 100.0100.0 167167 44 66 1.01.0 0.10.1 0.060.06 0/100/10 2.72.7 100.0100.0 160160 55 99 1.01.0 0.10.1 0.060.06 0/100/10 2.42.4 99.499.4 165165 66 1212 1.01.0 0.10.1 0.060.06 2/102/10 2.32.3 99.099.0 110110 77 33 0.0050.005 0.10.1 0.060.06 10/1010/10 1.11.1 80.080.0 7575 88 33 0.050.05 0.10.1 0.060.06 1/101/10 2.32.3 99.099.0 154154 1010 33 1.01.0 0.10.1 0.060.06 0/100/10 2.62.6 100.0100.0 169169 1111 33 3.03.0 0.10.1 0.060.06 0/100/10 2.52.5 99.799.7 157157 1212 33 7.07.0 0.10.1 0.060.06 6/106/10 2.02.0 97.697.6 9898

(주) 시료(4)는 실시예 1의 시료(4)와 동일하다.(Note) The sample 4 is the same as the sample 4 of Example 1. FIG.

표 8로부터, Y2O3의 함유율이 0.01 중량% 이상, 10 중량% 이하이고, 동시에 CaO의 함유율이 0.01 중량% 이상, 5 중량% 이하이면 바람직한 특성을 얻을 수 있음을 알았다.From Table 8, and Y 2 O 3 content of less than 0.01% by weight or more, 10% by weight, at the same time, found that the content of CaO of 0.01 weight% to obtain the above, a preferred characteristic is not more than 5% by weight.

이상의 실시예로부터 명확해진 바와 같이, 본 발명에 의하면 희토류 원소-알칼리 토류 원소계의 소결 조제를 사용하는 질화알루미늄의 소결시, 탄소량을 제어함으로써 입자 성장을 억제하고, 내열 충격성 및 강도가 우수하고, 후막 페이스트법에 의한 도전층 또는 절연층과의 밀착 강도가 향상된 질화알루미늄 소결체를 제공할 수 있다. 따라서, 본 발명의 질화알루미늄 소결체는 파워 모듈용 방열 기판 및 반도체 제조 장치용 지그 등, 종래 이상으로 엄격한 가열 사이클하에서 사용되는 용도로 적용하는 것이 가능하다.As is clear from the above examples, according to the present invention, when sintering aluminum nitride using a rare earth element-alkaline earth element-based sintering aid, the growth of carbon is controlled by controlling the amount of carbon, and the thermal shock resistance and strength are excellent. The aluminum nitride sintered compact with improved adhesive strength with the conductive layer or the insulating layer by the thick film paste method can be provided. Therefore, the aluminum nitride sintered body of the present invention can be applied to applications used under strict heating cycles, such as heat radiating substrates for power modules and jigs for semiconductor manufacturing apparatuses.

Claims (6)

