KR100327911B1 - Semiconducting ceramic and monolithic electronic element fabricated from the same - Google Patents

Semiconducting ceramic and monolithic electronic element fabricated from the same Download PDF

Info

Publication number
KR100327911B1
KR100327911B1 KR1020000010661A KR20000010661A KR100327911B1 KR 100327911 B1 KR100327911 B1 KR 100327911B1 KR 1020000010661 A KR1020000010661 A KR 1020000010661A KR 20000010661 A KR20000010661 A KR 20000010661A KR 100327911 B1 KR100327911 B1 KR 100327911B1
Authority
KR
South Korea
Prior art keywords
oxide film
semiconductor
atomic weight
ceramic layer
total atomic
Prior art date
Application number
KR1020000010661A
Other languages
Korean (ko)
Other versions
KR20000076768A (en
Inventor
니이미히데아키
마츠나가다츠야
Original Assignee
무라타 야스타카
가부시키가이샤 무라타 세이사쿠쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 무라타 야스타카, 가부시키가이샤 무라타 세이사쿠쇼 filed Critical 무라타 야스타카
Publication of KR20000076768A publication Critical patent/KR20000076768A/en
Application granted granted Critical
Publication of KR100327911B1 publication Critical patent/KR100327911B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/022Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
    • H01C7/023Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances containing oxides or oxidic compounds, e.g. ferrites
    • H01C7/025Perovskites, e.g. titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

1,000℃ 또는 그보다 낮은 온도에서 소성 공정을 통하여 생성될 수 있고, 낮은 온도에서 재산화 공정을 통하여 생성되는 경우에도 만족할만한 정저항온도 특성이 발현되는 것을 특징으로 하는 반도체 세라믹으로부터 제조되는 모놀리식 전자 소자를 제공하기 위한 것이다. 상기 모놀리식 전자 소자(1)는 반도체 세라믹층(5)과 내부 전극층(7)이 교대로 적층되어 형성된 적층소결체(3)와, 상기 적층소결체 위로 형성된 외부 전극들(9)을 포함하며, 상기 반도체 세라믹층(5)은 산화붕소막과 제1산화막 및 제2산화막을 포함하는 소결된 티탄산바륨을 포함한다. 상기 산화붕소막은 붕소원자(B)가 환원되어 0.001 ≤ B/β ≤ 0.50 및 0.5 ≤ B/(α-β) ≤ 10.0을 만족하도록 하는 양으로 결합된 것을 특징으로 하며, 이때 α는 바륨계 원소들의 총 원자량을 나타내고, β는 반도체 티탄계 원소들의 총 원자량을 나타낸다. 또한, 상기 제1산화막은 바륨, 스트론튬, 칼슘, 납, 이트륨 및 희토류 금속 중 적어도 한 금속으로 형성되며, 상기 제2산화막은 티타늄, 주석, 지르코늄, 니오븀, 텅스텐 및 안티몬 중 적어도 한 금속으로 형성된다.Which is produced through a firing process at a temperature of 1,000 ° C or lower and a satisfactory positive resistance temperature characteristic is exhibited even when it is produced through a reoxidation process at a low temperature, Device. The monolithic electronic device 1 includes a multilayer sintered body 3 formed by alternately laminating a semiconductor ceramic layer 5 and an internal electrode layer 7 and external electrodes 9 formed on the multilayered sintered body, The semiconductor ceramic layer 5 comprises a sintered barium titanate containing a boron oxide film, a first oxide film and a second oxide film. The boron oxide film is characterized in that the boron atom (B) is reduced and bound in such an amount that 0.001? B /?? 0.50 and 0.5? B / (? -?)? 10.0, And? Represents the total atomic weight of the semiconductor titanium-based elements. The first oxide film may be formed of at least one metal selected from the group consisting of barium, strontium, calcium, lead, yttrium, and rare earth metals, and the second oxide may be formed of at least one of titanium, tin, zirconium, niobium, tungsten, and antimony .

Description

반도체 세라믹 및 그로부터 제조되는 모놀리식 전자 소자 { Semiconducting ceramic and monolithic electronic element fabricated from the same }[0001] Semiconductor ceramics and monolithic electronic devices fabricated therefrom [0002]

본 발명은 반도체 세라믹 및 그로부터 제조되는 모놀리식 전자 소자에 관한 것이며, 더욱 구체적으로는 정저항온도(正抵抗溫度) 특성을 갖는 반도체 세라믹 및 그로부터 제조되는 모놀리식 전자 소자에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor ceramic and a monolithic electronic device fabricated therefrom, and more particularly, to a semiconductor ceramic having a positive resistance temperature characteristic and a monolithic electronic device fabricated therefrom.

정저항온도(正抵抗溫度 ; Positive temperature coefficient of resistance ; PTC) 특성 - 즉, 온도가 퀴리온도(Curie temperature)가 넘는 경우에 전기 저항이 급격히 증가하는 특성 - 을 갖는 반도체 소자들은 과전류로부터 회로를 보호하거나 또는 칼라 텔레비전의 자화 제거를 조절하기 위하여 사용되어 왔다. 그들의 정저항온도 특성을 촉진하고자 하는 관점에서, 티탄산바륨(Barium titanate)을 주성분으로 포함하는 반도체 세라믹들이 그와 같은 반도체 전자 소자들에 일반적으로 사용되어 왔다.Semiconductor devices that have a positive temperature coefficient of resistance (PTC) characteristic - that is, a characteristic in which the electrical resistance increases sharply when the temperature exceeds the Curie temperature - protects the circuit from overcurrent Or to control the magnetization removal of color televisions. From the viewpoint of promoting their positive resistance temperature characteristics, semiconductor ceramics including barium titanate as a main component have been generally used in such semiconductor electronic devices.

한편, 티탄산바륨을 기반으로 하는 반도체 세라믹들을 제조하기 위하여는 1,300℃ 또는 그 이상의 온도에서 소성 공정이 반드시 수행되는 것이 일반적이다. 고온에서의 그와 같은 처리는 소성공정에 사용되는 소성로(Furnace)를 손상시키거나, 소성공정에 사용되는 소성로의 유지비를 높이며, 에너지 소비를 높이는 등과 같은 단점을 수반한다. 그러므로, 보다 낮은 온도에서 소성이 가능한 티탄산바륨을 포함하는 반도체 세라믹이 요구되어 왔다.On the other hand, in order to produce semiconductor ceramics based on barium titanate, a firing process is generally performed at a temperature of 1,300 ° C or higher. Such a treatment at a high temperature involves disadvantages such as damaging the furnace used in the firing process, increasing the maintenance cost of the firing furnace used in the firing process, and increasing the energy consumption. Therefore, there has been a demand for a semiconductor ceramic containing barium titanate which can be fired at a lower temperature.

