KR100329483B1 - Method for preparing nickel compound from waste nickel compound - Google Patents

Method for preparing nickel compound from waste nickel compound Download PDF

Info

Publication number
KR100329483B1
KR100329483B1 KR1019990022211A KR19990022211A KR100329483B1 KR 100329483 B1 KR100329483 B1 KR 100329483B1 KR 1019990022211 A KR1019990022211 A KR 1019990022211A KR 19990022211 A KR19990022211 A KR 19990022211A KR 100329483 B1 KR100329483 B1 KR 100329483B1
Authority
KR
South Korea
Prior art keywords
nickel
nickel compound
solution
compound
acid
Prior art date
Application number
KR1019990022211A
Other languages
Korean (ko)
Other versions
KR20010002412A (en
Inventor
임석중
오화용
Original Assignee
주식회사 세원소재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 세원소재 filed Critical 주식회사 세원소재
Priority to KR1019990022211A priority Critical patent/KR100329483B1/en
Publication of KR20010002412A publication Critical patent/KR20010002412A/en
Application granted granted Critical
Publication of KR100329483B1 publication Critical patent/KR100329483B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/08Halides
    • C01G53/09Chlorides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/06Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/10Sulfates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Iron (AREA)

Abstract

본 발명은 폐니켈화합물로부터 니켈화합물을 제조하는 방법에 관한 것으로, 보다 상세하게는 섀도우 마스크(Shadow Mask)를 엣칭한 후의 용액으로부터 니켈(nickel)을 제거할 때 발생되는 폐니켈화합물을 처리하여 니켈화합물을 제조시 중간물질로 제조하는 염기성 탄산니켈(BNC)을 이용하여 경제적으로 고품질의 니켈화합물을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a nickel compound from the waste nickel compound, and more particularly, by treating the waste nickel compound generated when removing nickel from the solution after etching the shadow mask. The present invention relates to a method for producing high quality nickel compounds economically using basic nickel carbonate (BNC), which is used as an intermediate in the preparation of a compound.

Description

폐니켈화합물로부터의 니켈화합물 제조방법{METHOD FOR PREPARING NICKEL COMPOUND FROM WASTE NICKEL COMPOUND}METHODS FOR PREPARING NICKEL COMPOUND FROM WASTE NICKEL COMPOUND

본 발명은 폐니켈화합물로부터의 니켈화합물의 제조방법에 관한 것으로, 더욱 상세하게는 섀도우 마스크(Shadow Mask)를 엣칭한 후의 용액으로부터 니켈(Nickel)을 제거할 때 발생되는 폐니켈화합물을 처리시 대부분의 Fe성분을 제거하여 저렴하면서도 고품질로 니켈화합물을 얻을 수 있는 폐니켈화합물로부터의 니켈화합물의 제조방법에 관한 것이다.The present invention relates to a method for producing a nickel compound from the waste nickel compound, and more particularly, when treating the waste nickel compound generated when removing nickel from the solution after etching the shadow mask. The present invention relates to a method for producing a nickel compound from a waste nickel compound which can be obtained at a low cost and high quality by removing the Fe component.

용액으로부터 얻은 폐기물로, 엣칭후의 액에 Fe 분말을 가하여 Ni분을 침전시켜 얻은 것이며(이하, 'Ni-Mud'라 함)로 되어있고, 통상 니켈 15 내지 30 %, 철 30 내지 60 %, 및 극소량의 불순물을 포함한다. 상기 폐니켈 화합물물(또는 Ni-Mud)의 화학성분 분석치는 하기 표 1에 나타낸 바와 같다.The waste obtained from the solution is obtained by precipitating Ni powder by adding Fe powder to the solution after etching (hereinafter referred to as 'Ni-Mud'), and is usually 15 to 30% nickel, 30 to 60% iron, and Contains very small amounts of impurities. Chemical component analysis of the waste nickel compound (or Ni-Mud) is as shown in Table 1 below.

종래에는 폐니켈화합물로부터 니켈화합물을 제조하기 위하여, 니켈 분말을 산화 처리하여 니켈화합물을 제조해 왔다. 즉, 니켈화합물을 고가의 금속을 해당산에 용해하고, 증발농축, 및 결정화 공정을 거쳐서 제조하거나, 또는 조황산니켈을 중화하고 용매 추출, 및 결정화 공정을 거쳐 제조하여 왔다. 그러나, 상기 방법은 니켈 분말을 산화 처리하여 제조한 니켈화합물은 가격이 비싸다는 문제점이 있다.또 다른 방법으로 염기성 탄산니켈(Basic NiCO3:BNC)을 이용하여 니켈화합물을 제조하는 방법이 있는데, 염기성 탄산니켈의 제조에 있어서 종래에는 산화니켈(NiO) 또는 수산화니켈(Ni(OH)2)에 이산화탄소 가스를 주입하면서 고온에서 가열숙성하여 제조하여 왔다. 또는, 황산 니켈(NiSO4ㆍ6H20)과 같은 니켈화합물에 암모니아(NH3)와 탄산소다(Na2CO3) 등의 이산화탄소원을 가하여 고온에서 염기성 탄산니켈을 제조하였다. 그러나, 상기 방법에서 염기성 탄산니켈의 순도는 원료인 산화니켈 및 수산화니켈의 순도에 따라 결정되며, 제조공정상 고가의 경비를 요하므로 비경제적이라는 단점이 있다.Conventionally, in order to produce a nickel compound from waste nickel compounds, nickel compounds have been oxidized to produce nickel compounds. In other words, nickel compounds have been prepared by dissolving expensive metals in corresponding acids and evaporating and concentrating or crystallizing, or by neutralizing nickel sulfate and carrying out solvent extraction and crystallization. However, this method has a problem that the nickel compound prepared by oxidizing the nickel powder is expensive. Another method is to prepare a nickel compound using basic nickel carbonate (Basic NiCO 3 : BNC). In the production of basic nickel carbonate, it has been conventionally prepared by heating and aging at high temperature while injecting carbon dioxide gas into nickel oxide (NiO) or nickel hydroxide (Ni (OH) 2 ). Alternatively, basic nickel carbonate was prepared at high temperature by adding a carbon dioxide source such as ammonia (NH 3 ) and sodium carbonate (Na 2 CO 3 ) to a nickel compound such as nickel sulfate (NiSO 4 · 6H 2 0). However, in the above method, the purity of basic nickel carbonate is determined according to the purity of nickel oxide and nickel hydroxide as raw materials, and has a disadvantage of being uneconomical because it requires expensive expenses in the manufacturing process.

