KR100347540B1 - Method of eching an aluminium metal film - Google Patents

Method of eching an aluminium metal film Download PDF

Info

Publication number
KR100347540B1
KR100347540B1 KR1019990060568A KR19990060568A KR100347540B1 KR 100347540 B1 KR100347540 B1 KR 100347540B1 KR 1019990060568 A KR1019990060568 A KR 1019990060568A KR 19990060568 A KR19990060568 A KR 19990060568A KR 100347540 B1 KR100347540 B1 KR 100347540B1
Authority
KR
South Korea
Prior art keywords
metal film
aluminum metal
etching
gas
pressure
Prior art date
Application number
KR1019990060568A
Other languages
Korean (ko)
Other versions
KR20010063483A (en
Inventor
신강섭
백계현
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1019990060568A priority Critical patent/KR100347540B1/en
Publication of KR20010063483A publication Critical patent/KR20010063483A/en
Application granted granted Critical
Publication of KR100347540B1 publication Critical patent/KR100347540B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32138Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only pre- or post-treatments, e.g. anti-corrosion processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/02068Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
    • H01L21/02071Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers the processing being a delineation, e.g. RIE, of conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

본 발명은 알루미늄 금속막 식각 방법에 관한 것으로, 염소를 이용하여 알루미늄 금속막을 식각하고 남은 잔유물에 의해 알루미늄 막이 부식되는 것을 막기위하여 H2O 플라즈마 처리로 염소를 제거하므로써 알루미늄 금속막의 부식을 억제할 수 있는 알루미늄 금속막 식각 방법에 관한 것이다.The present invention relates to an aluminum metal film etching method, and to prevent corrosion of the aluminum metal film by removing chlorine by H 2 O plasma treatment in order to prevent the aluminum film from being corroded by the residue remaining after etching the aluminum metal film using chlorine. The present invention relates to an aluminum metal film etching method.

Description

알루미늄 금속막 식각 방법{Method of eching an aluminium metal film}Method of eching an aluminum metal film

본 발명은 알루미늄 금속막 식각 방법에 관한 것으로, 염소를 이용하여 알루미늄 금속막을 식각하고 남은 잔유물에 의해 알루미늄 막이 부식되는 것을 막기위하여 H2O 플라즈마 처리 염소를 제거하므로써 알루미늄 금속막의 부식을 억제할 수 있는 알루미늄 금속막 식각 방법에 관한 것이다.The present invention relates to an aluminum metal film etching method, which can suppress corrosion of an aluminum metal film by removing H 2 O plasma treated chlorine to prevent the aluminum film from being corroded by the residue remaining after etching the aluminum metal film using chlorine. It relates to an aluminum metal film etching method.

반도체 소자에서, 특히 비메모리 반도체 제조공정에는 하나의 칩속에 회로를 집적하는 것이기 때문에 다층배선을 형성해야 한다. 그런데 기술이 하프 마이크론(Half Micron) 이하로 작아지면서 이러한 다층배선 형성기술이 대단히 어려워져 대부분의 디바이스 수율이 이 다층배선 형성시 좌우되고 있다. 다층 배선 형성 기술에서 특히 중요한 공정이 금속 막 식각 공정이다.In semiconductor devices, particularly in the non-memory semiconductor manufacturing process, since a circuit is integrated into one chip, multilayer wiring must be formed. However, as the technology becomes smaller than half micron, such a multilayer wiring forming technology becomes very difficult, and the yield of most devices depends on the formation of the multilayer wiring. A particularly important process in the multilayer wiring formation technique is the metal film etching process.