위와 같은 불리한 점들을 극복하기 위하여 개선된 기술이 'Semiconducting Barium Titanate Ceramics Prepared by Boron-Conducting Liquid-Phase Sintering' (In-Chyuan Ho, Communications of the American Ceramic Society, Vol. 77, No. 3, P829∼832, 1994)에 기술되어 있다. 간단히 말하면, 티탄산바륨에 질화붕소를 첨가함에 의해 세라믹들이 반도체화 되는 온도가 낮아진다. 이 문헌은 질화붕소가 첨가된 세라믹들은 약 1,100℃의 소성 온도에서 반도체화 된다고 보고한다.In order to overcome these disadvantages, an improved technique has been proposed in the 'Semiconducting Barium Titanate Ceramics Prepared by Boron-Conducting Liquid-Phase Sintering' (In-Chyuan Ho, Communications of the American Ceramic Society, Vol. 77, No. 3, 832, 1994). Briefly, by adding boron nitride to barium titanate, the temperature at which ceramics are semiconducted is lowered. This document reports that ceramics doped with boron nitride are semiconducting at a firing temperature of about 1,100 ° C.

한편, 최근에는 상온에서 낮은 저항과 높은 내전압을 달성하고 또한 고밀도의 패키징에 적합한 모놀리식 칩형 반도체 세라믹 전자 소자들이 요구되어 오고 있다.On the other hand, recently, monolithic chip type semiconductor ceramic electronic devices, which achieve low resistance and high withstand voltage at room temperature and are suitable for high density packaging, have been demanded.

일반적으로, 세라믹 그린 시트(Ceramic green sheet)들과 내부 전극 분말층들을 교대로 적층하고 소성로(Firing furnace)에서 그들을 함께 소성함으로써 모놀리식 칩형 반도체 세라믹 전자 소자가 생성된다. 니켈(Ni)과 같은 베이스 금속은 세라믹 물질과 동시에 소성될 경우에도 세라믹 물질에 대한 옴식 접촉(Ohmic contact)이 유지될 수 있으며, 그러므로 니켈과 같은 베이스 금속이 내부 전극을 형성하기 위하여 사용된다. 그와 같은 금속이 공기 중에서 소성되는 경우, 금속은 산화된다. 따라서, 전술한 적층된 몸체는 환원 대기 상태에서 소성된 후 내부 전극들이 산화되지 않는 온도에서 재산화되며, 그에 의해서 반도체 세라믹 물질과 내부 전극 물질을 함께 소성한다. 그러나, 비교적 낮은 온도에서 실시된 재산화 공정은 그러한 소성 생성물의 정저항온도(PTC) 특성에 유해한 영향을 미친다.Generally, monolithic chip-type semiconductor ceramic electronic devices are produced by alternately laminating ceramic green sheets and internal electrode powder layers and firing them together in a firing furnace. A base metal such as nickel (Ni) may be kept in ohmic contact with the ceramic material even if it is fired simultaneously with the ceramic material, and therefore a base metal such as nickel is used to form the internal electrode. When such a metal is calcined in air, the metal is oxidized. Therefore, the above-mentioned laminated body is reoxidized at a temperature at which internal electrodes are not oxidized after being fired in a reducing atmosphere state, thereby firing the semiconductor ceramic material and the internal electrode material together. However, the re-oxidation process carried out at relatively low temperatures has a deleterious effect on the positive resistance temperature (PTC) characteristics of such calcined products.

일본 특개평8-153605호는 낮은 온도에서 재산화 공정이 수행될 경우라도 정저항온도 특성이 발현되는 방법을 기술하고 있다. 그 방법은 주성분으로 티타늄염의 미세입자 형태의 perovskite 화합물을 이용한다. perovskite 화합물을 이용하는 것은 약 500℃ 또는 그 이상의 낮은 온도에서 재산화 공정이 수행되는 경우에도 1,000℃ 내지 1,250℃의 낮은 온도에서의 소결 및 정저항온도 특성의 발현이 가능하도록 한다.Japanese Patent Laid-Open Publication No. 8-153605 describes a method in which a positive resistance temperature characteristic is expressed even when a reoxidation process is performed at a low temperature. The method uses perovskite compounds in the form of fine particles of titanium salt as the main component. The use of the perovskite compound enables sintering at a low temperature of 1,000 ° C to 1,250 ° C and the development of a positive resistance temperature characteristic even when a reoxidation process is performed at a temperature of about 500 ° C or lower.

그러나, 종래의 모놀리식 전자 소자는 만족할만한 정저항온도 특성을 얻기 위하여 대략 1,000℃에서 재산화 공정을 통해 생성되어야 하고, 이때 내부 전극은 산화될 것이다. 그러므로, 종래에 이용되는 것보다 낮은 온도에서 재산화 공정을 통해 만족할만한 정저항온도 특성을 얻기 위하여 낮은 온도에서 소성 공정을 통해 생성될 수 있는 모놀리식 전자 소자가 요구되어 진다.However, conventional monolithic electronic devices must be produced through a re-oxidation process at approximately 1,000 DEG C in order to obtain satisfactory positive resistance temperature characteristics, in which the internal electrodes will be oxidized. Therefore, a monolithic electronic device capable of being produced at a low temperature through a firing process is required in order to obtain a satisfactory positive resistance temperature characteristic through a reoxidation process at a temperature lower than that conventionally used.

상기한 바와 같이, 본 발명의 목적은 소자가 낮은 온도에서 재산화 공정을 통해 생성되는 경우에도 만족할만한 정저항온도(PTC) 특성을 가지며 1,000℃ 이하에서 소성 공정을 통해 생성될 수 있는 모놀리식 전자 소자를 제공하는 것이다.As described above, it is an object of the present invention to provide a monolithic device having a satisfactory positive resistance temperature (PTC) characteristic even when the device is produced through a reoxidation process at a low temperature, To provide an electronic device.

도 1은 본 발명에 따른 반도체 세라믹으로부터 제조되는 모놀리식 전자 소자의 일 실시예를 개략적으로 도시한 단면도이다.1 is a cross-sectional view schematically showing an embodiment of a monolithic electronic device fabricated from a semiconductor ceramic according to the present invention.

