KR100329630B1 - High speed conductive ceramic / metal composite coating method - Google Patents

High speed conductive ceramic / metal composite coating method Download PDF

Info

Publication number
KR100329630B1
KR100329630B1 KR1019980021104A KR19980021104A KR100329630B1 KR 100329630 B1 KR100329630 B1 KR 100329630B1 KR 1019980021104 A KR1019980021104 A KR 1019980021104A KR 19980021104 A KR19980021104 A KR 19980021104A KR 100329630 B1 KR100329630 B1 KR 100329630B1
Authority
KR
South Korea
Prior art keywords
ceramic
metal
target
metal composite
composite material
Prior art date
Application number
KR1019980021104A
Other languages
Korean (ko)
Other versions
KR20000001059A (en
Inventor
한전건
Original Assignee
한전건
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한전건 filed Critical 한전건
Priority to KR1019980021104A priority Critical patent/KR100329630B1/en
Publication of KR20000001059A publication Critical patent/KR20000001059A/en
Application granted granted Critical
Publication of KR100329630B1 publication Critical patent/KR100329630B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0688Cermets, e.g. mixtures of metal and one or more of carbides, nitrides, oxides or borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate

Abstract

본 발명은 고속 전도성 세라믹/금속 복합 재료 코팅방법을 개시한다. 개시된 본 발명은, 금속 타겟 및 세라믹 타겟을 구비하는 챔버내에 플라즈마를 일으킨다음, 플라즈마 발생으로 생성된 플라즈마 이온이 금속 타겟 및 세라믹 타겟과 충돌되어, 이 충돌에 의하여 각 타겟으로 부터 떨어져나온 금속 및 세라믹 성분들의 혼합으로 세라믹 금속 복합 재료를 형성하는 것을 특징으로 한다.The present invention discloses a high speed conductive ceramic / metal composite material coating method. According to the present invention, a plasma is generated in a chamber having a metal target and a ceramic target, and then plasma ions generated by plasma generation collide with the metal target and the ceramic target, and the metal and ceramic are separated from each target by the collision. Characterized by forming a ceramic metal composite material by mixing the components.

Description

고속 전도성 세라믹/금속 복합 재료 코팅방법High speed conductive ceramic / metal composite coating method

본 발명은 고속 전도성 세라믹/금속 복합재료 코팅방법에 관한 것으로, 특히 부도체인 플라스틱 판재 상에 여러가지 전도성을 얻을 수 있는 세라믹 금속을 혼합한 복합 피막을 고속으로 플라즈마 코팅할 수 있도록 한 고속 전도성 세라믹/금속 복합 재료 코팅 방법에 관한 것이다.The present invention relates to a high-speed conductive ceramic / metal composite coating method, and in particular, a high-speed conductive ceramic / metal that enables high-speed plasma coating of a composite film mixed with ceramic metal capable of obtaining various conductivity on a non-conductive plastic sheet. A method for coating a composite material.

일반적으로 전도성 피막은 전도성 물질을 포함하고 있는 물질로서, 여러 대역의 전도성을 갖는다. 대체적으로 103∼105Ω/㎠ 저항치를 갖는다. 이러한 전도성 피막은 다양한 금속등이 증발법 또는 스퍼터링법되어, 형성되며, 대개 부도체인 플라스틱 기판 상에 형성된다.In general, the conductive coating is a material containing a conductive material, and has a conductivity of various bands. In general, it has a resistance of 10 3 to 10 5 mA / cm 2. This conductive film is formed by evaporation or sputtering of various metals and the like, and is usually formed on a plastic substrate which is a non-conductor.

그러나, 전도성 피막은 한정된 범위 즉, 103∼105Ω/㎠ 범위내에서만 조절이 가능하고, 저항치의 변화도 금속의 종류 및 두께등의 변화로만 변화시킬 수 있었다. 그러므로, 105Ω/㎠ 이상의 전도성 피막을 코팅하는 것이 사실상 불가능하다.However, the conductive film can be adjusted only within a limited range, that is, within a range of 10 3 to 10 5 kW / cm 2, and the change in the resistance value can be changed only by the change in the type and thickness of the metal. Therefore, it is virtually impossible to coat a conductive film of 10 5 kPa / cm 2 or more.