본 발명은 상기와 같은 종래 문제점을 고려하여, 화학공장에서 배출되는 폐기물인 폐니켈화합물로부터 공해를 유발하지 않으면서도 저렴하게 고품질의 니켈화합물을 제조하는 방법을 제공하는 것을 목적으로 한다.Disclosure of Invention It is an object of the present invention to provide a method for producing a high quality nickel compound at low cost without causing pollution from waste nickel compounds which are wastes discharged from a chemical plant in view of the conventional problems as described above.

본 발명의 다른 목적은 시약급이면서 가격 경쟁력이 있는 부가가치가 높은 염기성 탄산니켈을 제조한 후 이를 이용하여 시약급 니켈화합물의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing a reagent-grade nickel compound using a high-value added basic nickel carbonate, which is reagent-grade and competitive in price.

본 발명의 다른 목적은 염기성 탄산니켈의 제조공정을 생략하여 간단한 방법으로 폐니켈화합물로부터 공업용 니켈화합물을 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing an industrial nickel compound from the waste nickel compound by a simple method by omitting the production process of basic nickel carbonate.

도 1은 본 발명에 따른 니켈화합물의 제조공정을 나타낸 것으로, 부분 I은 폐니켈화합물로부터 철(Fe)성분을 분리하는 공정을 포함하는 염기성 탄산니켈(BNC)이 제조하고, 상기 염기성 탄산니켈(BNC)을 중간물질로 하여 이 염기성 탄산니켈(BNC)을 주어진 산으로 용해하고, 여과한 다음 그 여액을 증발 및 결정화시켜 폐니켈화합물을 만드는 공정을 나타낸 것이다. 부분 Ⅱ는 폐니켈화합물로부터 염기성 탄산니켈(BNC)을 거치지 않고 니켈화합물을 제조하는, 본 발명상의 또 다른 제조공정도이다.Figure 1 shows a process for producing a nickel compound according to the present invention, part I is prepared by basic nickel carbonate (BNC) comprising a step of separating the iron (Fe) component from the waste nickel compound, the basic nickel carbonate ( BNC) is used as an intermediate to dissolve this basic nickel carbonate (BNC) with a given acid, filtered and the filtrate is evaporated and crystallized to form a waste nickel compound. Part II is another manufacturing process diagram of the present invention for producing a nickel compound from the waste nickel compound without passing through basic nickel carbonate (BNC).