도 1 에 도시한 바와 같이, 이 금속 막 식각공정에서 큰 문제가 되는 것 중 하나는 알루미늄 금속막을 플라즈마 건식 식각할 때 사용되는 염소가 식각후에도 계속 잔류하게 된다. 이 잔류염소는 대기에 존재하는 수소와 반응하여 염산을 형성하므로써 알루미늄 금속막을 부식시킨다. 이러한 부식현상은 금속 배선간 단선(Short fail)을 발생시킴으로써 디바이스의 오동작을 발생시켜 불량이 발생한다. 이렇듯, 금속막의 부식을 방지시키는 기술은 금속막 식각공정에서 대단히 중요한 기술중 하나이다.As shown in FIG. 1, one of the major problems in this metal film etching process is that chlorine used for plasma dry etching of the aluminum metal film continues to remain even after etching. This residual chlorine reacts with hydrogen present in the atmosphere to form hydrochloric acid, thereby corroding the aluminum metal film. This corrosion phenomenon causes short circuits between metal wires, which causes malfunction of the device, resulting in defects. As such, the technique of preventing corrosion of the metal film is one of the very important technologies in the metal film etching process.

이러한 부식현상을 방지하기 위해 종래에는 식각후 순수조(DI-Water Bath)에 담궈 잔류하는 염소를 녹여 제거하므로써 알루미늄 금속막 부식을 방지한다. 알루미늄 금속막 식각후 레지스트 스트립 챔버(Strip chamber)가 없는 경우는 수분내에 순수조에 담궈 잔류 염소를 제거하여 부식을 방지한다. 또한 스트립 챔버가 있는경우에는 스트립 챔버에서 보호막 공정(Passivation)을 거쳐 부식을 방지한다. 그러나 이러한 방법을 사용할 경우 몇가지 문제점들이 발견되고 있다. 우선 전자의 경우에 있어서 항상 금속막 식각을 하자마자 순수조에 담궈야 하기 때문에 순수조가 항상 대기상태에 있어야 한다. 즉 순수조는 금속막 식각장비 대수만큼 있어야 하므로 장비대수와 공간측면에서 효율적이지 못하여 반도체 공정의 가격측면에서 경쟁력이 떨어지는 결과를 초래한다. 또한 보호막 공정을 할 경우, 스트립 챔버는 식각챔버의 갯수만큼 있어야 효율적인 공정을 할 수 있다. 그러나 이러한 것도 가격측면에서 볼 때 스트립 챔버의 가격이 비싸고 제조 공간도 넓어져야 한다. 그리고 식각장비에 있는 스트립 챔버는 주로 보호막 공정에 적합하도록 설계되어 있기 때문에 잔류 레지스트가 남는 현상을 볼 수 있어 또다시 제거 전용장비에서 레지스트 제거공정을 해야한는 문제점이 있다.In order to prevent such corrosion phenomenon, it is conventionally immersed in a DI-Water Bath after etching to dissolve and remove residual chlorine to prevent corrosion of the aluminum metal film. If there is no resist strip chamber after etching the aluminum metal film, it is immersed in a pure water bath in a few minutes to remove residual chlorine to prevent corrosion. In addition, if there is a strip chamber, the strip chamber is passivated to prevent corrosion. However, some problems are found when using this method. First, in the former case, the pure water bath must always be in the standby state because the metal film must be immersed in the pure water tank immediately after etching. That is, since the pure water tank must be as large as the number of metal film etching equipment, it is not efficient in terms of equipment and space, resulting in inferior competitiveness in the price of semiconductor process. In addition, in the case of the protective film process, the strip chamber must be as many as the number of etching chambers for efficient processing. However, in terms of price, however, the strip chamber is expensive and manufacturing space must be increased. In addition, since the strip chamber in the etching equipment is mainly designed to be suitable for the protective film process, the residual resist may be seen, and thus, there is a problem in that the resist removal process should be performed in the dedicated removal equipment.

따라서, 본 발명은 알루미늄 금속막 식각시 사용된 염소를 H2O 플라즈마 처리로 제거하므로써 알루미늄 금속막 식각 후 염소 잔류물을 완전 제거하여 알루미늄 금속막의 부식을 방지하여 디바이스의 단선 불량을 방지할 수 있는 알루미늄 금속막 식각방법을 제공하는 데 그 목적이 있다.Therefore, the present invention can remove the chlorine used in etching the aluminum metal film by H 2 O plasma treatment to completely remove the chlorine residues after etching the aluminum metal film to prevent corrosion of the aluminum metal film to prevent defective disconnection of the device. An object of the present invention is to provide an aluminum metal film etching method.