< 도면의 주요 부분에 대한 부호의 설명 >Description of the Related Art

1 : 모놀리식 전자 소자(Monolithic electronic element)1: Monolithic electronic element

3 : 적층소결체 5 : 반도체 세라믹층3: laminated sintered body 5: semiconductor ceramic layer

7 : 내부 전극 9 : 외부 전극7: internal electrode 9: external electrode

따라서, 본 발명은 반도체 세라믹층과 내부 전극층이 교대로 적층되어 형성된 적층소결체; 및 적층소결체 위로 형성되는 외부 전극들;을 포함하며, 반도체 세라믹층은 산화붕소막(Boron oxide)과; 바륨(Barium), 스트론튬(Strontium), 칼슘 (Calcium), 납(Lead), 이트륨(Yttrium) 및 희토류 금속(Rare earth element) 중 적어도 한 금속의 제1산화막; 및 티타늄(Titanium), 주석(Tin), 지르코늄 (Zirconium), 니오븀(Niobium), 텅스텐(Tungsten) 및 안티몬(Antimony) 중 적어도 한 금속의 제2산화막;이 함유된 소결된 티탄산바륨(Barium titanate)을 포함하며, 상기 산화붕소막은 붕소원자로 환원되어 하기의 수학식 1을 만족하도록 하는 양으로 결합된 것을 특징으로 하는 반도체 세라믹으로부터 제조되는 모놀리식 전자 소자를 제공한다.Accordingly, the present invention provides a multilayer sintered body including a laminated sintered body formed by alternately laminating a semiconductor ceramic layer and an internal electrode layer; And external electrodes formed on the multilayer sintered body, wherein the semiconductor ceramic layer comprises a boron oxide film; A first oxide film of at least one metal selected from the group consisting of barium, strontium, calcium, lead, yttrium and rare earth element; And a sintered barium titanate containing a second oxide film of at least one metal selected from the group consisting of titanium, tin, zirconium, niobium, tungsten, and antimony, Wherein the boron oxide film is bonded to the monolithic electronic device in an amount such that the boron oxide film is reduced to a boron atom and satisfies the following formula (1).

0.001 ≤ B/β ≤ 0.50 및 0.5 ≤ B/(α-β) ≤ 10.00.001? B /?? 0.50 and 0.5? B / (? -?)? 10.0

이때, 수학식 1에서 α는 반도체 세라믹에 함유된 바륨, 스트론튬, 칼슘, 납, 이트륨 및 희토류 금속의 총 원자량을 나타내고, β는 반도체 세라믹에 함유된 티타늄, 주석, 지르코늄, 니오븀, 텅스텐 및 안티몬의 총 원자량을 나타낸다.In the equation (1),? Represents the total atomic weight of barium, strontium, calcium, lead, yttrium and rare earth metals contained in the semiconductor ceramic, and? Represents the total atomic weight of titanium, tin, zirconium, niobium, tungsten and antimony contained in the semiconductor ceramics. Represents the total atomic weight.

위와 같은 성분을 갖는 반도체 세라믹은 세라믹이 낮은 온도에서 재산화될지라도 1,000℃ 이하에서 소성될 수 있고 향상된 정저항온도 특성을 나타낼 수 있다. 그러므로, 내부 전극으로서 베이스 금속이 이용될 수 있으며, 만족할만한 정저항온도 특성이 발현될 수 있다.Semiconductor ceramics having the above-described components can be fired at 1,000 DEG C or less and exhibit improved positive-resistance temperature characteristics even if the ceramics are reoxidized at a low temperature. Therefore, the base metal can be used as the internal electrode, and a satisfactory positive resistance temperature characteristic can be expressed.

바람직하게는, 본 발명에 따른 반도체 세라믹으로부터 제조되는 모놀리식 전자 소자는 하기의 수학식 2의 관계를 만족하도록 하는 양으로 결합되어 형성된 도너 원소(Donor element)와 악셉터 원소(Acceptor element)를 함유한다.Preferably, the monolithic electronic device manufactured from the semiconductor ceramics according to the present invention comprises a donor element and an acceptor element formed in an amount so as to satisfy the relation of the following formula (2) .

0.0001 ≤ Md/β ≤ 0.005 및 0.00001 ≤ Ma/β ≤ 0.0050.0001? Md /?? 0.005 and 0.00001? Ma /? 0.005

이때, 수학식 2에서 Md는 반도체 세라믹층에서 도너 원소의 총 원자량을 나타내고, Ma는 반도체 세라믹층에서 악셉터 원소의 총 원자량을 나타내며, β는 반도체 세라믹에 함유된 티타늄, 주석, 지르코늄, 니오븀, 텅스텐 및 안티몬의 총 원자량을 나타낸다.In the equation (2), Md represents the total atomic weight of the donor element in the semiconductor ceramic layer, Ma represents the total atomic weight of the acceptor element in the semiconductor ceramic layer, and? Represents the amount of titanium, tin, Tungsten and antimony.

위와 같은 성분을 갖는 세라믹은 매우 유효한 정저항온도 특성을 나타내는 모놀리식 전자 소자를 제공한다.Ceramics having the above components provide a monolithic electronic device exhibiting a very effective positive resistance temperature characteristic.

본 발명에 따른 모놀리식 전자 소자는 반도체 티탄산바륨 세라믹층과 베이스 금속을 주로 포함하는 내부 전극층이 교대로 적층되어 형성된 적층소결체와 내부 전극이 노출된 적층소결체의 표면 위로 형성된 외부 전극들을 포함한다. 본 발명에서 이용되는 반도체 세라믹은 주성분으로 티탄산바륨을 그리고 부차적 성분으로 산화붕소를 포함한다.The monolithic electronic device according to the present invention includes a laminated sintered body formed by alternately laminating internal electrode layers mainly including a semiconductor barium ceramic ceramic layer and a base metal and external electrodes formed on the surface of the laminated sintered body where the internal electrodes are exposed. The semiconductor ceramics used in the present invention include barium titanate as a main component and boron oxide as a secondary component.

상기한 티탄산바륨의 바륨은 스트론튬, 칼슘, 납, 이트륨 또는 희토류 금속(이하 이들 원소들을 '바륨계 원소들'이라 칭한다)으로 부분적으로 치환될 수 있으며, 한편 위에서 설명된 티탄산바륨의 티타늄은 주석, 지르코늄, 니오븀, 텅스텐 및 안티몬(이하 이들 원소들을 '티탄계 원소들'이라 칭한다)으로 부분적으로 치환될 수 있다.The barium titanate barium may be partially substituted with strontium, calcium, lead, yttrium or rare earth metals (hereinafter these elements are referred to as "barium-based elements"), while the titanium of barium titanate, Zirconium, niobium, tungsten, and antimony (these elements are hereinafter referred to as &quot; titanium-based elements &quot;).

바륨계 원소들에 이어, 바륨과 스트론튬, 칼슘, 납, 이트륨 및 희토류 금속과 같은 바륨-치환 원소들의 총량이 티타늄과 주석, 지르코늄, 니오븀, 텅스텐 및 안티몬의 총량을 넘도록 바륨 또는 스트론튬, 칼슘, 납, 이트륨 또는 희토류 금속과 같은 다른 바륨-치환 원소들은 반도체 세라믹에 더 포함된다.Barium elements and barium elements such as barium and strontium, calcium, lead, barium and strontium in amounts such that the total amount of barium-substituted elements such as barium and strontium, calcium, lead, yttrium and rare earth metals exceeds the total amount of titanium and tin, zirconium, niobium, tungsten and antimony. , Yttrium or rare-earth metals are further included in the semiconductor ceramics.