상기 목적을 달성하기 위하여, 본 발명은섀도우마스크를 엣칭(etching)한 후의 용액으로부터 니켈을 제거할 때 발생하는 폐니켈화합물을 처리하여 니켈화합물을 제조하는 방법에 있어서,a) 상기 폐니켈화합물 내의 니켈을 염산, 황산, 질산 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 산으로 침출하는 단계;b) 상기 침출물에 암모니아(NH3) 수용액을 가하여 착염된 니켈용액을 제조하는 단계;c) 상기 착염화된 니켈용액을 80 내지 150 ℃에서 30분 내지 10시간 동안 수열반응시키고 철 및 불순물을 제거하는 단계;d) 상기 철 및 불순물이 제거된 여액에 [CO3]/[Ni] 몰비가 1.0 내지 1.4가 되도록 Na2CO3또는 CO2와 NaOH의 혼합물을 가하고, 70 내지 150 ℃에서 1 내지 15시간 동안 탄산반응시키는 단계;e) 상기 탄산반응을 통하여 침강된 염기성 탄산니켈(BNC)을 수득하는 단계;f) 상기 수득된 염기성 탄산니켈에 염산, 황산, 질산 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 산을 가하여 용액을 제조한 후, 상기 용액에 산화제를 가하여 증발농축을 한 다음 여과하는 단계; 및g) 상기 여과된 여액을 결정화시키는 단계를 포함하는 폐니켈화합물로부터의 니켈화합물을 제조하는 방법을 제공한다.이하에서 본 발명을 상세하게 설명한다.본 발명은 30% 이상의 철분이 포함된 폐니켈화합물을 폐기처분하지 않고, 이들 폐니켈화합물 내에 포함된 대부분의 Fe 성분을 제거하고 최종 pH를 조절하면서 고온, 산소압력하에서 니켈성분을 산 침출한 다음 착염화, 가수분해 및 탄산반응의 공정을 거쳐서 염기성 탄산니켈(2NiCO3ㆍ3Ni(OH)2ㆍ4H20 : BNC)을 중간물질로 제조하고, 이를 산에 용해하여 증발ㆍ농축 및 결정화 단계를 통해 시약용 니켈화합물을 제조하는 방법을 제공하는 것이다. 또한, 본 발명은 염기성 탄산니켈 화합물의 제조를 생략하여 공업용 니켈화합물을 제공할 수 있다. 본 발명에 따르면, 폐니켈화합물의 재활용으로 환경오염을 줄일 수 있고, 염가이면서도 고품질의 염기성 탄산니켈을 제조하여 니켈화합물을 제조하므로 경제적인 이점이 있다.본 발명에서는 상기 폐니켈화합물(Ni-Mud) 중에 포함된 철(Fe)분과 대부분의 불순물을 제거하고, Ni을 침출하기 위하여 습식제련법을 사용한다.이하, 본 발명의 니켈화합물의 제조방법을 첨부된 도 1의 공정도에 의거하여 설명한다. 본 발명은 도 1의 폐니켈화합물을 처리하여 니켈화합물을 제조하는 공정도에 있어서 공정부분 I과 공정부분 Ⅱ로 나누어 설명한다.상기 공정부분 Ⅰ는 철 성분이 10 ppm 미만으로 포함된 시약급의 니켈화합물을 제조하는 방법을 나타낸 것이고, 공정부분 Ⅱ는 철 성분이 10 ppm 이상 포함되어도 무방한 공업용 니켈화합물을 제조하는 방법을 나타낸 것이다. 이를 보다 구체적으로 설명하면 다음과 같다.본 발명은 시약용 니켈화합물을 제조하기 위하여, 공정부분 I를 실시한다.먼저, 본 발명은 화학공장에서 폐기물로 배출된 폐니켈화합물 내의 니켈 성분을 산으로 침출시키는 단계를 실시한다.본 발명은 1,000 내지 2,000ℓ의 물이 들어 있는 오토클레이브(Autoclave)내에 폐니켈 화합물 1,000 내지 1,500 kg을 서서히 가하여 혼합하여 슬러리를 제조한다(도 1의 11). 이때, 고체농도(Pulp Density)는 20 내지 60 %로 조절하는 것이 바람직하다.상기 혼합액(slurry)에 온도가 100 ℃를 넘지 않도록 조심하면서 산을 천천히 투입한다. 이후, 산을 첨가한 혼합액에 과산화수소(H2O2) 또는 과망간산칼륨(KMnO4)과 같은 통상의 산화제를 가하고, 산소 가스를 투입하여 전체 압력 0.1 내지 100 Kg/㎠, 및 반응온도 70 내지 150 ℃로 유지시키면서 침출반응을 30분 내지 8시간 동안 실시하여 니켈성분을 침출시킨다.이때, 상기 침출반응은 슬러리의 pH가 3.5 내지 5.0의 범위를 유지할 때 종결시키는 것이 중요하며, 이러한 과정을 통해 약 95 % 이상의 니켈 및 10 % 이하의 철 성분이 침출된다. 상기 산침출시 사용하는 산을 염산, 황산, 질산 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것이 바람직하다.그 다음으로, 본 발명은 상기 침출물에 암모니아(NH3) 수용액을 가하여 착염화 반응으로 착염된 니켈용액을 제조하는 단계를 실시한다.본 발명은 상기 침출물에 암모니아 수용액(단계 15에서 회수한 암모니아(NH3))을 가하여 하기 반응식 1과 같은 착염반응을 통해 착염된 니켈용액을 제조한다. 상기 암모니아 수용액의 첨가량은 니켈에 대한 암모니아의 몰비([NH3]/[Ni])가 6.0 내지 11.0이 되도록 가하는 것이 바람직하다(도 1의 12).[반응식 1]Ni2++ 6(NH3) →Ni(NH3)6 2+이다.그 다음으로, 본 발명은 상기 착염화된 니켈용액을 수열반응에 의한 가수분해를 수행하여 철 및 불순물을 여과하여 제거하는 단계를 실시한다.상기 착염화 반응이 끝난 용액에 과산화수소 또는 과망간산 칼륨과 같은 통상의 산화제를 가하고, 산소 가스를 투입하여 전체 압력 0.1 내지 100 Kg/㎠ 및 반응 온도를 80 내지 150 ℃ 하에서 30분 내지 10시간, 바람직하게 3 내지 5 시간 동안 수열반응시킨 뒤, 가수분해하여 상기 페니켈 화합물로부터 침출된 철 성분과 나머지 불순물들을 침전시킨다(도 1의 단계 13).상기에서 얻은 슬러리를 여과하여(도 1의 단계 14) 침출된 철 성분과 나머지 불순물을 제거한 후, 여액을 탄산반응조에 이송한다. 여과하여 생성된 잔사는 적치하여 안료용 또는 페라이트(Ferrite) 제조용으로 활용할 수 있다.그 다음으로, 본 발명은 상기 여과된 여액에 Na2CO3또는 CO2와 NaOH의 혼합물을 가하고, 탄산반응시키는 단계를 실시한다.본 발명은 상기 여액에 상기 니켈에 대한 탄산의 몰비([CO3]/[Ni])가 1.0 내지 1.4가 되도록 탄산나트륨(Na2CO3) 또는 수산화나트륨(NaOH)과 이산화탄소의 혼합물을 가하고, 70 내지 150 ℃하에서 1 내지 15 시간 동안 가열하여 탄산반응을 실시한다(도 1의 단계 15).이후, 상기 탄산반응을 통하여 침강된 염기성 탄산니켈(BNC)을 수득하는 단계를 실시한다.상기 탄산반응이 완료되면 침강성이 양호한 염기성 탄산니켈(BNC: 2NiCO3·3Ni(OH)24H2O)이 생성되고, 99.0% 이상의 암모니아가 회수된다. 회수된 암모니아는 상기한 단계 13의 침출액의 착염화에 사용될 수 있다.그 다음으로, 상기 수득된 염기성 탄산니켈에 산을 가하고 용해한 후 산화제를 가하고 증발. 농축 및 여과단계를 실시한다.본 발명은 생성된 염기성 탄산니켈(BNC)을 여과하여(도 1의 단계 16), 상기 염기성 탄산니켈 내의 니켈성분이 35 내지 42 %가 되도록 한 다음, 염산, 황산 또는 질산을 가하여 용해한다(도 1의 단계 17). 상기 용액에 통상의 산화제를 가하여 미량의 불순물을 산화시키고, 상기 여액을 여과하여 증발 농축을 실시한다.마지막으로, 상기 여과된 여액을 결정화한 다음, 여과하여 시약용 니켈화합물을 제조한다.상기 공정부분 I단계의 방법을 포함하는 방법으로 제조된 니켈화합물을 철 성분을 10 ppm 미만으로 함유하고 있어, 시약급 니켈화합물로 사용할 수 있다. 이러한 방법에 따르면 침출시키는 산의 종류에 따라 염화니켈(NiCl2·6H2O), 질산 니켈(Ni(NO3)2·6H2O), 및 황산 니켈(NiSO4·6H2O) 등이 시약용 니켈화합물을 고품질로 제조할 수 있다.또한, 본 발명은 선택적으로 염기성 탄산니켈의 제조공정을 생략하여 상기 공정부분 I 단계에 기재한 바와 동일한 방법으로 폐니켈화합물 내의 니켈을 침출한 후, 산 침출물을 여과 및 수열반응을 통해 대부분의 철을 제거하고 그 여액을 증발 농축 및 결정화하여 공업용 니켈화합물을 제조할 수도 있다. 본 발명에 있어서, 본 공정은 철성분이 제품에 10 ppm 이상 포함되어도 무방한 공업용 니켈화합물을 제조할 때 사용할 수 있다.상기 니켈을 침출시 폐니켈화합물과 산의 혼합액의 pH는 3.5 내지 5.0을 유지하는 것이 바람직하다(도 1의 단계 11).본 발명은 상기 니켈침출액을 여과하여(도 1의 단계 21), 수득한 여액을 가수분해기에 옮기고 가수분해한다(도 1의 단계 22). 상기 가수분해 반응은, 상기 여액에 과산화수소, 과망간산 칼륨, 또는 산소가스의 같은 통상의 산화제를 가하고 전체압력을 0.1 내지 100 Kg/㎠으로 유지하고, 80 내지 150 ℃의 온도하에서 30분내지 15시간 동안 가열하여 수열반응시킨 뒤, 가수분해하여, 상기 여액으로부터 철성분과 나머지 불순물들을 침전시켜 실행한다. 침전물을 여과하여 제거하고(도1의 단계 23), 상기 여액을 농축 및 결정화(도 1의 24 단계)한 다음, 최종적으로 여과하여(도 1의 25 단계)하여 니켈화합물을 제조한다.이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기한 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.(실시예 1)니켈 침출물의 제조교반기가 달린 4 ㎥ 오토클레이브(Autoclave)에 물 1500ℓ를 투입하고 120rpm의 교반속도로 교반하면서 폐니켈화합물 1,200 Kg을 서서히 가하였다. 상기 용액에 60% 질산용액, 98% 황산용액, 35% 염산용액, 혼산(황산 및 질산의 혼합물) 각각을 하기 표 2 내지 5에 나타난 바와 같이 부피를 달리하여 첨가하였다. 이때, 산화제로 40ℓ의 과산화수소(H2O2)를 가하고, 120 ℃의 반응온도에서 전체압력이 5 Kg/㎠이 되도록 산소가스를 주입하면서 약 3시간 동안 침출반응을 실시하였다. 상기 침출반응은 상기 반응액들의 최종 pH가 3.0 내지 5.0 일 때 종료하였으며, 하기 표 2 내지 5에 사용한 산의 종류, 사용한 부피, 최종 pH에 따른 니켈의 침출율을 표기하였다. 상기 표 2 내지 5에서 보면, 상기 혼합액의 최종 pH가 3.0 이상, 특히 그 중에서 대체적으로 pH 3.0 내지 5.0 에서 니켈침출율이 좋았다. 60% 질산용액을 사용한 경우, pH 3.0 이상에서 니켈침출율이 높았고, pH 3.5 미만인 경우에는 니켈침출율이 비교적 낮았다. 그 외, 98% 황산용액, 35% 염산용액, 및 혼산용액에서 니켈침출율도 pH가 3.0 내지 3.5가 가장 양호하였다. 다만, 염산의 경우에는 최종 pH에 따른 니켈침출율의 차이가 크지 않았으나, 부식성이 강한 염산은 사용상 문제가 있으므로 제외하였다.(실시예 2)시약용 니켈화합물의 제조상기 실시예 1에서 얻은 침출 슬러리(slurry)에 암모니아 수용액 및 암모니아 가스를 가하여, 침출된 니켈에 대한 암모니아의 몰비를 6.0 내지 8.0의 범위 내에서 변화시키면서 수열반응을 수행하여, 암모니아를 착염화하였다. 이 때, 반응조건은 110 내자 120 ℃의 온도에서, 전체압력이 5 Kg/㎡가 되도록 산소가스를 주입하면서 약 3 내지 5 시간 동안 가열하였다. 니켈에 대한 암모니아 몰비를 다양하게 하였을 때의 철 성분 제거율(철 성분의 농도)을 하기 표 6에 나타내었다. 상기 반응물 가운데, [NH3]/[Ni]의 몰비를 6.5로 하여 실행한 반응물을 여과(단계 14)하고 얻은 여과액을 펌프로 5 ㎥의 탄산반응조에 이송하였다. 하기 표 7에 나타낸 바와 같이, [NH]/[Ni]의 몰비가 6.5, Ni의 농도가 50g/ℓ, 철의 농도가 5 ppm, 및 최종 pH가 10인 상기 반응물을, [CO3]/[Ni]의 몰비를 1.0 내지 1.5로 변화시키면서, 100 내지 120 ℃에서 6 내지 10 시간 동안 탄산반응을 수행하였다. 이 때 생성된 염기성 탄산니켈(BNC)은 침강성이 양호하였으며, 대부분의 암모니아는 회수되었다. 하기 표 8은 상기 방법으로 제조한 염기성 탄산니켈의 분석치를 나타낸다. 상기 염기성 탄산니켈(BNC)을 중간물질로 각각 염산, 황산, 및 질산에 용해하고, 증발농축 및 결정화 단계를 거쳐서 각각 염화니켈(NiCl2·6H2O), 황산니켈(NiSO4·6H2O), 및 질산니켈(Ni(NO3)2·6H2O)을 제조하였다.하기 표 9 내지 11은 각각 상기 염화니켈, 황산니켈, 및 질산니켈의 분석치를 나타낸 것이다. 여기에서 중요한 것은 철분이 대부분이었던 폐니켈화합물로부터 염기성 탄산니켈을 거쳐서 니켈화합물을 제조함으로써, 불순물이 다량 함유된 원료에 대한 기대효과를 나타낼 수 있는 것이다. (실시예 3)폐니켈화합물로부터 공업용 니켈화합물을 제조하기 위한 파일롯 플랜트 상의 실험을 다음과 같이 수행하였다(공정부분 Ⅱ).상기 실시예 1에서와 동일한 방법으로 폐니켈화합물을 산에 침출하여 슬러리를 제조하고, 상기 슬러리를 여과(단계 21)하고, 그 여액을 가수분해조에 이송하였다. 상기 여액에 40 내지 60 ℓ의 과산화수소를 산화제로 가하고, 100 내지 120 ℃에서 전체압력이 5 내지 10 Kg/㎠가 되도록 산소 가스를 주입하면서 3 내지 5 시간 동안 가수분해 반응을 실시하였다. 이 때, 여액 중에 남아있던 대부분의 철과 불순물이 침전 및 제거되었다. 상기 반응물의 pH가 3.0 내지 5.0 범위를 유지할 때 가수분해 반응을 종결하였다. 가수분해를 완료한 다음, 상기 반응액을 여과(단계 23)하고, 농축 및 결정화(단계 24)하여 철 성분이 10 ppm 초과인 공업용 니켈 화합물을 제조하였다.하기 표 12는 상기 실시예 3의 방법으로 제조한 니켈화합물의 분석치를 나타낸 것이다. In order to achieve the above object, the present invention is a method for producing a nickel compound by treating a waste nickel compound generated when removing nickel from the solution after etching the shadow mask, a) in the waste nickel compound Leaching nickel with an acid selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid and mixtures thereof; b) adding ammonia (NH 3 ) aqueous solution to the leachate to prepare a complexed nickel solution; c) the complex salt Hydrothermally reacting the quenched nickel solution at 80 to 150 ° C. for 30 minutes to 10 hours and removing iron and impurities; d) a molar ratio of [CO 3 ] / [Ni] in the filtrate from which the iron and impurities were removed; 1.4 Na 2 CO 3 or CO was added to a mixture of 2 and NaOH, 70 to 150 for 1 to 15 hours so that the ℃ reacting acid; e) a basic nickel carbonate (BNC) precipitation through the acid reaction F) adding an acid selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid and mixtures thereof to the basic nickel carbonate obtained above to prepare a solution, and then adding an oxidizing agent to the solution to concentrate the evaporation and then filtering step; And g) crystallizing the filtered filtrate. A method of preparing a nickel compound from a waste nickel compound is described below. The present invention is described in detail below. Without disposing of the nickel compounds, most of the Fe components contained in these waste nickel compounds are removed and the acid is leached under high temperature and oxygen pressure while controlling the final pH, followed by complexation, hydrolysis and carbonation. Through this process, a basic nickel carbonate (2NiCO 3 ㆍ 3Ni (OH) 2 4H 2 0: BNC) is prepared as an intermediate, and dissolved in an acid to provide a method for preparing a nickel compound for reagents through evaporation, concentration and crystallization. It is. In addition, the present invention can provide an industrial nickel compound by omitting the production of the basic nickel carbonate compound. According to the present invention, it is possible to reduce environmental pollution by recycling the waste nickel compound, and to produce a nickel compound by preparing a basic nickel carbonate of high quality at a low cost. Therefore, the waste nickel compound (Ni-Mud) may be used. In order to remove the iron (Fe) powder and most impurities contained therein) and to leach Ni, a wet smelting method is used. Hereinafter, a method for producing a nickel compound of the present invention will be described based on the process diagram of FIG. The present invention will be described by dividing the waste nickel compound of FIG. 1 into process part I and process part II in the process chart for producing a nickel compound. The process part I is a reagent grade nickel containing less than 10 ppm of iron. The method for preparing the compound is shown, and Process Part II shows a method for producing an industrial nickel compound which may contain 10 ppm or more of iron. The present invention will be described in more detail as follows. The present invention is carried out in the process part I to prepare a nickel compound for reagents. First, the present invention provides a nickel component in the waste nickel compound discharged as waste from a chemical plant as an acid. The leaching step is carried out. The present invention is prepared by slowly adding 1,000 to 1,500 kg of the spent nickel compound into an autoclave containing 1,000 to 2,000 L of water to prepare a slurry (11 in FIG. 1). At this time, the solid density (Pulp Density) is preferably adjusted to 20 to 60%. The acid is slowly added to the mixture (slurry) while being careful not to exceed the temperature 100 ℃. Thereafter, a common oxidizing agent such as hydrogen peroxide (H 2 O 2 ) or potassium permanganate (KMnO 4 ) is added to the mixed solution to which the acid is added, and oxygen gas is added to the total pressure of 0.1 to 100 Kg / cm 2, and the reaction temperature is 70 to 150. The leaching reaction is carried out for 30 minutes to 8 hours while maintaining the temperature at room temperature to leach the nickel component. At this time, it is important to terminate the leaching reaction when the pH of the slurry is maintained in the range of 3.5 to 5.0. At least 95% nickel and up to 10% iron are leached. The acid used in the acid leaching is preferably selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid and mixtures thereof. Next, the present invention adds an aqueous ammonia (NH 3 ) solution to the leaching to form a complex chloride reaction. The process of preparing a complexed nickel solution is carried out. The present invention adds an aqueous ammonia solution (ammonia (NH 3 ) recovered in step 15) to the leachate to prepare a complexed nickel solution through a complexation reaction as in Scheme 1 below. do. The addition amount of the aqueous ammonia solution is preferably added such that the molar ratio of ammonia to nickel ([NH 3 ] / [Ni]) is 6.0 to 11.0 (Fig. 1, 12). [Scheme 1] Ni 2+ + 6 (NH 3 ) → Ni (NH 3 ) 6 2+ . The present invention then performs a step of hydrolyzing the complexed nickel solution by hydrothermal reaction to remove iron and impurities by filtration. A conventional oxidizing agent, such as hydrogen peroxide or potassium permanganate, is added to the solution after completion of the complexation reaction, and oxygen gas is added to the total pressure of 0.1 to 100 Kg / cm 2 and the reaction temperature at 80 to 150 ° C. for 30 minutes to 10 hours, preferably 3 After hydrothermal reaction for 5 to 5 hours, hydrolysis to precipitate the iron component and the remaining impurities leached from the phenyl nickel compound (step 13 of Figure 1). The slurry obtained above is filtered (step 14 of Figure 1) leaching Iron and rest After removing the impurities, and the filtrate was transferred to the acid tank. The residue produced by filtration can be loaded and used for pigment or ferrite production. Next, the present invention adds Na 2 CO 3 or a mixture of CO 2 and NaOH to the filtrate, and According to the present invention, sodium carbonate (Na 2 CO 3 ) or sodium hydroxide (NaOH) and carbon dioxide are added to the filtrate so that the molar ratio of carbonic acid to nickel ([CO 3 ] / [Ni]) is 1.0 to 1.4. The mixture is added and heated at 70 to 150 ° C. for 1 to 15 hours to effect carbonation (step 15 of FIG. 1). Thereafter, a step of obtaining precipitated basic nickel carbonate (BNC) is performed. When the carbonation reaction is completed, basic nickel carbonate (BNC: 2NiCO 3 · 3Ni (OH) 2 4H 2 O) having good sedimentation is produced, and 99.0% or more of ammonia is recovered. The recovered ammonia can be used for the complexation of the leaching liquor described above in step 13. Next, an acid is added to and dissolved in the basic nickel carbonate obtained, followed by addition of an oxidizing agent and evaporation. Concentration and filtration step is carried out. The present invention is to filter the resulting basic nickel carbonate (BNC) (step 16 of Figure 1), so that the nickel component in the basic nickel carbonate is 35 to 42%, and then hydrochloric acid, sulfuric acid Or nitric acid is added to dissolve (step 17 in FIG. 1). A conventional oxidant is added to the solution to oxidize trace impurities, and the filtrate is filtered and concentrated by evaporation. Finally, the filtered filtrate is crystallized and then filtered to prepare a nickel compound for reagents. The nickel compound prepared by the method including the method of Part I contains less than 10 ppm of an iron component and can be used as a reagent-grade nickel compound. According to this method, nickel chloride (NiCl 2 · 6H 2 O), nickel nitrate (Ni (NO 3 ) 2 · 6H 2 O), nickel sulfate (NiSO 4 · 6H 2 O), etc. The nickel compound for reagents can be produced in high quality. [0038] The present invention also selectively leaches the nickel nickel in the waste nickel compound by the same method as described in the step I of the above step by omitting the basic nickel carbonate production step. The acid leaching may remove most of the iron through filtration and hydrothermal reaction, and the filtrate may be concentrated and crystallized to produce an industrial nickel compound. In the present invention, the present process can be used to produce industrial nickel compounds that may contain 10 ppm or more of iron components. When leaching the nickel, the pH of the mixture of waste nickel compounds and acids is 3.5 to 5.0. It is preferred to maintain it (step 11 of FIG. 1). The present invention filters the nickel leachate (step 21 of FIG. 1), transfers the obtained filtrate to a hydrolysis machine and hydrolyzes (step 22 of FIG. 1). The hydrolysis reaction is carried out by adding a common oxidizing agent such as hydrogen peroxide, potassium permanganate, or oxygen gas to the filtrate and maintaining the total pressure at 0.1 to 100 Kg / cm 2, for 30 minutes to 15 hours at a temperature of 80 to 150 ° C. After heating and hydrothermal reaction, hydrolysis is performed by precipitating the iron component and the remaining impurities from the filtrate. The precipitate is filtered off (step 23 of FIG. 1), the filtrate is concentrated and crystallized (step 24 of FIG. 1) and finally filtered (step 25 of FIG. 1) to prepare a nickel compound. Preferred examples and comparative examples of the invention are described. However, the following examples are only preferred examples of the present invention, and the present invention is not limited to the following examples. (Example 1) Preparation of Nickel Leachate 1500 L of water in a 4 m 3 autoclave equipped with a stirrer 1,200 Kg of spent nickel compounds was slowly added while stirring at a stirring speed of 120 rpm. To the solution, 60% nitric acid solution, 98% sulfuric acid solution, 35% hydrochloric acid solution, mixed acid (mixture of sulfuric acid and nitric acid), respectively, were added in varying volumes as shown in Tables 2 to 5 below. At this time, 40L of hydrogen peroxide (H 2 O 2 ) was added as an oxidizing agent, and the leaching reaction was performed for about 3 hours while injecting oxygen gas such that the total pressure was 5 Kg / cm 2 at a reaction temperature of 120 ° C. The leaching reaction was terminated when the final pH of the reaction solution is 3.0 to 5.0, and the leaching rate of nickel according to the type of acid used, the volume used, and the final pH was shown in Tables 2 to 5 below. In Tables 2 to 5, the final pH of the mixed solution was 3.0 or more, particularly in the pH of 3.0 to 5.0 of the nickel leaching rate was good. When the 60% nitric acid solution was used, the nickel leaching rate was high at pH 3.0 or higher, and the nickel leaching rate was relatively low at pH lower than 3.5. In addition, in the 98% sulfuric acid solution, 35% hydrochloric acid solution, and mixed acid solution, the pH of the nickel leaching ratio was 3.0 to 3.5. However, in the case of hydrochloric acid, the difference in nickel leaching rate according to the final pH was not large, but hydrochloric acid, which is highly corrosive, was excluded because of problems in use. (Example 2) Preparation of a nickel compound for reagents The leaching slurry obtained in Example 1 above Aqueous ammonia and ammonia gas were added to (slurry), and hydrothermal reaction was carried out while varying the molar ratio of ammonia to leached nickel within the range of 6.0 to 8.0 to complex salt ammonia. At this time, the reaction conditions were heated for about 3 to 5 hours while injecting oxygen gas such that the total pressure was 5 Kg / ㎡ at a temperature of 110 to 120 ℃. The removal rate of iron component (concentration of iron component) at various molar ratios of nickel to ammonia is shown in Table 6 below. Among the reactants, the reactant, which was carried out with a molar ratio of [NH 3 ] / [Ni] of 6.5, was filtered (step 14), and the filtrate obtained was transferred to a 5 m 3 carbonic acid tank by a pump. As shown in Table 7, the reaction product having a molar ratio of [NH] / [Ni] of 6.5, a concentration of Ni of 50 g / l, a concentration of iron of 5 ppm, and a final pH of 10, [CO 3 ] / Carbonation reaction was performed at 100-120 degreeC for 6 to 10 hours, changing the molar ratio of [Ni] to 1.0-1.5. The basic nickel carbonate (BNC) produced at this time had good sedimentation properties, and most of the ammonia was recovered. Table 8 below shows the analysis values of the basic nickel carbonate prepared by the above method. The basic nickel carbonate (BNC) is dissolved in hydrochloric acid, sulfuric acid, and nitric acid, respectively, as an intermediate, and is subjected to evaporative concentration and crystallization, respectively, to nickel chloride (NiCl 2 · 6H 2 O) and nickel sulfate (NiSO 4 · 6H 2 O). ) And nickel nitrate (Ni (NO 3 ) 2 .6H 2 O). Tables 9 to 11 show analysis values of the nickel chloride, nickel sulfate, and nickel nitrate, respectively. What is important here is that by producing a nickel compound through a basic nickel carbonate from a waste nickel compound, which was mostly iron, it can exhibit the expected effect on a raw material containing a large amount of impurities. Example 3 An experiment on a pilot plant for producing an industrial nickel compound from a waste nickel compound was carried out as follows (Step II). In the same manner as in Example 1, the waste nickel compound was leached into an acid to give a slurry. Was prepared, the slurry was filtered (step 21), and the filtrate was transferred to a hydrolysis bath. 40 to 60 L of hydrogen peroxide was added to the filtrate, and the hydrolysis reaction was performed for 3 to 5 hours while injecting oxygen gas at 100 to 120 ° C. such that the total pressure was 5 to 10 Kg / cm 2. At this time, most of the iron and impurities remaining in the filtrate were precipitated and removed. The hydrolysis reaction was terminated when the pH of the reactants remained in the 3.0 to 5.0 range. After completion of the hydrolysis, the reaction solution was filtered (step 23), concentrated and crystallized (step 24) to produce an industrial nickel compound having an iron content of more than 10 ppm. Table 12 shows the method of Example 3 above. It shows the analysis value of the nickel compound prepared by.

이상에서 설명한 바와 같이, 본 발명의 폐니켈화합물로부터의 니켈화합물의 제조방법은 종래 방법과 달리 폐니켈화합물을 염기성 탄산니켈로 제조한 다음, 상기 염기성 탄산니켈을 산에 용해하고, 농축, 및 결정공정을 거쳐 니켈화합물을 제조하므로, 고품질의 니켈화합물을 저렴한 가격으로 제조할 수 있을 뿐만 아니라, 폐니켈화합물을 이용함으로써 공해를 방지할 수 있다.As described above, in the method for producing a nickel compound from the waste nickel compound of the present invention, unlike the conventional method, the waste nickel compound is prepared from basic nickel carbonate, and then the basic nickel carbonate is dissolved in an acid, concentrated, and crystallized. Since the nickel compound is manufactured through the process, not only the high quality nickel compound can be manufactured at a low price, but also the waste nickel compound can be used to prevent pollution.

Claims (5)

섀도우마스크를 엣칭(etching)한 후의 용액으로부터 니켈을 제거할 때 발생하는 폐니켈화합물을 처리하여 니켈화합물을 제조하는 방법에 있어서,In the method for producing a nickel compound by treating the waste nickel compound generated when removing nickel from the solution after etching the shadow mask, a) 상기 폐니켈화합물 내의 니켈을 염산, 황산, 질산 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 산으로 침출하는 단계;a) leaching nickel in the spent nickel compound with an acid selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid and mixtures thereof; b) 상기 침출물에 암모니아(NH3) 수용액을 가하여 착염된 니켈용액을 제조하는 단계;b) preparing a nickel salt solution by adding ammonia (NH 3 ) aqueous solution to the leachate; c) 상기 착염화된 니켈용액을 80 내지 150 ℃에서 30분 내지 10시간 동안 수열반응시키고 철 및 불순물을 제거하는 단계;c) hydrothermally reacting the complexed nickel solution at 80 to 150 ° C. for 30 minutes to 10 hours and removing iron and impurities; d) 상기 철 및 불순물이 제거된 여액에 [CO3]/[Ni] 몰비가 1.0 내지 1.4가 되도록 Na2CO3또는 CO2와 NaOH의 혼합물을 가하고, 70 내지 150 ℃에서 1 내지 15시간 동안 탄산반응시키는 단계;d) Na 2 CO 3 or a mixture of CO 2 and NaOH was added to the iron and impurities-free filtrate so that the molar ratio of [CO 3 ] / [Ni] was 1.0 to 1.4, and the mixture was heated at 70 to 150 ° C. for 1 to 15 hours. Carbonic acid reaction; e) 상기 탄산반응을 통하여 침강된 염기성 탄산니켈(BNC)을 수득하는 단계;e) obtaining precipitated basic nickel carbonate (BNC) through the carbonation reaction; f) 상기 수득된 염기성 탄산니켈에 염산, 황산, 질산 및 이들의 혼합물로 이루어지는 군으로부터 선택되는 산을 가하여 용액을 제조한 후, 상기 용액에 산화제를 가하여 증발농축을 한 다음 여과하는 단계; 및f) preparing a solution by adding an acid selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid and mixtures thereof to the basic nickel carbonate obtained, and then adding an oxidizing agent to the solution to concentrate by evaporation and filtering; And g) 상기 여과된 여액을 결정화시키는 단계g) crystallizing the filtered filtrate 를 포함하는 폐니켈화합물로부터의 니켈화합물 제조방법.Nickel compound production method from the waste nickel compound comprising a. 삭제delete 삭제delete 제 1 항에 있어서,The method of claim 1, 상기 a)단계의 침출은 70 내지 150 ℃에서 산소 주입하에 최종 pH가 3 내지 5로 유지될 때까지 실시되는 것을 특징으로 하는 폐니켈화합물로부터의 니켈화합물 제조방법.The leaching of step a) is carried out until the final pH is maintained at 3 to 5 under oxygen injection at 70 to 150 ℃ nickel compounds from the waste nickel compound manufacturing method. 제 1 항에 있어서,The method of claim 1, 상기 b)단계의 암모니아(NH3) 수용액의 함량은 [NH3]/[Ni]의 몰비가 6 내지 11이 되도록 첨가하는 것을 특징으로 하는 폐니켈화합물로부터의 니켈화합물 제조방법.Method for producing a nickel compound from the waste nickel compound, characterized in that the content of the aqueous solution of ammonia (NH 3 ) in step b) is added so that the molar ratio of [NH 3 ] / [Ni] is 6 to 11.
KR1019990022211A 1999-06-15 1999-06-15 Method for preparing nickel compound from waste nickel compound KR100329483B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990022211A KR100329483B1 (en) 1999-06-15 1999-06-15 Method for preparing nickel compound from waste nickel compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990022211A KR100329483B1 (en) 1999-06-15 1999-06-15 Method for preparing nickel compound from waste nickel compound

Publications (2)

Publication Number Publication Date
KR20010002412A KR20010002412A (en) 2001-01-15
KR100329483B1 true KR100329483B1 (en) 2002-11-16

Family

ID=19592309

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990022211A KR100329483B1 (en) 1999-06-15 1999-06-15 Method for preparing nickel compound from waste nickel compound

Country Status (1)

Country Link
KR (1) KR100329483B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101949769B1 (en) 2017-11-03 2019-02-20 (주)케이엠씨 Manufacturing method of nickel carbonate using waste etching solution

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100858372B1 (en) * 2006-08-17 2008-09-17 최용 Nickel Ball Manufacturing Method for Electro-Forming using Waste Stamper
CN107459021B (en) * 2017-07-25 2023-11-24 四川思达能环保科技有限公司 Apparatus and method for decomposing nitrate solution

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880981A (en) * 1972-10-10 1975-04-29 Renato M Garingarao Cyclic acid leaching of nickel bearing oxide and silicate ores with subsequent iron removal from leach liquor
US3905881A (en) * 1972-11-13 1975-09-16 Nickel Le Method for producing high-purity nickel from sulphidized concentrates
US3981968A (en) * 1973-10-19 1976-09-21 Freeport Minerals Company Solvent extraction of nickel from ammoniacal solutions
US4105743A (en) * 1976-06-15 1978-08-08 Mx-Processer Reinhardt & Co. Ab Selectively extracting copper, zinc, nickel from a mixture of metal hydroxides
US4195065A (en) * 1977-08-01 1980-03-25 Amax Inc. Leaching nickeliferous oxide ores
JPS6350328A (en) * 1986-08-19 1988-03-03 Sumitomo Metal Ind Ltd Production of nickel carbonate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880981A (en) * 1972-10-10 1975-04-29 Renato M Garingarao Cyclic acid leaching of nickel bearing oxide and silicate ores with subsequent iron removal from leach liquor
US3905881A (en) * 1972-11-13 1975-09-16 Nickel Le Method for producing high-purity nickel from sulphidized concentrates
US3981968A (en) * 1973-10-19 1976-09-21 Freeport Minerals Company Solvent extraction of nickel from ammoniacal solutions
US4105743A (en) * 1976-06-15 1978-08-08 Mx-Processer Reinhardt & Co. Ab Selectively extracting copper, zinc, nickel from a mixture of metal hydroxides
US4195065A (en) * 1977-08-01 1980-03-25 Amax Inc. Leaching nickeliferous oxide ores
JPS6350328A (en) * 1986-08-19 1988-03-03 Sumitomo Metal Ind Ltd Production of nickel carbonate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101949769B1 (en) 2017-11-03 2019-02-20 (주)케이엠씨 Manufacturing method of nickel carbonate using waste etching solution

Also Published As

Publication number Publication date
KR20010002412A (en) 2001-01-15

Similar Documents

Publication Publication Date Title
CN101597698B (en) Method for extracting vanadium by stone coal through acid leaching
EP0028634B1 (en) Method for producing cobalt metal powder
CA2618326C (en) Method for manufacturing scorodite
US4241039A (en) Method of removal of arsenic from a sulfuric acid solution
CN103922416A (en) Method for separating and recovering iron from red mud
US4278463A (en) Process for recovering cobalt
CN108754161A (en) A kind of method of containing vanadium and chromium acid salt solution separation and recovery chromium
CN102795653B (en) Method for recycling copper oxide and zinc oxide from organosilicon spent contact mass
KR950005764B1 (en) Method for manufacturing titaniumoxide
EP0308175B1 (en) Stripping and recovery of dichromate in electrolytic chlorate systems
EP0028638B1 (en) Method for producing cobalt metal powder
JP2022514634A (en) Process for metal recovery from multi-metal nodules
US4214896A (en) Process for producing cobalt metal powder
KR20090109733A (en) Method for producing high purity cobalt carbonate
US4401630A (en) Process for cobalt recovery from mixed sulfides
KR100329483B1 (en) Method for preparing nickel compound from waste nickel compound
US4214894A (en) Method for producing cobalt metal powder
FI106791B (en) Process for preparing useful products from an impure ferric sulphate solution
US4065300A (en) Method for extraction of copper products from copper bearing material
US4908462A (en) Cobalt recovery method
WO2005068358A1 (en) Production of 'useful material(s)' from waste acid issued from the production of titanium dioxyde
US3322532A (en) Process for recovering the metal content of middlings, slags, low-grade ores, and concentrates
JPH07196323A (en) Production of cobalt oxide of low sodium content
CN110983054A (en) Method for separating and recovering cobalt and nickel from manganese sulfate solution
CA1158018A (en) Process for production of coc1.sub.2 solution from cobaltic oxide-hydrate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130227

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140226

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150302

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20170302

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20180305

Year of fee payment: 17

LAPS Lapse due to unpaid annual fee