또한, 기존의 증발법 또는 스퍼터링법은 막을 코팅하는 속도가 0.1∼0.3㎛/min로 매우 느려서, 고속 대량 생산에 한계가 있다.In addition, the conventional evaporation method or sputtering method is very slow, the coating rate of the film is 0.1 ~ 0.3㎛ / min, there is a limit to high-speed mass production.

따라서, 본 발명의 목적은, 부도체의 플라스틱 판재상에 고속 플라즈마 코팅 공정에 의하여 세라믹과 금속을 여러가지 조성비로 코팅함으로써 요구된 특성에 맞도록 다양한 전도성 피막을 얻음과 동시에 고속 공정에 의한 생산성 향상 및 고내구성의 사로운 전도성 피막을 합성하는 것을 목적으로 한다.Accordingly, an object of the present invention is to obtain various conductive coatings to meet the required properties by coating ceramic and metal in various composition ratios by high-speed plasma coating process on the non-conductive plastic sheet, and at the same time improve productivity and high speed. It aims at synthesizing a durable conductive film.

도 1은 본 발명의 고속 전도성 세라믹/금속 복합재료 코팅 방법의 개략 구성도.1 is a schematic configuration diagram of a high speed conductive ceramic / metal composite coating method of the present invention.

(도면의 주요 부분에 대한 부호의 설명)(Explanation of symbols for the main parts of the drawing)

1 : 마그네트론 전원 2,8,10 : 마그네트론원1: magnetron power supply 2,8,10: magnetron source

3 : 금속 타겟 4 : 플라스틱 기판3: metal target 4: plastic substrate

5 : 절연회전 지그 6 : 모터5: Insulation Rotating Jig 6: Motor

7 : 진공 게이지 9 : 세라믹 타겟7: vacuum gauge 9: ceramic target

11 : 반응 기체 공급수단 12 : 진공 펌프11: reaction gas supply means 12: vacuum pump

13 : 진공 챔버13: vacuum chamber

상기한 본 발명의 목적을 달성하기 위한 것으로, 본 발명은, 세라믹/금속 복합 재료를 코팅하는 방법에 있어서, 상기 세라믹 금속 복합 재료를 구성하는 금속 타겟을 스퍼터링함과 동시에, 상기 세라믹 금속 복합 재료가 형성되는 챔버내에 금속 기체와 부도체 세라믹 형성용 기체를 공급하여, 플라스틱 상부에 세라믹 금속복합 재료를 형성하는 것을 특징으로 한다.In order to achieve the above object of the present invention, the present invention, in the method for coating a ceramic / metal composite material, at the same time the sputtering of the metal target constituting the ceramic metal composite material, the ceramic metal composite material is A metal gas and a non-conductive ceramic forming gas are supplied into the chamber to be formed to form a ceramic metal composite material on the plastic.

또한, 금속 타켓 및 세라믹 타겟을 구비하는 챔버내에 플라즈마를 일으킨다음, 플라즈마 발생으로 생성된 플라즈마 이온이 금속 타겟 및 세라믹 타겟과 충돌되어, 이 충돌에 의하여 각 타겟으로 부터 떨어져나온 금속 및 세라믹 성분들의 혼합으로 세라믹 금속 복합 재료를 형성하는 것을 특징으로 한다.In addition, plasma is generated in the chamber including the metal target and the ceramic target, and then plasma ions generated by the plasma generation collide with the metal target and the ceramic target, thereby mixing the metal and ceramic components separated from each target by the collision. It is characterized by forming a ceramic metal composite material.