이러한 목적을 달성하기 위한 본 발명에 따른 알루미늄 금속막 식각방법은반도체 소자를 형서하기 위한 여러 요소가 형성된 기판상에 절연막을 형성하고, 상기 절연막 상에 알루미늄 금속막을 형성하는 단계; 상기 알루미늄 금속막 상에 포토레지스트 패턴을 형성한 후, 건식 식각공정으로 상기 알루미늄 금속막을 식각하는 단계; H2O 플라즈마 처리하여 상기 식각공정 후에 잔류하는 염소성분을 제거하는 단계; 및 상기 포토레지스트 패턴을 제거하는 단계를 포함하여 이루어지는 것을 특징으로 한다.According to an aspect of the present invention, there is provided an aluminum metal film etching method comprising: forming an insulating film on a substrate on which various elements for forming a semiconductor element are formed, and forming an aluminum metal film on the insulating film; Forming a photoresist pattern on the aluminum metal film, and then etching the aluminum metal film by a dry etching process; Removing the chlorine component remaining after the etching process by H 2 O plasma treatment; And removing the photoresist pattern.

도 1은 염소에 의한 알루미늄 금속막의 부식현상을 도시하는 그림이다.1 is a diagram showing the corrosion phenomenon of the aluminum metal film by chlorine.

도 2는 본 발명에 따른 알루미늄 금속막의 식각공정을 설명하기 위한 단면도이다.2 is a cross-sectional view for explaining an etching process of the aluminum metal film according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10 : 기판 11 : 절연막10 substrate 11 insulating film

12 : 알루미늄 금속막 13 : 포토레지스트 패턴12 aluminum metal film 13 photoresist pattern

14 : 염소14: goat

이하에서는 본 발명에 따른 알루미늄 식각방법을 상세히 설명한다.Hereinafter, the aluminum etching method according to the present invention will be described in detail.

도 2에 도시한 바와 같이, 반도체 소자를 형성하기 위한 여러 요소가 형성된 기판(10)상에 절연막(11)을 형성한다. 이후, 절연막(11) 상부에 알루미늄 금속막(12)을 형성하고 포토레지스트 패턴(13)을 식각마스크로 이용하여 염소에 의해 알루미늄 금속막(12)을 건식식각한다. 알루미늄 금속막(12)을 식각한 후, 주변에 남아있는 염소성분(14)을 H2O 플라즈마 처리로 완전히 제거한다.As shown in FIG. 2, the insulating film 11 is formed on the board | substrate 10 in which the several elements for forming a semiconductor element were formed. Thereafter, the aluminum metal film 12 is formed on the insulating film 11, and the aluminum metal film 12 is dry-etched by chlorine using the photoresist pattern 13 as an etching mask. After etching the aluminum metal film 12, the chlorine component 14 remaining in the periphery is completely removed by H 2 O plasma treatment.

이하에서는 H2O 플라즈마 처리로 잔여 염소성분을 제거하는 과정을 자세히 설명한다.Hereinafter, a process of removing residual chlorine by H 2 O plasma treatment will be described in detail.