전술한 반도체 세라믹은 도너 원소와 악셉터 원소들을 함유할 수 있다. '도너 원소'라는 용어는 이트륨, 니오븀, 안티몬, 텅스텐, 탄탈륨(Ta), 몰리브덴(Mo) 또는 희토류 금속과 같은 원소들을 말하며, 일반적으로 삼산화티탄산바륨(BaTiO3)에서의 도너로써 작용한다. 한편, '악셉터 원소'라는 용어는 망간(Mn), 철(Fe), 코발트(Co), 니켈, 크롬(Cr) 또는 알칼리 금속과 같은 원소들을 말하며, 일반적으로 삼산화티탄산바륨(BaTiO3)에서의 악셉터로써 작용한다.The above-described semiconductor ceramics may contain a donor element and an acceptor element. The term "donor element" refers to elements such as yttrium, niobium, antimony, tungsten, tantalum (Ta), molybdenum (Mo) or rare earth metals and generally acts as a donor in barium titanate (BaTiO 3 ). On the other hand, the term "evil acceptor element" from manganese (Mn), iron (Fe), cobalt (Co), nickel, chromium (Cr) or the means of elements, such as alkali metal, generally antimony trioxide, barium titanate (BaTiO 3) Acting as an acceceptor of.

전술한 내부 전극들은 니켈, 코발트, 철 또는 망간과 같은 베이스 금속으로 형성될 수 있다. 이들 베이스 금속들은 단독으로 또는 합금된 형태로 사용될 수 있다. 뛰어난 내산화성을 고려할 때, 이들 중에서 니켈이 사용되는 것이 바람직하다.The internal electrodes may be formed of a base metal such as nickel, cobalt, iron or manganese. These base metals may be used alone or in an alloy form. Considering excellent oxidation resistance, nickel is preferably used among these.

전술한 외부 전극들을 구성하는 물질에 대해서는 어떠한 제한은 없으나, 은(Ag), 납(Pd) 그리고 은-납 합금(Ag-Pd alloy)과 같은 금속들이 사용될 수 있다.There is no particular limitation on the material constituting the external electrodes described above, but metals such as silver (Ag), lead (Pd) and silver-lead alloy (Ag-Pd alloy) may be used.

이하, 첨부도면을 참고로 하여 본 발명의 바람직한 실시예들이 기술되어 있으며, 각 실시예는 본 발명의 범위를 제한하는 것으로 해석되지는 않는다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings, and the embodiments are not construed as limiting the scope of the present invention.

실시예 1Example 1

본 발명의 모놀리식 전자 소자를 제조하기 위한 방법을 설명한다. 도 1은 본 발명에 따라 반도체 세라믹으로부터 제조되는 모놀리식 전자 소자의 일 실시예의 개략적인 단면도이다.A method for manufacturing the monolithic electronic device of the present invention will be described. 1 is a schematic cross-sectional view of one embodiment of a monolithic electronic device fabricated from a semiconductor ceramic in accordance with the present invention.

먼저, 티탄산바륨은 티탄계 원소들에 대한 바륨계 원소들의 비율 0.998을 갖도록 열수(熱水) 합성된다. 다음으로, 하기의 화학식 1에 따른 혼합물을 제공하기 위하여 삼산화탄산바륨(BaCO3), 삼산화이사마륨(Sm2O3), 질화붕소(BN) 및 삼산화탄산망간(MnCO3)의 무게를 측정하고 티탄산바륨에 첨가한다.First, barium titanate is hydrothermally synthesized to have a ratio of barium-based elements to titanium-based elements of 0.998. Next, the weight of barium trioxide (BaCO 3 ), samarium trioxide (Sm 2 O 3 ), boron nitride (BN) and manganese trioxide (MnCO 3 ) were weighed to provide a mixture according to the following formula Add to barium.

열수합성된 분말 Ba0.998TiO3+ 0.001Sm2O3+ xBaCO3+ yBN + 0.0002MnCO3Hydrothermally synthesized powder Ba 0.998 TiO 3 + 0.001Sm 2 O 3 + xBaCO 3 + yBN + 0.0002MnCO 3 ...

얻어진 혼합물은 바인더에 첨가되며, 10시간 동안 산화지르코늄 볼(Zirconia balls)에 습식 혼합되어 세라믹 슬러리(Ceramic slurry)를 형성한다. 슬러리는 닥터 블레이드 방법을 통하여 성형되고 건조되어 결국 세라믹 그린 시트를 형성한다. 시트 위로 내부 전극층을 형성하기 위하여 니켈 분말이 각각의 그린 시트 위로 공급되고, 그와 같이 준비된 시트들이 적층되어 박판을 제조한다. 300℃의 공기 중에서 바인더를 제거한 후에, 2시간 동안 950℃의 수소/질소 환원 대기 내에서 소성되고, 결국 적층소결체를 생성한다. 적층소결체 내에서 각 세라믹층의 구성은 하기의 화학식 2로 나타낼 수 있다.The resulting mixture is added to a binder and wet mixed with zirconia balls for 10 hours to form a ceramic slurry. The slurry is formed through a doctor blade method and dried to form a ceramic green sheet. Nickel powder is supplied onto each green sheet to form an internal electrode layer on the sheet, and the thus prepared sheets are laminated to produce a thin plate. After removal of the binder in air at 300 DEG C, it is fired in a hydrogen / nitrogen reducing atmosphere at 950 DEG C for 2 hours, resulting in a laminated sintered body. The constitution of each ceramic layer in the laminated sintered body can be represented by the following formula (2).

Ba0.998Sm0.002TiO3+ xBaO + 1/2yB2O3+ 0.0002MnO2 Ba 0.998 Sm 0.002 TiO 3 + x BaO + 1/2 y B 2 O 3 + 0.0002 MnO 2

다음으로, 도 1에 도시된 바와 같이, 은 전극을 형성하기 위한 분말이 반도체 세라믹층(5)과 내부 전극(7)을 포함하는 적층소결체(3)의 표면 위에 공급되고, 내부 전극들은 표면에 노출된다. 얻어진 조각은 2시간 동안 800℃의 공기 중에서 소성되고, 경화 및 재산화 공정이 수행되어 외부 전극으로 형성된다. 이를 통하여, 본 발명에 관련된 모놀리식 전자 소자(1)가 제조된다.Next, as shown in Fig. 1, powder for forming a silver electrode is supplied on the surface of the multilayer sintered body 3 including the semiconductor ceramic layer 5 and the internal electrode 7, Exposed. The obtained pieces are fired in air at 800 DEG C for 2 hours, and a hardening and re-oxidation process is performed to form external electrodes. Thereby, the monolithic electronic device 1 according to the present invention is manufactured.

실온에서의 전기 저항값과 log(R250/R25)로 표현되는 저항의 변화율은 유사한 방법으로 제조된 복수개의 전자 소자들에 대하여 측정되며, 각 소자들은 해당 세라믹을 형성하기 위하여 삼산화탄산바륨이 첨가되는 양과 질화붕소가 첨가되는 양을 수정함으로써 생성된다. 이때, R250은 250℃에서의 저항값을 나타내고, R25는 25℃에서의 저항값을 나타낸다. 결과는 하기의 표 1에 도시되어 있으며, 표 1의 기호 ※은 본 발명의 범위에서 벗어난 시료들을 가리킨다. 실시예 1에서는 하기의 화학식 3의 관계가 만족된다.The electrical resistance value at room temperature and the rate of change in resistance represented by log (R250 / R25) are measured for a plurality of electronic devices manufactured by a similar method, and each device is formed by adding barium bicarbonate Amount and boron nitride are produced by modifying the amount to which they are added. At this time, R250 represents a resistance value at 250 占 폚, and R25 represents a resistance value at 25 占 폚. The results are shown in Table 1 below, and the symbol * in Table 1 indicates samples outside the scope of the present invention. In Example 1, the following formula (3) is satisfied.

시료번호Sample number B/Ti(B/β)B / Ti (B /?) B/(Ba+Sm-Ti)(B/(α-β)B / (Ba + Sm-Ti) (B / (? -?) 첨가물additive 특성characteristic 소결성Sinterability Ba 원소량(mol)Ba atom (mol) B 원소량(mol)B element (mol) 실온저항(Ω)Room temperature resistance (Ω) 저항변화율log(R250/R25)The resistance change rate log (R250 / R25) ※1※One 0.00050.0005 0.20.2 0.002500.00250 0.0050.005 1000000이상Over 1000000 측정불가Not measurable ×× ※2※2 0.00050.0005 0.50.5 0.001000.00100 0.0050.005 1000000이상Over 1000000 측정불가Not measurable ×× ※3※ 3 0.00050.0005 22 0.000250.00025 0.0050.005 5500055000 0.60.6 ×× ※4※4 0.00050.0005 88 0.000060.00006 0.0050.005 60006000 0.90.9 ×× ※5※ 5 0.00050.0005 1212 0.000040.00004 0.0050.005 2500025000 0.80.8 ×× ※6※ 6 0.0010.001 0.20.2 0.005000.00500 0.0010.001 2828 1.31.3 77 0.0010.001 0.50.5 0.002000.00200 0.0010.001 0.970.97 3.53.5 88 0.0010.001 22 0.000500.00050 0.0010.001 0.620.62 3.93.9 99 0.0010.001 88 0.000130.00013 0.0010.001 0.890.89 3.33.3 ※10※ 10 0.0010.001 1212 0.000080.00008 0.0010.001 3030 2.22.2 ※11※ 11 0.010.01 0.20.2 0.050000.05000 0.010.01 2525 1.91.9 1212 0.010.01 0.50.5 0.020000.02000 0.010.01 0.990.99 3.63.6 1313 0.010.01 22 0.005000.00500 0.010.01 0.450.45 3.83.8 1414 0.010.01 88 0.001250.00125 0.010.01 0.950.95 3.73.7 ※15※ 15 0.010.01 1212 0.000830.00083 0.010.01 4545 2.62.6 ※16※ 16 0.050.05 0.20.2 0.250000.25000 0.050.05 2626 2.92.9 1717 0.050.05 0.50.5 0.100000.10000 0.050.05 0.820.82 3.93.9 1818 0.050.05 22 0.025000.02500 0.050.05 0.210.21 4.24.2 1919 0.050.05 88 0.006250.00625 0.050.05 0.730.73 4.14.1 ※20※ 20 0.050.05 1212 0.004170.00417 0.050.05 1919 2.42.4 ※21※ 21 0.10.1 0.20.2 0.500000.50000 0.10.1 1616 2.62.6 2222 0.10.1 0.50.5 0.200000.20000 0.10.1 0.650.65 3.73.7 2323 0.10.1 22 0.050000.05000 0.10.1 0.520.52 3.83.8 2424 0.10.1 88 0.012500.01250 0.10.1 0.650.65 3.83.8 ※25※ 25 0.10.1 1212 0.008330.00833 0.10.1 2626 2.92.9 ※26※ 26 0.50.5 0.20.2 2.500002.50000 0.50.5 5656 2.12.1 2727 0.50.5 0.50.5 1.000001.00000 0.50.5 2.52.5 3.13.1 2828 0.50.5 22 0.250000.25000 0.50.5 2.12.1 3.23.2 2929 0.50.5 88 0.062500.06250 0.50.5 2.92.9 3.13.1 ※30※ 30 0.50.5 1212 0.041670.04167 0.50.5 3535 2.62.6 ※31※ 31 0.70.7 0.20.2 3.500003.50000 0.70.7 8989 1.31.3 ※32※ 32 0.70.7 0.50.5 1.400001.40000 0.70.7 2525 1.51.5 ※33※ 33 0.70.7 22 0.350000.35000 0.70.7 3939 1.51.5 ※34※ 34 0.70.7 88 0.087500.08750 0.70.7 190190 1.31.3 ※35※ 35 0.70.7 1212 0.058330.05833 0.70.7 480480 0.90.9

B/β = B/Ti 및 B/(α-β) = B/(Ba + Sm - Ti)B /? = B / Ti and B / (? -?) = B /

표 1에서 명백하게 나타나듯이, 수학식 1의 범위 내에 들어가는 파라미터들을 갖는 시료들은 실온에서의 낮은 저항값과, 적어도 2 이상의 log(R250/R25)의 값으로 표현되는 저항의 변화율을 나타낸다.As clearly shown in Table 1, the samples having the parameters falling within the range of Equation (1) show a low resistance at room temperature and a rate of change of resistance expressed by a value of at least two log (R250 / R25).

B/β의 값이 0.001보다 작은 시료번호 1 내지 5의 시료들은 실온에서의 매우 높은 저항값과 낮은 저항의 변화율을 나타내며, 이와 달리 B/β의 값이 0.50을 넘는 시료번호 31 내지 35의 시료들은 실온에서의 높은 저항값과 낮은 저항의 변화율을 나타낸다. B/(α-β)의 값이 0.5보다 작은 시료번호 1, 6, 11, 16, 21, 26 및 31의 시료들은 실온에서의 높은 저항값과 낮은 저항의 변화율을 나타내며, B/(α-β)의 값이 10.0을 넘는 시료번호 5, 10, 15, 20, 25, 30 및 35의 시료들은 실온에서의 높은 저항값과 낮은 저항의 변화율을 나타낸다.Samples 1 to 5 having a value of B /? Of less than 0.001 exhibited a very high resistance value and a low resistance change rate at room temperature. In contrast, a sample of Sample Nos. 31 to 35 having a B / Show a high resistance value at room temperature and a low resistance change rate. Samples Nos. 1, 6, 11, 16, 21, 26 and 31 having a value of B / (? -?) Of less than 0.5 exhibited a high resistance value and a low resistance change rate at room temperature, Samples Nos. 5, 10, 15, 20, 25, 30 and 35 having a value of more than 10.0 exhibit a high resistance value at room temperature and a low resistance change rate.

실시예 2Example 2

0.02mol로 고정된 삼산화탄산바륨(X)의 첨가량과 0.06mol로 고정된 질화붕소 (Y)의 첨가량을 제외하고, 각각 도너의 공급원으로 제공되는 삼산화이사마륨(Md)이 첨가되는 양과 악셉터 원소의 공급원으로 제공되는 삼산화망간(Ma)이 첨가되는 양을 수정하여 실시예 1의 절차가 반복됨으로써 모놀리식 전자 소자를 생성한다. 유사한 방법으로, 실온에서의 전기 저항값과 log(R250/R25)의 값으로 표현되는 저항의 변화율이 측정된다. 그 결과가 하기의 표 2에 도시되어 있으며, 기호 ※는 본 발명의 범위를 벗어난 경우의 시료들을 가리킨다.(Md) provided as a donor source were added, and the amount of the excipient element (Md) added as the donor source, except for the addition amount of barium trioxide (X) fixed at 0.02 mol and the addition amount of boron nitride (Y) fixed at 0.06 mol, The procedure of Example 1 is repeated by modifying the amount to which manganese trioxide (Ma) provided as a source is added to produce a monolithic electronic device. In a similar manner, the electrical resistance at room temperature and the rate of change of resistance expressed by the value of log (R250 / R25) are measured. The results are shown in the following Table 2, and the symbol * indicates the samples outside the scope of the present invention.

표 2에서 명백하게 나타나듯이, 수학식 2의 범위 내의 파라미터들을 갖는 시료들은 실온에서의 낮은 저항값과 log(R250/R25)로 표현되는 저항의 변화율이 크게 증가됨을 나타낸다.As evident from Table 2, the samples with parameters within the range of equation (2) show a significant increase in the rate of change of resistance represented by log (R250 / R25) and low resistance at room temperature.

시료번호Sample number Sm/Ti(Md/β)Sm / Ti (Md /?) Mn/Ti(Ma/β)Mn / Ti (Ma /?) 실온저항(Ω)Room temperature resistance (Ω) 저항변화율log(R250/R25)The resistance change rate log (R250 / R25) ※41※ 41 0.0020.002 0.0000050.000005 0.150.15 2.22.2 4242 0.0020.002 0.000010.00001 0.170.17 3.33.3 4343 0.0020.002 0.000050.00005 0.190.19 3.83.8 4444 0.0020.002 0.00010.0001 0.200.20 4.14.1 4545 0.0020.002 0.00050.0005 0.350.35 4.54.5 4646 0.0020.002 0.0010.001 1.201.20 4.94.9 4747 0.0020.002 0.0050.005 3.503.50 5.35.3 ※48※ 48 0.0020.002 0.010.01 890.00890.00 1.51.5 ※49※ 49 0.000050.00005 0.00050.0005 260.00260.00 1.21.2 5050 0.00010.0001 0.00050.0005 2.602.60 4.24.2 5151 0.00050.0005 0.00050.0005 0.800.80 5.05.0 5252 0.0010.001 0.00050.0005 0.410.41 4.64.6 5353 0.0050.005 0.00050.0005 0.320.32 3.13.1 ※54※ 54 0.010.01 0.00050.0005 0.200.20 1.91.9

Md/β의 값이 0.0001보다 낮은 시료번호 49의 시료는 매우 높은 실온에서의 저항값과 낮은 저항의 변화율을 나타내며, Md/β의 값이 0.005를 넘는 시료번호 54의 시료는 낮은 저항의 변화율을 나타낸다.Sample No. 49 having a Md /? Value of less than 0.0001 exhibits a very high resistance at room temperature and a low rate of change of resistance, and a sample having a Md /? Value of more than 0.005 exhibits a low resistance change rate .

Ma/β의 값이 0.00001보다 작은 시료번호 41의 시료는 낮은 저항의 변화율을 나타내며, 이와 달리 Ma/β의 값이 0.005를 넘는 시료번호 48의 시료는 높은 실온에서의 저항값과 낮은 저항의 변화율을 나타낸다.A sample of sample No. 41 having a value of Ma / β of less than 0.00001 exhibits a low rate of change of resistance. On the other hand, the sample of sample No. 48 having a value of Ma / β of more than 0.005 exhibits a high resistance at room temperature, .

상기한 바와 같이, 본 발명은 반도체 세라믹층과 내부 전극층이 교대로 적층되어 형성된 적층소결체; 및 적층소결체 위로 형성되는 외부 전극들;을 포함하며, 반도체 세라믹층은 산화붕소막과; 바륨, 스트론튬, 칼슘, 납, 이트륨 및 희토류 금속 중 적어도 한 금속의 제1산화막; 및 티타늄, 주석, 지르코늄, 니오븀, 텅스텐 및 안티몬 중 적어도 한 금속의 제2산화막;이 함유된 소결된 티탄산바륨을 포함하고, 이때 산화붕소막은 붕소원자(B)가 환원되어 전술한 수학식 1을 만족하도록 하는 양으로 결합된 것을 특징으로 하는 반도체 세라믹으로부터 제조되는 모놀리식전자 소자를 제공한다.As described above, the present invention relates to a laminated sintered body in which a semiconductor ceramic layer and an internal electrode layer are alternately laminated; And external electrodes formed on the laminated sintered body, wherein the semiconductor ceramic layer comprises a boron oxide film; A first oxide film of at least one of barium, strontium, calcium, lead, yttrium and rare earth metal; And a second oxide film of at least one metal selected from the group consisting of titanium, tin, zirconium, niobium, tungsten and antimony, wherein the boron oxide film contains a sintered barium titanate containing boron atom (B) Wherein the first and second conductive layers are bonded in an amount that satisfies the following formula: &lt; EMI ID = 1.0 &gt;

보다 바람직하게는, 본 발명에 따른 반도체 세라믹으로부터 제조되는 모놀리식 전자 소자는 양적으로 전술한 수학식 2의 관계를 만족하도록 결합되어 형성된 도너 원소와 악셉터 원소를 함유한다.More preferably, the monolithic electronic device manufactured from the semiconductor ceramics according to the present invention contains a donor element and an acceptor element which are formed in a quantitative way to satisfy the relationship of the above-mentioned formula (2).

위에서 설명한 바와 같이 수학식 1의 관계를 만족하는 범위 내에서 생성된 반도체 세라믹은 세라믹이 낮은 온도에서 재산화 될지라도 1,000℃ 이하에서 소성될 수 있으며, 향상된 정저항온도 특성을 나타낼 수 있고, 내부 전극으로서 베이스 금속이 이용될 수 있으며, 만족할만한 정저항온도 특성을 나타낼 수 있다.As described above, the semiconductor ceramics generated within the range satisfying the relationship of Equation (1) can be fired at 1,000 ° C or less even if the ceramic is reoxidized at a low temperature, exhibit an improved positive resistance temperature characteristic, The base metal can be used, and a satisfactory positive resistance temperature characteristic can be exhibited.

또한 수학식 2의 관계를 만족하는 범위 내에서 생성된 반도체 세라믹은 매우 유효한 정저항온도 특성을 나타내는 모놀리식 전자 소자를 제공할 수 있다.The semiconductor ceramics generated within the range satisfying the relationship of the formula (2) can provide a monolithic electronic device exhibiting a very effective positive resistance temperature characteristic.

Claims (4)

반도체 세라믹층과 내부 전극층이 교대로 적층되어 형성된 적층소결체; 및A multilayer sintered body formed by alternately laminating a semiconductor ceramic layer and an internal electrode layer; And 상기 적층소결체 위로 형성되는 외부 전극들;External electrodes formed on the multilayer sintered body; 을 포함하며,/ RTI &gt; 상기 반도체 세라믹층은The semiconductor ceramic layer 산화붕소막(Boron oxide);Boron oxide film; 바륨(Barium), 스트론튬(Strontium), 칼슘(Calcium), 납(Lead), 이트륨 (Yttrium) 및 희토류 금속(Rare earth element) 중 적어도 한 금속의 제1산화막; 및A first oxide film of at least one metal selected from the group consisting of barium, strontium, calcium, lead, yttrium and rare earth element; And 티타늄(Titanium), 주석(Tin), 지르코늄(Zirconium), 니오븀(Niobium), 텅스텐(Tungsten) 및 안티몬(Antimony) 중 적어도 한 금속의 제2산화막;A second oxide film of at least one of a titanium, a tin, a zirconium, a niobium, a tungsten, and an antimony; 이 함유된 소결된 티탄산바륨(Barium titanate)을 포함하며,Containing sintered barium titanate, 상기 산화붕소막은 붕소원자로 환원되어The boron oxide film is reduced to a boron atom 0.001 ≤ B/β ≤ 0.50 및0.001? B /?? 0.50 and 0.5 ≤ B/(α-β) ≤ 10.00.5? B / (? -?)? 10.0 의 수식을 만족하도록 하는 양으로 결합되어 있고,Lt; RTI ID = 0.0 &gt; 1, &lt; / RTI &gt; 상기 α는 반도체 세라믹에 함유된 바륨, 스트론튬, 칼슘, 납, 이트륨 및 희토류 금속의 총 원자량을 나타내고, 상기 β는 반도체 세라믹에 함유된 티타늄, 주석, 지르코늄, 니오븀, 텅스텐 및 안티몬의 총 원자량을 나타내는 것을 특징으로하는 반도체 세라믹으로부터 제조되는 모놀리식 전자 소자.Alpha represents the total atomic weight of barium, strontium, calcium, lead, yttrium and rare earth metal contained in the semiconductor ceramics, and? Represents the total atomic weight of titanium, tin, zirconium, niobium, tungsten and antimony contained in the semiconductor ceramics. Wherein the monolithic electronic device is manufactured from a semiconductor ceramics. 제 1 항에 있어서, 상기 각 소자는 도너 원소(Donor element)와 악셉터 원소 (Acceptor element)를 함유하고 있으며,[3] The method of claim 1, wherein each element contains a donor element and an acceptor element, 상기 도너 원소와 악셉터 원소는The donor element and the acceptor element 0.0001 ≤ Md/β ≤ 0.005 및0.0001? Md /?? 0.005 and 0.00001 ≤ Ma/β ≤ 0.0050.00001? Ma /? 0.005 의 수식을 만족하도록 결합되며,, &Lt; / RTI &gt; 상기 Md는 반도체 세라믹층에서 도너 원소의 총 원자량을 나타내고, 상기 Ma는 반도체 세라믹층에서 악셉터 원소의 총 원자량을 나타내며, 상기 β는 반도체 세라믹에 함유된 티타늄, 주석, 지르코늄, 니오븀, 텅스텐 및 안티몬의 총 원자량을 나타내는 것을 특징으로 하는 반도체 세라믹으로부터 제조되는 모놀리식 전자 소자.Md represents the total atomic weight of the donor element in the semiconductor ceramic layer, Ma represents the total atomic weight of the acceptor element in the semiconductor ceramic layer, and? Represents the total atomic weight of the donor element in the semiconductor ceramic layer. Wherein the total amount of atoms of the monolithic electronic device is represented by the total atomic weight of the semiconductor ceramics. 산화붕소막;A boron oxide film; 바륨, 스트론튬, 칼슘, 납, 이트륨 및 희토류 금속 중 적어도 한 금속의 제1산화막; 및A first oxide film of at least one of barium, strontium, calcium, lead, yttrium and rare earth metal; And 티타늄, 주석, 지르코늄, 니오븀, 텅스텐 및 안티몬 중 적어도 한 금속의 제2산화막;A second oxide film of at least one of titanium, tin, zirconium, niobium, tungsten, and antimony; 을 포함하며,/ RTI &gt; 상기 산화붕소막은 붕소원자가 환원되어The boron oxide film is formed by reducing a boron atom 0.001 ≤ B/β ≤ 0.50 및0.001? B /?? 0.50 and 0.5 ≤ B/(α-β) ≤ 10.00.5? B / (? -?)? 10.0 의 수식을 만족하도록 하는 양으로 결합되며,, &Lt; / RTI &gt; and &lt; RTI ID = 0.0 &gt; 상기 α는 반도체 세라믹에 함유된 바륨, 스트론튬, 칼슘, 납, 이트륨 및 희토류 금속의 총 원자량을 나타내고, 상기 β는 반도체 세라믹에 함유된 티타늄, 주석, 지르코늄, 니오븀, 텅스텐 및 안티몬의 총 원자량을 나타내는 것을 특징으로 하는 반도체 세라믹.Alpha represents the total atomic weight of barium, strontium, calcium, lead, yttrium and rare earth metal contained in the semiconductor ceramics, and? Represents the total atomic weight of titanium, tin, zirconium, niobium, tungsten and antimony contained in the semiconductor ceramics. &Lt; / RTI &gt; 제 3 항에 있어서, 도너 원소와 악셉터 원소를 더 포함하고 있으며,4. The method of claim 3, further comprising a donor element and an acceptor element, 상기 도너 원소와 악셉터 원소는The donor element and the acceptor element 0.0001 ≤ Md/β ≤ 0.005 및0.0001? Md /?? 0.005 and 0.00001 ≤ Ma/β ≤ 0.0050.00001? Ma /? 0.005 의 수식을 만족하도록 결합되며,, &Lt; / RTI &gt; 상기 Md는 반도체 세라믹층에서 도너 원소의 총 원자량을 나타내고, 상기 Ma는 반도체 세라믹층에서 악셉터 원소의 총 원자량을 나타내며, 상기 β는 반도체 세라믹에 함유된 티타늄, 주석, 지르코늄, 니오븀, 텅스텐 및 안티몬의 총 원자량을 나타내는 것을 특징으로 하는 반도체 세라믹.Md represents the total atomic weight of the donor element in the semiconductor ceramic layer, Ma represents the total atomic weight of the acceptor element in the semiconductor ceramic layer, and? Represents the total atomic weight of the donor element in the semiconductor ceramic layer. Of the total weight of the semiconductor ceramic.
KR1020000010661A 1999-03-05 2000-03-03 Semiconducting ceramic and monolithic electronic element fabricated from the same KR100327911B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11-58444 1999-03-05
JP11058444A JP2000256062A (en) 1999-03-05 1999-03-05 Multilayer semiconductor ceramic device

Publications (2)

Publication Number Publication Date
KR20000076768A KR20000076768A (en) 2000-12-26
KR100327911B1 true KR100327911B1 (en) 2002-03-15

Family

ID=13084585

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000010661A KR100327911B1 (en) 1999-03-05 2000-03-03 Semiconducting ceramic and monolithic electronic element fabricated from the same

Country Status (5)

Country Link
JP (1) JP2000256062A (en)
KR (1) KR100327911B1 (en)
CN (1) CN1155014C (en)
DE (1) DE10008929B4 (en)
TW (1) TW491821B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001130957A (en) * 1999-11-02 2001-05-15 Murata Mfg Co Ltd Semiconductor ceramic, method for producing semiconductor ceramic, and thermistor
JP2007048764A (en) * 2003-10-30 2007-02-22 Murata Mfg Co Ltd Stacked positive-characteristic thermistor and designing method thereof
CN101346325B (en) * 2006-05-31 2013-02-06 株式会社村田制作所 Semiconductor ceramic, laminated semiconductor ceramic capacitor, method for fabricating semiconductor ceramic, and method for fabricating laminated semiconductor ceramic capacitor
JP5817839B2 (en) * 2011-11-01 2015-11-18 株式会社村田製作所 PTC thermistor and method for manufacturing PTC thermistor
CN102531575A (en) * 2011-12-14 2012-07-04 华中科技大学 Sm2O3-doped BaTiO3 substrate type PTCR (Positive Temperature Coefficient Resistor) ceramic material and preparation method thereof
CN113744942B (en) * 2020-05-29 2023-11-21 东电化电子元器件(珠海保税区)有限公司 Electrical component comprising a resistor and electrical circuit comprising such an electrical component
CN113651612A (en) * 2021-08-13 2021-11-16 湖州南木纳米科技有限公司 Barium titanate PTC thermal sensitive ceramic material and application thereof in lithium battery
CN113402986B (en) * 2021-08-20 2022-06-24 光之科技(北京)有限公司 Preparation method of PTC material and PTC material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3506596A (en) * 1967-10-11 1970-04-14 Matsushita Electric Ind Co Ltd Semiconducting ceramic compositions with positive temperature coefficient of resistance
JPH03280411A (en) * 1990-03-29 1991-12-11 Taiyo Yuden Co Ltd Manufacture of surface reoxidized type semiconductor ceramic capacitor
JPH08153605A (en) * 1994-06-28 1996-06-11 Teika Corp Manufacture of laminated type semiconductor ceramic element
JP3376911B2 (en) * 1998-03-05 2003-02-17 株式会社村田製作所 Semiconductor ceramic and semiconductor ceramic element

Also Published As

Publication number Publication date
JP2000256062A (en) 2000-09-19
CN1266269A (en) 2000-09-13
TW491821B (en) 2002-06-21
DE10008929B4 (en) 2008-05-08
CN1155014C (en) 2004-06-23
KR20000076768A (en) 2000-12-26
DE10008929A1 (en) 2000-10-12

Similar Documents

Publication Publication Date Title
US8164880B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor having the same
KR100375719B1 (en) Dielectric Ceramic Composition and Monolithic Ceramic Capacitor
KR100307681B1 (en) Dielectric ceramic composition, Laminated ceramic capacitor and Method for producing the laminate ceramic capacitor
KR100201201B1 (en) Monolithic ceramic capacitor
CN112079635B (en) Dielectric ceramic composition and multilayer ceramic capacitor including the same
US20140268484A1 (en) Dielectric ceramic composition and multilayer ceramic capacitor including the same
JP2004035388A (en) Reduction-resistant low-temperature fired dielectric ceramic composition, multilayer ceramic capacitor using it, and its manufacturing method
KR20010090765A (en) Nonreducing dielectric ceramic and monolithic ceramic capacitor using the same
KR102292797B1 (en) Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
KR20180001463A (en) Multilayer ceramic capacitor, ceramic powder, manufacturing method of multilayer ceramic capacitor and manufacturing method of ceramic powder
JP5420603B2 (en) Reduction-resistant dielectric composition and ceramic electronic component including the same
CN116344219A (en) Multilayer ceramic capacitor
CN112103081B (en) Dielectric ceramic composition and multilayer ceramic capacitor including the same
JP2021020845A (en) Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
KR100327911B1 (en) Semiconducting ceramic and monolithic electronic element fabricated from the same
JP2566995B2 (en) High dielectric constant porcelain composition and ceramic capacitor
US6359327B1 (en) Monolithic electronic element fabricated from semiconducting ceramic
EP0548394B1 (en) A laminated semiconductor ceramic capacitor with a grain boundary-insulated structure and a method for producing the same
TWI796464B (en) Dielectric ceramic composition and ceramic electronic part
KR100340668B1 (en) Laminated Type Semiconductor Ceramic Element and Production Method for the Laminated Type Semiconductor Ceramic Element
CN112079636B (en) Dielectric ceramic composition and multilayer ceramic capacitor including the same
JP2001114559A (en) Dielectric composition
JP4111754B2 (en) Ceramic capacitor, dielectric composition thereof, and method for producing the same
JP2005158895A (en) Grain-boundary-insulated semiconductor ceramic and laminated semiconductor capacitor
JP2850355B2 (en) Ceramic capacitor and method of manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130117

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140204

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150130

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160222

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170217

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20180219

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20200213

Year of fee payment: 19