일반적으로 반도체 제조 공장에서 웨이퍼 및 칩은 정전기에 의해 치명적인 손상을 입게되므로 운반할때에도 정전기를 방지할 수 있는 트레이를 이용하게 되는 바, 본 발명은 이와같은 반도체 운반용 트레이를 제조하기 위한 용도로 매우 유리하게 적용할수 있다. 아울러, 복합 재료 박막의 전도도를 넓은 폭으로 조절할 수 있고, 생산 속도가 빠르기 때문에 대량 생산성이 매우 우수한 효과를 갖게된다.In general, wafers and chips in a semiconductor manufacturing plant are subject to fatal damage due to static electricity, and thus a tray capable of preventing static electricity during transportation is used. The present invention is very advantageous for manufacturing such a semiconductor transportation tray. Can be applied. In addition, the conductivity of the composite material thin film can be controlled in a wide range, and because the production speed is high, mass productivity has a very excellent effect.

(실시예)(Example)

이하, 이와같은 본 발명을 첨부한 도면에 실시예를 들어 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1에는 본 발명에 적용되는 마그네트론 스퍼터링 장치의 개략 구성도가 도시되어 있다.1 is a schematic configuration diagram of a magnetron sputtering apparatus applied to the present invention.

본 발명에서는 다양한 전도성을 갖는 전도성 피막으로 세라믹/금속 복합재료를 사용한다. 이러한 세라믹/금속 복합 재료는 명칭에서도 내포하는 바와 같이 세라믹 및 금속성질을 포함하는 재료로서, 세라믹과 금속의 함유율에 따라 용이하게 전도도를 변화시킬 수 있다.In the present invention, a ceramic / metal composite material is used as the conductive film having various conductivity. Such a ceramic / metal composite material, as the name implies, is a material containing ceramic and metallic properties, and the conductivity can be easily changed according to the content of ceramic and metal.

또한, 이러한 세라믹/금속 복합 재료는 반응성 플라즈마 코팅법 또는 스퍼터링 증발법에 의하여 형성될 수 있다. 여기서, 플라즈마 코팅법은 금속을 스퍼터링시키면서, 증발 금속 기체와 세라믹 형성용 기체를 일정량 챔버내에 공급하여 형성하는 기술이다. 또한, 스퍼터링법은 금속과 세라믹을 동시에 스퍼터링시켜 형성하는 기술이다. 특히, 스퍼터링법중 중 고전력 마그네트론 스퍼터링법은 알려진 바와 같이, 챔버내에 전기장 및 자기장이 동시에 인가되어, 그것의 코팅 속도는 종래보다 5배 이상 빠른 0.5∼2㎛/min 정도이다.Such ceramic / metal composite materials may also be formed by reactive plasma coating or sputter evaporation. Here, the plasma coating method is a technique of supplying an evaporated metal gas and a gas for forming a ceramic into a predetermined amount chamber while sputtering a metal. In addition, sputtering is a technique of forming by sputtering a metal and a ceramic simultaneously. In particular, among the sputtering methods, the high-power magnetron sputtering method, as is known, is simultaneously applied with an electric field and a magnetic field in the chamber, and its coating speed is about 0.5 to 2 m / min, which is five times faster than the conventional one.

여기서, 도 1을 참조하여, 마그네트론 스퍼터링 방법에 의하여 세라믹/금속 복합 재료를 형성하는 방법에 대하여 설명하도록 한다.Here, a method of forming a ceramic / metal composite material by the magnetron sputtering method will be described with reference to FIG. 1.