부식을 발생시키는 공정상의 문제점을 보완하기 위해 식각챔버에서 보호막을 형성하므로써 알루미늄 금속막의 부식을 방지하는 것이다. 즉 식각챔버에서 알루미늄 금속막 건식각후 식각 챔버에 증기 운송 시스템(Vapor Delivery System)을 설치하여 알루미늄 금속막을 식각하는 단계를 실시한 후에 물(H2O)를 증기화 한후 챔버에 공급하여 플라즈마(Plasma)를 발생시켜 잔류 염소를 제거하는 것이다. 이러한 기술은 장비의 무리를 감소시켜야 하기 때문에 다음과 같은 조건으로 실시하지 않으면 안된다. 이러한 조건을 Centura5200-DPSTM장비에서 실시하는 단계별로 설명하면 다음과 같다.In order to compensate for the process problems that cause corrosion, a protective film is formed in the etching chamber to prevent corrosion of the aluminum metal film. That is, after etching the aluminum metal film by installing a vapor delivery system in the etching chamber after etching the aluminum metal film in the etching chamber, the water (H 2 O) is vaporized and then supplied to the chamber by plasma (Plasma). ) To remove residual chlorine. Since this technique requires a reduction in equipment load, it must be carried out under the following conditions. The following describes the conditions in each step performed by Centura5200-DPS TM equipment.

제 1 단계는 알루미늄 금속막 식각 단계이다. 1100W의 소스 파워(Source Power) , 110W의 바이어스 파워(Bias Power), 10mTorr의 압력, 80sccm의 Cl2가스, 40sccm의 BCl3가스 및 10sccm의 N2가스 조건에서 주식각을 한다. 이 후에, 700W의 소스 파워(Source Power) , 100W의 바이어스 파워(Bias Power), 9mTorr의 압력, 70sccm의 Cl2가스, 50sccm의 BCl3가스 및 10sccm의 N2가스조건에서 과도식각을 실시한다.The first step is an aluminum metal film etching step. The stock angle is made at a source power of 1100 W, a bias power of 110 W, a pressure of 10 mTorr, a Cl 2 gas of 80 sccm, a BCl 3 gas of 40 sccm, and an N 2 gas of 10 sccm. Subsequently, transient etching is performed under conditions of 700 W of source power, 100 W of bias power, 9 mTorr of pressure, 70 sccm of Cl 2 gas, 50 sccm of BCl 3 gas, and 10 sccm of N 2 gas.

제 2 단계는 펌핑 단계(Pumping step)이다. 기본 압력(Base Pressure)으로 펌핑을 하여준다.The second step is a pumping step. Pump at the base pressure.

제 3 단계는 안정화 단계(Stabilise step)이다. 제 3 단계에서는 1.5 Torr의 압력 및 1000sccm의 H2O를 챔버에 공급하여 안정화 시킨다.The third step is the stabilization step. In the third step, a pressure of 1.5 Torr and 1000 sccm of H 2 O are supplied to the chamber to stabilize.

제 4 단계는 보호막 형성 단계(Passivation Step)이다. 안정화 단계를 거친후, 보호막 형성단계에서는 1000W의 소스파워를 챔버에 인가하여 H2O 플라즈마를 발생시켜 잔류염소를 제거한다.The fourth step is a passivation step. After the stabilization step, in the protective film forming step, 1000 W of source power is applied to the chamber to generate H 2 O plasma to remove residual chlorine.

제 5 단계는 제 2 단계와 같이 기본 압력(Base Pressure)으로 펌핑을 하여준다.In the fifth step, pumping is performed at the base pressure as in the second step.

상기 조건에서 보면 제 1 단계에 비해서 제 3 단계의 압력이 상당히 높은 것을 알 수가 있다. 이러한 압력 상승은 장비에 무리를 줄 수 있다. 이러한 것을 해결하기 위해서는 제 3 단계(안정화 단계)를 충분히 실시해 장비를 안정화 시켜주어야 한다.Under the above conditions, it can be seen that the pressure of the third stage is considerably higher than that of the first stage. This pressure rise can strain the equipment. To solve this problem, the third step (stabilization step) should be sufficiently performed to stabilize the equipment.

상술한 바와 같이, 알루미늄 금속막의 부식을 억제하기 위해 H2O 플라즈마 처리로 염소를 제거하는 공정은 챔버의 수를 줄여 제조공간을 줄일수 있고, 공정 단가를 줄일 수 있다.As described above, the process of removing chlorine by H 2 O plasma treatment to suppress the corrosion of the aluminum metal film can reduce the number of chambers, thereby reducing the manufacturing space and reducing the process cost.

Claims (4)

반도체 소자를 형성하기 위한 여러 요소가 형성된 기판상에 절연막을 형성하고, 상기 절연막 상에 알루미늄 금속막을 형성하는 단계;Forming an insulating film on a substrate on which various elements for forming a semiconductor device are formed, and forming an aluminum metal film on the insulating film; 상기 알루미늄 금속막 상에 포토레지스트 패턴을 형성한 후, 건식 식각공정으로 상기 알루미늄 금속막을 식각하는 단계;Forming a photoresist pattern on the aluminum metal film, and then etching the aluminum metal film by a dry etching process; H2O 플라즈마 처리를 통해 상기 식각공정 후에 잔류하는 염소성분을 수소와 반응시켜 제거하는 단계; 및Reacting and removing the chlorine component remaining after the etching process with hydrogen through H 2 O plasma treatment; And 상기 포토레지스트 패턴을 제거하는 단계를 포함하여 구성되는 것을 특징으로 하는 알루미늄 금속막 식각 방법.And removing the photoresist pattern. 제 1 항에 있어서,The method of claim 1, 상기 알루미늄 금속막 식각공정 및 H2O 플라즈마 처리는 동일한 식각 챔버에서 순차적으로 진행하고, 상기 포토레지스트 패턴 제거공정은 별도의 스트립 전용장비에서 진행하는 것을 특징으로 하는 알루미늄 금속막 식각 방법.The aluminum metal film etching process and the H 2 O plasma treatment is sequentially performed in the same etching chamber, and the photoresist pattern removal process is performed in a separate strip dedicated equipment. 제 2 항에 있어서,The method of claim 2, 상기 알루미늄 금속막 식각공정은 1100W의 소스 파워, 110W의 바이어스 파워, 10mTorr의 압력, 80sccm의 Cl2가스, 40sccm의 BCl3가스 및 10sccm의 N2가스 조건에서 주식각을 하는 단계와 700W의 소스 파워, 100W의 바이어스 파워, 9mTorr의 압력, 70sccm의 Cl2가스, 50sccm의 BCl3가스 및 10sccm의 N2가스조건에서 과도식각을 하는 단계로 진행하는 것을 특징으로 하는 알루미늄 금속막 식각 방법The etching process of the aluminum metal film is performed with a stock angle at a source power of 1100 W, a bias power of 110 W, a pressure of 10 mTorr, a Cl 2 gas of 80 sccm, a BCl 3 gas of 40 sccm, and an N 2 gas of 10 sccm, and a source power of 700 W. , Overetching under 100W bias power, 9mTorr pressure, 70sccm Cl 2 gas, 50sccm BCl 3 gas and 10sccm N 2 gas 제 2 항에 있어서,The method of claim 2, 싱가 H2O 플라즈마 처리는 상기 알루미늄 금속막 시각공정 후 기본 압력으로 펌핑을 해주는 단계와 1.5 Torr의 압력 및 1000sccm의 H2O 를 챔버에 공급하여 안정화시킨 후, 1000W의 소스파워를 인가하여 H2O 플라즈마를 발생시켜 잔류 염소를 제거하는 단계와 기본 압력으로 재펌핑을 해주는 단계로 진행하는 것을 특징으로 하는 알루미늄 금속막 식각 방법.Singapore H 2 O plasma treatment is the step of pumping to the base pressure after the aluminum metal film visual process, and stabilized by supplying a pressure of 1.5 Torr and H 2 O of 1000sccm to the chamber, and then applied with a source power of 1000W H 2 A method of etching an aluminum metal film, the process comprising generating a plasma to remove residual chlorine and repumping at a basic pressure.
KR1019990060568A 1999-12-22 1999-12-22 Method of eching an aluminium metal film KR100347540B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990060568A KR100347540B1 (en) 1999-12-22 1999-12-22 Method of eching an aluminium metal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990060568A KR100347540B1 (en) 1999-12-22 1999-12-22 Method of eching an aluminium metal film

Publications (2)

Publication Number Publication Date
KR20010063483A KR20010063483A (en) 2001-07-09
KR100347540B1 true KR100347540B1 (en) 2002-08-07

Family

ID=19628291

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990060568A KR100347540B1 (en) 1999-12-22 1999-12-22 Method of eching an aluminium metal film

Country Status (1)

Country Link
KR (1) KR100347540B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10236442B2 (en) 2015-10-15 2019-03-19 Samsung Electronics Co., Ltd. Methods of forming an interconnection line and methods of fabricating a magnetic memory device using the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399354B1 (en) * 2001-08-14 2003-09-26 삼성전자주식회사 Ashing Method of Semiconductor Device Having Metal Interconnections
KR100450565B1 (en) * 2001-12-20 2004-09-30 동부전자 주식회사 Post treatment method for metal line of semiconductor device
KR100450564B1 (en) * 2001-12-20 2004-09-30 동부전자 주식회사 Post treatment method for metal line of semiconductor device
KR101870491B1 (en) * 2014-03-11 2018-06-22 도쿄엘렉트론가부시키가이샤 Plasma processing appratus, substrate processing system, fabrication method of thin film transistor, and storage medium
JP6349796B2 (en) * 2014-03-11 2018-07-04 東京エレクトロン株式会社 Plasma processing apparatus, thin film transistor manufacturing method, and storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09171999A (en) * 1995-12-20 1997-06-30 Hitachi Ltd Plasma cleaning treatment method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09171999A (en) * 1995-12-20 1997-06-30 Hitachi Ltd Plasma cleaning treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10236442B2 (en) 2015-10-15 2019-03-19 Samsung Electronics Co., Ltd. Methods of forming an interconnection line and methods of fabricating a magnetic memory device using the same

Also Published As

Publication number Publication date
KR20010063483A (en) 2001-07-09

Similar Documents

Publication Publication Date Title
KR20100131407A (en) Separation-material composition for photo-resist and manufacturing methods of semiconductor device
US20050250337A1 (en) Selective dry etching of tantalum and tantalum nitride
KR100450564B1 (en) Post treatment method for metal line of semiconductor device
JP2003092287A (en) Ashing method
JP2007019367A (en) Method for manufacturing semiconductor device
KR100347540B1 (en) Method of eching an aluminium metal film
KR950005351B1 (en) Method of preventing corrosion of aluminum alloys
JPH09298199A (en) Semiconductor device and its manufacture
US5763328A (en) Ashing method
KR19990074758A (en) Strip pretreatment liquid, photoresist removal method and manufacturing method of semiconductor device using them
CN114388360A (en) Method for removing polymer in aluminum liner etching
KR100605942B1 (en) Method for post-treating metal interconnects of semiconductor devices
CN1330395A (en) Method for removing residuals after removing photoresist
JP3298628B2 (en) Method for manufacturing semiconductor device
US6495472B2 (en) Method for avoiding erosion of conductor structure during removing etching residues
KR100342393B1 (en) a removing method of a photoresist pattern for a semiconductor device
KR100450565B1 (en) Post treatment method for metal line of semiconductor device
KR20030061878A (en) Method of forming metal interconnection in semiconductor device
US6998347B2 (en) Method of reworking layers over substrate
KR100363178B1 (en) Method for post treating a metal line of semiconductor
KR100197531B1 (en) Method of removing photoresistor for metal connection film formation
KR100520849B1 (en) Method for forming metal pattern in semiconductor device with low selectivity to photoresist
KR100217904B1 (en) Resist strip method
KR20000027241A (en) Method for forming metal wires of semiconductor devices
KR19990059188A (en) Metal wiring formation method of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130620

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140618

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150617

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160620

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170626

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20180618

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20190619

Year of fee payment: 18