0.01 중량% 이상 0.05 중량% 이하의 탄소 분말, 산화물로 환산하여 0.01 중량% 이상 5 중량% 이하의 알칼리 토류 금속 원소, 산화물로 환산하여 0.01 중량% 이상 10 중량% 이하의 희토류 원소, 및 주로 질화알루미늄 분말로 구성되는 나머지 물질을 함유하는 혼합 분말을 준비하는 단계,0.01 wt% or more and 0.05 wt% or less of carbon powder, 0.01 wt% or more and 5 wt% or less of alkali earth metal elements in terms of oxide, 0.01 wt% or more and 10 wt% or less of rare earth elements in terms of oxide, and mainly aluminum nitride Preparing a mixed powder containing the remaining substance consisting of the powder, 상기 혼합 분말을 사용하여 성형체를 형성하는 단계, 및Forming a molded body using the mixed powder, and 상기 성형체를 소결시켜 소결체를 형성하는 단계Sintering the molded body to form a sintered body 를 포함하는, 질화알루미늄 소결체의 제조 방법.A manufacturing method of an aluminum nitride sintered body comprising a. 제1항에 있어서, 소결 과정 중 온도 1500 ℃에서 상기 성형체 중의 탄소 함유율이 0.01 중량% 이상 0.05 중량% 이하인 것인 질화알루미늄 소결체의 제조 방법.The method for producing an aluminum nitride sintered compact according to claim 1, wherein the carbon content in the molded body is 0.01% by weight or more and 0.05% by weight or less at a temperature of 1500 ° C during the sintering process. 제1항에 있어서, 소결 온도가 1500 ℃ 이상 1700 ℃ 이하인 것인 질화알루미늄 소결체의 제조 방법.The manufacturing method of the aluminum nitride sintered compact of Claim 1 whose sintering temperature is 1500 degreeC or more and 1700 degrees C or less. 제1항에 있어서, 상기 질화알루미늄 분말의 평균 그레인 크기가 0.5 ㎛ 이상 2.0 ㎛ 이하인 것인 질화알루미늄 소결체의 제조 방법.The manufacturing method of the aluminum nitride sintered compact of Claim 1 whose average grain size of the said aluminum nitride powder is 0.5 micrometer or more and 2.0 micrometers or less. 제1항에 있어서, 상기 질화알루미늄 분말 중의 산소 함유율이 상기 질화알루미늄 분말의 총중량에 대하여 0.8 중량% 이상 1.5 중량% 이하인 것인 질화알루미늄 소결체의 제조 방법.The manufacturing method of the aluminum nitride sintered compact of Claim 1 whose oxygen content rate in the said aluminum nitride powder is 0.8 weight% or more and 1.5 weight% or less with respect to the total weight of the said aluminum nitride powder. 제1항에 있어서, 상기 혼합 분말이 0.04 중량% 이하의 탄소 분말을 함유하는 것인 질화알루미늄 소결체의 제조 방법.The manufacturing method of the aluminum nitride sintered compact of Claim 1 in which the said mixed powder contains 0.04 weight% or less of carbon powder.
KR1020020018176A 1998-07-22 2002-04-03 Aluminum Nitride Sintered Body and Method of Preparing the Same KR100353385B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-1998-00206353 1998-07-22
JP20635398A JP4812144B2 (en) 1998-07-22 1998-07-22 Aluminum nitride sintered body and manufacturing method thereof
KR1019990029427A KR100353387B1 (en) 1998-07-22 1999-07-21 Aluminum Nitride Sintered Body and Method of Preparing the Same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1019990029427A Division KR100353387B1 (en) 1998-07-22 1999-07-21 Aluminum Nitride Sintered Body and Method of Preparing the Same

Publications (2)

Publication Number Publication Date
KR20020036985A KR20020036985A (en) 2002-05-17
KR100353385B1 true KR100353385B1 (en) 2002-09-19

Family

ID=16521919

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1019990029427A KR100353387B1 (en) 1998-07-22 1999-07-21 Aluminum Nitride Sintered Body and Method of Preparing the Same
KR1020020018176A KR100353385B1 (en) 1998-07-22 2002-04-03 Aluminum Nitride Sintered Body and Method of Preparing the Same
KR1020020018180A KR100353386B1 (en) 1998-07-22 2002-04-03 Aluminum Nitride Sintered Body and Method of Preparing the Same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1019990029427A KR100353387B1 (en) 1998-07-22 1999-07-21 Aluminum Nitride Sintered Body and Method of Preparing the Same

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020020018180A KR100353386B1 (en) 1998-07-22 2002-04-03 Aluminum Nitride Sintered Body and Method of Preparing the Same

Country Status (7)

Country Link
US (2) US6271163B1 (en)
EP (1) EP0974565B1 (en)
JP (1) JP4812144B2 (en)
KR (3) KR100353387B1 (en)
CN (2) CN1689732B (en)
CA (1) CA2277346C (en)
DE (1) DE69921909T2 (en)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4812144B2 (en) * 1998-07-22 2011-11-09 住友電気工業株式会社 Aluminum nitride sintered body and manufacturing method thereof
WO2001017927A1 (en) * 1999-09-06 2001-03-15 Ibiden Co., Ltd. Carbon-containing aluminium nitride sintered compact and ceramic substrate for use in equipment for manufacturing or inspecting semiconductor
US20030098299A1 (en) * 2000-03-06 2003-05-29 Ibiden Co., Ltd. Ceramic heater
FR2845078B1 (en) * 2002-09-26 2004-10-29 Alstom PROCESS FOR THE MANUFACTURE OF A SUBSTRATE OF ALNINUM NITRIDE AlN
JP4939932B2 (en) * 2004-03-29 2012-05-30 電気化学工業株式会社 Aluminum nitride powder and method for producing the same
JP2005281046A (en) * 2004-03-29 2005-10-13 Ngk Insulators Ltd Aluminum nitride substrate and method of manufacturing the same
US8052918B2 (en) * 2004-07-21 2011-11-08 Nissin Kogyo Co., Ltd. Carbon-based material and method of producing the same, and composite material and method of producing the same
JP4279220B2 (en) * 2004-09-09 2009-06-17 日信工業株式会社 Composite material and manufacturing method thereof, composite metal material and manufacturing method thereof
JP4740002B2 (en) * 2006-03-20 2011-08-03 日本碍子株式会社 Aluminum nitride sintered body, member for semiconductor manufacturing apparatus, and method for manufacturing aluminum nitride sintered body
CN101638319B (en) * 2008-07-29 2012-12-12 比亚迪股份有限公司 Aluminum nitride composite material preparation method
US9276336B2 (en) 2009-05-28 2016-03-01 Hsio Technologies, Llc Metalized pad to electrical contact interface
US9536815B2 (en) 2009-05-28 2017-01-03 Hsio Technologies, Llc Semiconductor socket with direct selective metalization
WO2010138493A1 (en) 2009-05-28 2010-12-02 Hsio Technologies, Llc High performance surface mount electrical interconnect
US9184145B2 (en) 2009-06-02 2015-11-10 Hsio Technologies, Llc Semiconductor device package adapter
WO2010141311A1 (en) 2009-06-02 2010-12-09 Hsio Technologies, Llc Compliant printed circuit area array semiconductor device package
WO2010141316A1 (en) 2009-06-02 2010-12-09 Hsio Technologies, Llc Compliant printed circuit wafer probe diagnostic tool
US9318862B2 (en) 2009-06-02 2016-04-19 Hsio Technologies, Llc Method of making an electronic interconnect
WO2010141295A1 (en) 2009-06-02 2010-12-09 Hsio Technologies, Llc Compliant printed flexible circuit
US8928344B2 (en) 2009-06-02 2015-01-06 Hsio Technologies, Llc Compliant printed circuit socket diagnostic tool
US9613841B2 (en) 2009-06-02 2017-04-04 Hsio Technologies, Llc Area array semiconductor device package interconnect structure with optional package-to-package or flexible circuit to package connection
US9699906B2 (en) 2009-06-02 2017-07-04 Hsio Technologies, Llc Hybrid printed circuit assembly with low density main core and embedded high density circuit regions
US9603249B2 (en) 2009-06-02 2017-03-21 Hsio Technologies, Llc Direct metalization of electrical circuit structures
US9930775B2 (en) 2009-06-02 2018-03-27 Hsio Technologies, Llc Copper pillar full metal via electrical circuit structure
US8987886B2 (en) 2009-06-02 2015-03-24 Hsio Technologies, Llc Copper pillar full metal via electrical circuit structure
US9136196B2 (en) 2009-06-02 2015-09-15 Hsio Technologies, Llc Compliant printed circuit wafer level semiconductor package
US9184527B2 (en) 2009-06-02 2015-11-10 Hsio Technologies, Llc Electrical connector insulator housing
WO2010141318A1 (en) 2009-06-02 2010-12-09 Hsio Technologies, Llc Compliant printed circuit peripheral lead semiconductor test socket
US9231328B2 (en) 2009-06-02 2016-01-05 Hsio Technologies, Llc Resilient conductive electrical interconnect
WO2012074963A1 (en) 2010-12-01 2012-06-07 Hsio Technologies, Llc High performance surface mount electrical interconnect
US8988093B2 (en) 2009-06-02 2015-03-24 Hsio Technologies, Llc Bumped semiconductor wafer or die level electrical interconnect
WO2010147934A1 (en) 2009-06-16 2010-12-23 Hsio Technologies, Llc Semiconductor die terminal
WO2010141266A1 (en) 2009-06-02 2010-12-09 Hsio Technologies, Llc Compliant printed circuit peripheral lead semiconductor package
US8610265B2 (en) 2009-06-02 2013-12-17 Hsio Technologies, Llc Compliant core peripheral lead semiconductor test socket
US8525346B2 (en) 2009-06-02 2013-09-03 Hsio Technologies, Llc Compliant conductive nano-particle electrical interconnect
US9276339B2 (en) 2009-06-02 2016-03-01 Hsio Technologies, Llc Electrical interconnect IC device socket
US9232654B2 (en) 2009-06-02 2016-01-05 Hsio Technologies, Llc High performance electrical circuit structure
US8618649B2 (en) 2009-06-02 2013-12-31 Hsio Technologies, Llc Compliant printed circuit semiconductor package
US9196980B2 (en) 2009-06-02 2015-11-24 Hsio Technologies, Llc High performance surface mount electrical interconnect with external biased normal force loading
WO2012078493A1 (en) 2010-12-06 2012-06-14 Hsio Technologies, Llc Electrical interconnect ic device socket
WO2010141298A1 (en) 2009-06-02 2010-12-09 Hsio Technologies, Llc Composite polymer-metal electrical contacts
US8803539B2 (en) 2009-06-03 2014-08-12 Hsio Technologies, Llc Compliant wafer level probe assembly
US8981568B2 (en) 2009-06-16 2015-03-17 Hsio Technologies, Llc Simulated wirebond semiconductor package
US9320144B2 (en) 2009-06-17 2016-04-19 Hsio Technologies, Llc Method of forming a semiconductor socket
US8984748B2 (en) 2009-06-29 2015-03-24 Hsio Technologies, Llc Singulated semiconductor device separable electrical interconnect
US8981809B2 (en) 2009-06-29 2015-03-17 Hsio Technologies, Llc Compliant printed circuit semiconductor tester interface
US9136819B2 (en) * 2012-10-27 2015-09-15 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonator having piezoelectric layer with multiple dopants
US8609254B2 (en) 2010-05-19 2013-12-17 Sanford Process Corporation Microcrystalline anodic coatings and related methods therefor
US8512872B2 (en) 2010-05-19 2013-08-20 Dupalectpa-CHN, LLC Sealed anodic coatings
US10159154B2 (en) 2010-06-03 2018-12-18 Hsio Technologies, Llc Fusion bonded liquid crystal polymer circuit structure
US9689897B2 (en) 2010-06-03 2017-06-27 Hsio Technologies, Llc Performance enhanced semiconductor socket
US9350093B2 (en) 2010-06-03 2016-05-24 Hsio Technologies, Llc Selective metalization of electrical connector or socket housing
US8758067B2 (en) 2010-06-03 2014-06-24 Hsio Technologies, Llc Selective metalization of electrical connector or socket housing
TWI447067B (en) * 2011-08-04 2014-08-01 Method for making a pure aluminum nitride substrate
US9761520B2 (en) 2012-07-10 2017-09-12 Hsio Technologies, Llc Method of making an electrical connector having electrodeposited terminals
US20140066287A1 (en) * 2012-08-31 2014-03-06 CMC Laboratories, Inc. Low Cost Manufacture of High Reflectivity Aluminum Nitride Substrates
JP6239518B2 (en) * 2012-09-07 2017-11-29 株式会社トクヤマ Method for producing water-resistant aluminum nitride powder
EP2803756A1 (en) 2013-05-13 2014-11-19 Atotech Deutschland GmbH Method for depositing thick copper layers onto sintered materials
JP5966199B2 (en) * 2013-05-31 2016-08-10 株式会社デンソー Piezoelectric thin film and manufacturing method thereof
US10667410B2 (en) 2013-07-11 2020-05-26 Hsio Technologies, Llc Method of making a fusion bonded circuit structure
US10506722B2 (en) 2013-07-11 2019-12-10 Hsio Technologies, Llc Fusion bonded liquid crystal polymer electrical circuit structure
US10340885B2 (en) 2014-05-08 2019-07-02 Avago Technologies International Sales Pte. Limited Bulk acoustic wave devices with temperature-compensating niobium alloy electrodes
KR102339563B1 (en) * 2014-06-02 2021-12-16 주식회사 미코세라믹스 Baffle structure applying plasma chemical vapor deposition apparatus and method for manufacturing the same
US9559447B2 (en) 2015-03-18 2017-01-31 Hsio Technologies, Llc Mechanical contact retention within an electrical connector
CN106220186A (en) * 2016-08-05 2016-12-14 郭迎庆 A kind of preparation method of ceramic base electronic substrate
WO2018216591A1 (en) * 2017-05-22 2018-11-29 東洋アルミニウム株式会社 Aluminum nitride-based powder and method for producing same
KR102141812B1 (en) * 2017-07-24 2020-08-07 쇼와 덴코 가부시키가이샤 Sintered aluminum nitride and its manufacturing method
CN108706980A (en) * 2018-06-27 2018-10-26 深圳市商德先进陶瓷股份有限公司 Aluminium nitride ceramics and preparation method thereof, electrostatic chuck and application
JP6589021B1 (en) 2018-08-06 2019-10-09 株式会社Maruwa Spherical aluminum nitride powder and method for producing spherical aluminum nitride powder
KR20210036141A (en) * 2019-09-25 2021-04-02 주식회사 케이씨씨 Aluminum Nitride Sintered Body and Method for Preparing Aluminum Nitride Sintered Body
CN115304383A (en) * 2022-08-19 2022-11-08 广东省先进陶瓷材料科技有限公司 Aluminum nitride substrate and preparation method and application thereof
CN115403043B (en) * 2022-08-19 2023-07-11 四川大学 Preparation method of rare earth element carbide, nitride or carbonitride powder
CN116425552B (en) * 2023-04-24 2024-04-26 广东省先进陶瓷材料科技有限公司 Aluminum nitride substrate and preparation method and application thereof

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855377A (en) 1981-09-28 1983-04-01 株式会社東芝 Manufacture of aluminum nitride sintered body
US4578234A (en) 1984-10-01 1986-03-25 General Electric Company Process of pressureless sintering to produce dense high thermal conductivity ceramic body of deoxidized aluminum nitride
US4578233A (en) 1984-11-01 1986-03-25 General Electric Company Pressureless sintering process to produce high thermal conductivity ceramic body of aluminum nitride
JPH0649613B2 (en) 1984-11-08 1994-06-29 株式会社東芝 Aluminum nitride sintered body and manufacturing method thereof
US4746637A (en) * 1984-11-08 1988-05-24 Kabushiki Kaisha Toshiba Aluminum nitride sintered body and process for producing the same
US4578365A (en) 1984-11-26 1986-03-25 General Electric Company High thermal conductivity ceramic body of aluminum nitride
US4578364A (en) 1984-12-07 1986-03-25 General Electric Company High thermal conductivity ceramic body of aluminum nitride
US4578232A (en) 1984-12-17 1986-03-25 General Electric Company Pressureless sintering process to produce high thermal conductivity ceramic body of aluminum nitride
DE3650264T2 (en) 1985-06-28 1995-08-24 Toshiba Kawasaki Kk Aluminum nitride sintered body and process for its production.
US5001089A (en) 1985-06-28 1991-03-19 Kabushiki Kaisha Toshiba Aluminum nitride sintered body
JPH0717454B2 (en) * 1985-06-28 1995-03-01 株式会社東芝 Aluminum nitride sintered body and manufacturing method thereof
JPS63190761A (en) * 1987-01-30 1988-08-08 京セラ株式会社 Aluminum nitride-base sintered body
US5314850A (en) * 1985-10-31 1994-05-24 Kyocera Corporation Aluminum nitride sintered body and production thereof
US5154863A (en) 1985-10-31 1992-10-13 Kyocera Corporation Aluminum nitride-based sintered body and process for the production thereof
US4770953A (en) * 1986-02-20 1988-09-13 Kabushiki Kaisha Toshiba Aluminum nitride sintered body having conductive metallized layer
JP2578114B2 (en) 1987-05-08 1997-02-05 株式会社東芝 Method for producing high thermal conductive aluminum nitride sintered body
JPH01203270A (en) 1988-02-08 1989-08-16 Sumitomo Electric Ind Ltd Sintered aluminum nitride body having high thermal conductivity and its production
US5273700A (en) * 1990-10-29 1993-12-28 Sumitomo Electric Industries Ltd. Aluminum nitride sintered body and process for producing the same
JPH0647085B2 (en) 1991-09-24 1994-06-22 三菱化工機株式会社 Screw type centrifuge
JP3141505B2 (en) * 1992-03-03 2001-03-05 日立金属株式会社 Aluminum nitride sintered body and method for producing the same
US6004705A (en) * 1992-07-07 1999-12-21 Toray Industries, Inc. Photosensitive ceramics green sheet
JP3650140B2 (en) 1993-06-14 2005-05-18 オリンパス株式会社 Surgical microscope
JPH075374A (en) 1993-06-15 1995-01-10 Nikon Corp X-ray optical element holder
JPH075375A (en) 1993-06-15 1995-01-10 Nikon Corp Living body sample vessel for x-ray observation
JP2949653B2 (en) 1993-06-17 1999-09-20 株式会社モリテックス Hard image scope
JPH0738491A (en) 1993-07-20 1995-02-07 Fujitsu General Ltd Radio calling system
US5482903A (en) * 1993-12-22 1996-01-09 International Business Machines Corporation Aluminum nitride body utilizing a vitreous sintering additive
JPH075372A (en) 1994-01-31 1995-01-10 Topcon Corp Stereo-microscope
JP2598236B2 (en) * 1994-09-07 1997-04-09 株式会社東芝 Semiconductor device
JP3100871B2 (en) * 1995-07-11 2000-10-23 株式会社東芝 Aluminum nitride sintered body
CN1130607A (en) * 1995-11-17 1996-09-11 清华大学 Method for manufacturing high-heat conductivity aluminium nitride ceramics
DE29721502U1 (en) * 1996-12-21 1998-04-23 Klein Schanzlin & Becker Ag String control valve
CN1081178C (en) * 1998-07-08 2002-03-20 中国科学院上海硅酸盐研究所 Method for preparing high thermal-conductivity aluminum nitride ceramics
JP4812144B2 (en) * 1998-07-22 2011-11-09 住友電気工業株式会社 Aluminum nitride sintered body and manufacturing method thereof

Also Published As

Publication number Publication date
KR20000011846A (en) 2000-02-25
KR20020036985A (en) 2002-05-17
JP4812144B2 (en) 2011-11-09
CN1689732A (en) 2005-11-02
CA2277346C (en) 2004-11-23
US6271163B1 (en) 2001-08-07
CA2277346A1 (en) 2000-01-22
US20010016551A1 (en) 2001-08-23
EP0974565B1 (en) 2004-11-17
EP0974565A1 (en) 2000-01-26
DE69921909D1 (en) 2004-12-23
DE69921909T2 (en) 2005-04-21
CN1242349A (en) 2000-01-26
CN1305807C (en) 2007-03-21
US6428741B2 (en) 2002-08-06
CN1689732B (en) 2010-06-23
KR100353386B1 (en) 2002-09-19
KR100353387B1 (en) 2002-09-18
KR20020036986A (en) 2002-05-17
JP2000044342A (en) 2000-02-15

Similar Documents

Publication Publication Date Title
KR100353385B1 (en) Aluminum Nitride Sintered Body and Method of Preparing the Same
US11964919B2 (en) Method for manufacturing active metal-brazed nitride ceramic substrate with excellent joining strength
EP1777204A1 (en) Nitride sintered compact and method for production thereof
JPH09157054A (en) Circuit board
CN86102992A (en) Ceramic substrates for microelectronic circuits and preparation method thereof
JP2012111671A (en) Method for producing aluminum nitride sintered compact workpiece
JP2899893B2 (en) Aluminum nitride sintered body and method for producing the same
JPH0881267A (en) Aluminum nitride sintered compact, its production, aluminum nitride circuit board and its production
JP2677748B2 (en) Ceramics copper circuit board
KR20200021023A (en) Memufacturing method of High thermal conductivity AlN subtrate
JPH10251069A (en) Silicon nitride circuit board and semiconductor device
JPH08109069A (en) Aluminum nitride sintered compact
JPH11135906A (en) Board and manufacture thereof
JPH0964235A (en) Silicon nitride circuit board
JP4868641B2 (en) Method for manufacturing aluminum nitride substrate
JP2001019576A (en) Substrate and its production
JPH07257973A (en) Aluminum nitride sintered compact, production and use thereof
JPH0653624A (en) High-strength aluminum nitride circuit board and its manufacture
JPH01155686A (en) Multilayer substrate of aluminum nitride and manufacture thereof
JP3038320B2 (en) Method for producing aluminum nitride sintered body for circuit board
JPH06183864A (en) Metallized silicon nitride substrate
JPH073377A (en) Metallizing composition
JPH1087368A (en) Ceramic substrate
JPH07307539A (en) Circuit board and manufacture thereof
JPH0672058B2 (en) Aluminum nitride sintered body and bonded body using the same

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120821

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20130822

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140825

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150819

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160818

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170822

Year of fee payment: 16

EXPY Expiration of term