도 1에 도시된 바와 같이, 진공 챔버(13)의 양측벽에 마그네트론원(2,8)이 배치되고, 금속 타겟(3)과 세라믹 타겟(9)이 내벽면에 각각 배치되어 있으며, 마그네트론원(2,8)에 마그네트론 전원(1)과 마그네트론(10)이 각각 연결되어 있다. 또, 진공 챔버(13)의 내부 중간에는 코팅하고자 하는 플라스틱 기판(4)이 절연 회전 지그(6)에 의지해 모터(6)의 구동력으로 회전하도록 결합되고, 진공 챔버(13)의 상측부에는 진공 게이지(7)가 결합되어 있으며, 진공 챔버(13)의 하부에는 반응 기체 공급 수단(11)이 결합됨과 아울러 진공 펌프(12)가 결합되어 있다. 이 진공 펌프(12)는 진공 챔버(13)의 내부가 소정 진공도를 유지하도록 지속적으로 펌핑되고, 반응 기체 공급 수단(11)에 의해 진공 챔버(13)의 내부로 반응 기체가 주입된다.As shown in FIG. 1, magnetron sources 2 and 8 are disposed on both side walls of the vacuum chamber 13, and metal targets 3 and ceramic targets 9 are disposed on inner wall surfaces, respectively. The magnetron power source 1 and the magnetron 10 are connected to (2, 8), respectively. In addition, in the middle of the interior of the vacuum chamber 13, the plastic substrate 4 to be coated is coupled to rotate with the driving force of the motor 6 on the basis of the insulating rotation jig 6, and the upper side of the vacuum chamber 13 The vacuum gauge 7 is coupled, and the reaction gas supply means 11 is coupled to the lower portion of the vacuum chamber 13, and the vacuum pump 12 is coupled. This vacuum pump 12 is continuously pumped so that the inside of the vacuum chamber 13 maintains a predetermined degree of vacuum, and the reaction gas is injected into the vacuum chamber 13 by the reaction gas supply means 11.

이러한 마그네트론 스퍼터링 장치의 마그네트론원(2,8)에 전원이 인가되면, 공지된 바와 같이 타겟으로 부터 전자가 방출되어, 챔버내부에 플라즈마가 발생된다. 이러한 플라즈마 발생으로 발생된 이온은 금속 타겟(3) 및 세라믹 타겟(9)과 충돌되어, 금속 성분 및 세라믹 성분이 각 타겟(3,9)들로 부터 방출된다. 이러한 방출된 금속 성분 및 세라믹 성분은 서로 혼합되어, 플라스틱 기판상부에 복합 재료 박막(도시되지 않음)이 형성된다.When power is applied to the magnetron sources 2 and 8 of the magnetron sputtering apparatus, electrons are emitted from the target as is known, and plasma is generated in the chamber. The ions generated by the plasma generation collide with the metal target 3 and the ceramic target 9 so that the metal component and the ceramic component are released from the respective targets 3 and 9. These released metal components and ceramic components are mixed with each other to form a composite thin film (not shown) on the plastic substrate.

이때, 마그네트론 스퍼터링 방식은 마그네트론원(2,8)에 의하여 진공 챔버(13) 내부에 자기장이 인가되므로, 전기장만이 인가되어 형성되는 종래의 스퍼터링법 보다 약 5배 이상 빠른 0.5∼2㎛/min의 속도로 막을 증착할 수 있다. 즉, 공지된 바와 같이, 자기장의 분포를 증가시키게 되면, 타겟과 충돌되는 플라즈마 이온의 양을 증대시켜, 더욱 빠른 속도로 막이 형성되는 것이다.At this time, the magnetron sputtering method is applied to the magnetic field inside the vacuum chamber 13 by the magnetron source (2, 8), 0.5 ~ 2㎛ / min about 5 times faster than the conventional sputtering method is formed by applying only the electric field The film can be deposited at a rate of. That is, as is known, increasing the distribution of the magnetic field increases the amount of plasma ions that collide with the target, thereby forming a film at a faster rate.

또한, 복합 재료의 전도도는 상술한 바와 같이, 금속과 세라믹의 조성비를 조절하여, 응용범위에 따라 103∼109Ω/㎠ 의 넓은 범위로 조절할수 있다.In addition, the conductivity of the composite material, as described above, by adjusting the composition ratio of the metal and ceramic, it can be adjusted to a wide range of 10 3 ~ 10 9 Ω / ㎠ according to the application range.

여기서, 금속 타겟(3)으로는 Al, Ti, Zr등이 이용되고, 세라믹 타겟(9)으로는 AlN, Al2O3, ZrO2, TiO2,Co-WC등이 이용되며, 반응 기체로는 N2, O2등이 이용될 수 있다.Here, Al, Ti, Zr, etc. are used as the metal target 3 , AlN, Al 2 O 3 , ZrO 2 , TiO 2, Co-WC, etc. are used as the ceramic target 9, and as a reaction gas, N 2 , O 2 and the like can be used.

이상에서 설명한 바와 같은 본 발명은 플라스틱류에 복합 재료 박막을 코팅하면서 전도도를 넓은 범위에서 조절할 수 있고, 빠른 속도로 코팅할 수 있으므로, 생산성을 향상시킬 수 있을 뿐 아니라, 기존의 금속만을 코팅하는 것에 비해 300~900℃ 까지 코팅 피막에 따라 우수한 내산화성을 가진다.As described above, the present invention can control the conductivity in a wide range while coating a thin film of a composite material on plastics, and can be coated at a high speed, thereby improving productivity and coating only existing metals. Compared to the coating film up to 300 ~ 900 ℃ has excellent oxidation resistance.

따라서, 본 발명은 제조 원가를 절감할 수 있는 매우 효과적인 공정 기술이며, 대량 생산성이 우수한 기술이다.Therefore, the present invention is a very effective process technology that can reduce the manufacturing cost, it is a technology that is excellent in mass productivity.

지금까지 본 발명의 실시예에 대하여 설명하였으나, 본 발명은 이에 한정되는 것이 아니며, 명세서에 기재되고 청구된 원리의 진정한 정신 및 범위 안에서 수정 및 변경할 수 있는 여러가지 실시 형태는 본 발명의 보호 범위에 속하는 것임을 이해해야 할 것이다.While the embodiments of the present invention have been described so far, the present invention is not limited thereto, and various embodiments which can be modified and changed within the true spirit and scope of the principles described and claimed are included in the protection scope of the present invention. It should be understood.

Claims (3)

세라믹/금속 복합 재료를 코팅하는 방법에 있어서,A method of coating a ceramic / metal composite material, 상기 세라믹 금속 복합 재료를 구성하는 금속 타겟을 스퍼터링함과 동시에, 상기 세라믹 금속 복합 재료가 형성되는 챔버내에 금속 기체와 부도체 세라믹 형성용 기체를 공급하여, 플라스틱 상부에 세라믹 금속 복합 재료를 형성하는 것을 특징으로 하는 고속 전도성 세라믹/금속 복합 재료 코팅 방법.And sputtering the metal target constituting the ceramic metal composite material, and supplying a metal gas and a non-conductive ceramic forming gas into a chamber in which the ceramic metal composite material is formed, thereby forming a ceramic metal composite material on the plastic. High speed conductive ceramic / metal composite coating method. 금속 타겟 및 세라믹 타겟을 구비하는 챔버내에 플라즈마를 일으킨다음, 플라즈마 발생으로 생성된 플라즈마 이온이 금속 타겟 및 세라믹 타겟과 충돌되어, 이 충돌에 의하여 각 타겟으로 부터 떨어져나온 금속 및 세라믹 성분들의 혼합으로 세라믹 금속 복합 재료를 형성하는 것을 특징으로 하는 고속 전도성 세라믹/금속 복합 재료 코팅방법.Plasma is generated in the chamber including the metal target and the ceramic target, and then plasma ions generated by the plasma generation collide with the metal target and the ceramic target, and the ceramic is mixed with the metal and ceramic components released from each target by the collision. A high speed conductive ceramic / metal composite material coating method comprising forming a metal composite material. 제 2 항에 있어서, 상기 복합 재료의 코팅 속도가 0.5 ∼2㎛/min가 되도록 챔버내에 자기장을 인가하면서 형성하고, 상기 복합 재료의 전도도는 금속 타겟 및 세라믹 타겟의 조성비로 조절하는 것을 특징으로 하는 고속 전도성 세라믹/금속 복합 재료 코팅방법.The method of claim 2, wherein the coating material is formed while applying a magnetic field in the chamber so that the coating speed is 0.5 ~ 2㎛ / min, the conductivity of the composite material is characterized by adjusting the composition ratio of the metal target and the ceramic target High speed conductive ceramic / metal composite coating method.
KR1019980021104A 1998-06-08 1998-06-08 High speed conductive ceramic / metal composite coating method KR100329630B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980021104A KR100329630B1 (en) 1998-06-08 1998-06-08 High speed conductive ceramic / metal composite coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980021104A KR100329630B1 (en) 1998-06-08 1998-06-08 High speed conductive ceramic / metal composite coating method

Publications (2)

Publication Number Publication Date
KR20000001059A KR20000001059A (en) 2000-01-15
KR100329630B1 true KR100329630B1 (en) 2002-08-21

Family

ID=19538609

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980021104A KR100329630B1 (en) 1998-06-08 1998-06-08 High speed conductive ceramic / metal composite coating method

Country Status (1)

Country Link
KR (1) KR100329630B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250166A (en) * 1985-04-26 1986-11-07 Matsushita Electric Ind Co Ltd Production of multi-component thin film
KR910016960A (en) * 1990-03-31 1991-11-05 페텔 솜멜캄프, 에리히 투테 Apparatus for covering base material with different materials such as metal
JPH06122958A (en) * 1991-09-13 1994-05-06 Takeshi Masumoto Graded function thin film
JPH06293956A (en) * 1993-04-06 1994-10-21 Japan Energy Corp Zinc oxide transparent conductive film, its formation and sputtering target used therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61250166A (en) * 1985-04-26 1986-11-07 Matsushita Electric Ind Co Ltd Production of multi-component thin film
KR910016960A (en) * 1990-03-31 1991-11-05 페텔 솜멜캄프, 에리히 투테 Apparatus for covering base material with different materials such as metal
JPH06122958A (en) * 1991-09-13 1994-05-06 Takeshi Masumoto Graded function thin film
JPH06293956A (en) * 1993-04-06 1994-10-21 Japan Energy Corp Zinc oxide transparent conductive film, its formation and sputtering target used therefor

Also Published As

Publication number Publication date
KR20000001059A (en) 2000-01-15

Similar Documents

Publication Publication Date Title
US4478703A (en) Sputtering system
US7678241B2 (en) Film forming apparatus, substrate for forming oxide thin film and production method thereof
EP0261245B1 (en) Process for producing transparent conductive film
CN1793416A (en) Apparatus and tech., for composite preparing metal film
Yashar et al. High-rate reactive sputtering of yttria-stabilized zirconia using pulsed dc power
KR100329630B1 (en) High speed conductive ceramic / metal composite coating method
US4803094A (en) Metallized coating
JPH08197676A (en) Method and equipment for manufacturing plastic film with barrier layer
US5976636A (en) Magnetic apparatus for arc ion plating
JPS626746B2 (en)
JP2007297712A (en) Metallization through thin seed layer deposited using plasma
CN102505110A (en) Method of plating non-conductive film in vacuum
WO2002070776A1 (en) Deposition process
EP0190051B1 (en) Method and apparatus for forming films
TW202031918A (en) Sputtering film forming apparatus, sputtering film forming method therefor, and compound thin film
CN111088484A (en) Method for preparing metal oxide film
GB2227755A (en) Improving the wear resistance of metallic components by coating and diffusion treatment
Schiller et al. High‐rate vapor deposition and large systems for coating processes
US3630871A (en) Cathodic sputtering method
KR102248000B1 (en) Method of forming coating layer having plasma resistance
US20220364221A1 (en) Method for forming coating layer having plasma resistance
FI66656C (en) FOERFARANDE FOER TILLVERKNING AV TITANNITRIDBELAEGGNING VID LAG TEMPERATUR MED HJAELP AV GLIMURLADDNING
JPH03215664A (en) Thin film forming device
KR930008340B1 (en) Sputtering device
KR100282024B1 (en) Method for manufacturing organic electroluminescent device by sputtering

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090226

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee