KR100325534B1 - Method for manufacturing grain oriented silicon steel sheet - Google Patents

Method for manufacturing grain oriented silicon steel sheet Download PDF

Info

Publication number
KR100325534B1
KR100325534B1 KR1019970075378A KR19970075378A KR100325534B1 KR 100325534 B1 KR100325534 B1 KR 100325534B1 KR 1019970075378 A KR1019970075378 A KR 1019970075378A KR 19970075378 A KR19970075378 A KR 19970075378A KR 100325534 B1 KR100325534 B1 KR 100325534B1
Authority
KR
South Korea
Prior art keywords
steel sheet
annealing
mgo
less
temperature
Prior art date
Application number
KR1019970075378A
Other languages
Korean (ko)
Other versions
KR19990055434A (en
Inventor
최규승
한규석
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019970075378A priority Critical patent/KR100325534B1/en
Publication of KR19990055434A publication Critical patent/KR19990055434A/en
Application granted granted Critical
Publication of KR100325534B1 publication Critical patent/KR100325534B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE: A method for manufacturing a grain oriented silicon steel sheet with high quality surface properties is provided. CONSTITUTION: The method for manufacturing a grain oriented silicon steel sheet with high quality surface properties includes the steps of reheating a slab comprising Si 2.9 to 3.3 wt.%, C 0.025 to 0.45 wt.%, 0.015 wt.% or less of P, sol-A1 0.008 to 0.020 wt.%, N 0.0080 to 0.012 wt.%, 0.007 wt.% or less of S, Mn less than 0.12 to 0.42 wt.%, 0.6 wt.% or less of Cu, a balance of Fe and incidental impurities at 1250 to 1340 deg.C, followed by hot rolling; annealing the hot rolled steel sheet at less than 1000 deg.C; cold rolling the annealed steel sheet twice in wet atmosphere wherein decarburization annealing is carried out between two cold rolling processes; recovery-annealing the steel sheet at less than 600 deg.C in dry atmosphere; coiling the steel sheet after applying an anti-sticking agent primarily comprised of MgO wherein the MgO powder contains 2 to 4 wt.% of TiO2; finish-annealing the steel sheet, wherein the steel sheet is heated at a rate of greater than 15 deg.C/hr over a temperature range of 700 to 1200 deg.C in 100 % hydrogen atmosphere and then soaked at 1200±10 deg.C for more than 20 hours wherein unreacted MgO is removed by pickling. In the pickling process where unreacted MgO is removed after hot annealing, the method is characterized in that the steel sheet is dipped in a solution containing H2SO4 in an amount of 2 to 10 wt.% at 60 to 90°C for 15 to 45 seconds.

Description

미려한 표면특성을 갖는 방향성 전기강판의 제조방법Manufacturing method of oriented electrical steel sheet having beautiful surface characteristics

본 발명은 저온 스라브가열법을 적용하여 생산하는 방향성 전기강판 제조시 미려한 표면특성을 갖는 제품을 생산 할 수있는 방법에 관한 것으로, 더욱 상세히는 최종 마무리 고온소둔후의 잔존 미반응 MgO조성물의 산세특성을 향상시키기 위하여 융착방지제인 MgO조성물에 TiO2분말을 2~4%첨가시켜서 분리성을 높히고, 이후 고온소둔후 산세공정에서 산세성을 극대화 할 수 있는 최상의 조건에서 처리하게 함으로서 잔존 미반응 MgO가 전혀 없는 미려한 표면품질을 갖는 방향성전기강판의 제조방법에 관한 것이다.The present invention relates to a method capable of producing a product having a beautiful surface characteristics when manufacturing a grain-oriented electrical steel sheet produced by applying the low temperature slab heating method, and more specifically, to pickling characteristics of the remaining unreacted MgO composition after the final high-temperature annealing In order to improve the separability by adding 2 ~ 4% of TiO 2 powder to MgO composition, which is a fusion preventive agent, the remaining unreacted MgO is completely removed by treating it under the best conditions to maximize pickling in the pickling process after high temperature annealing. It relates to a method for producing a grain-oriented electrical steel sheet having a beautiful surface quality.

일반적으로 방향성 전기강판이란 결정립의 방위가 (110)[001]방향으로 정열된 집합조직을 가지고 있으며 이 제품은 압연방향으로 극히 우수한 자기적특성을 가지고 있으므로 이 특성을 이용하여 변압기,. 전동기, 발전기 및 기타 전자기기등의 철심 재료로 사용된다. 일반 방향성 전기강판의 제조공정은 일반적으로 2~4%의 규소와 입성장억제제로 대부분 MnS나 MnSe를 함유하는 것을 특징으로 용해하여 스라브를 만든후 (재가열 및 열간압연) - (예비 소둔) - (중간소둔이 낀 1회의냉간압연) - (탈탄 소둔) - (융착방지제 도포) - (최종 마무리 고온소둔)등의 복잡한 공정을 거쳐서 최종 제품으로 완성되는데 이러한 복잡한 제조공정중 가장 제조상의 난문제는 고온에서 열처리를 행하는 스라브 재가열공정이다.In general, oriented electrical steel sheet has an aggregate structure in which the orientation of grains is arranged in the direction of (110) [001] and this product has very excellent magnetic properties in the rolling direction. Used as iron core material for electric motors, generators and other electronic devices. The manufacturing process of general grain electrical steel sheet is generally characterized by 2 ~ 4% of silicon and grain growth inhibitors, mostly containing MnS or MnSe, and after making slab (reheating and hot rolling)-(pre-annealing)-( One time cold rolling with intermediate annealing)-(Decarburization annealing)-(Adhesion prevention agent)-(Final finishing high temperature annealing) to complete the final product.The most difficult manufacturing problem among these complex manufacturing processes is high temperature. It is a slab reheating step of performing heat treatment at.

이 스라브 재가열공정은 입성장억제제로 사용되는 MnS나 AIN등의 석출물들을 완전히 고용 분산시킨 후 미세하게 석출시켜야만 하는것으로 행하여 지는데, 이를 위해서는 1400℃ 정도의 고온에서 5시간 정도의 유지가 불가피하게 된다. 이때 고온의 스라브 표면에서는 파이어라이트(Fe2SiO4)라는 산화물로 되며, 이는 융점이 1340℃정도로 낮아 표면에서부터 녹아 내리게 된다. 이때 산화물이 녹아내리는 스라브는 일부 바깥으로 흘러내리게 설계되어 있지만 대부분은 로상부의 내화물등에 축척되어 작업종료와 동시에 완전한 내부수리가 불가피하다.This slab reheating process is performed by completely dispersing the precipitates such as MnS and AIN used as grain growth inhibitors and then depositing them finely. For this purpose, it is inevitable to maintain them for 5 hours at a high temperature of about 1400 ° C. At this time, the surface of the hot slab is made of oxide called pyrite (Fe2SiO4), which has a melting point of about 1340 ° C, which melts from the surface. At this time, the slab in which the oxide is melted is designed to flow out partly, but most of it accumulates in the refractory of the upper part of the furnace and complete internal repair is inevitable at the end of the work.

따라서, 스라브 재가열온도의 하향화 노력은 선진 철강제조사를 중심으로 총력적인 관심속에 진행되고 있으며 여러가지 방법이 제시되고 있는 중이다. 이들의 방안은 재가열온도를 스라브가 녹지 않는 약 1350℃이하의 온도에서 행하는 것을 기준으로하여 기본 성분계의 조정을 행하며 이 성분설계에 부가하여 제조공정중의 석출물 관리기법등이 제안되고 있다.Therefore, efforts to lower the slab reheating temperature are proceeding with full attention, especially in advanced steel manufacturers, and various methods are being proposed. These measures are based on the reheating temperature at about 1350 ° C or less where the slab does not melt, and the basic component system is adjusted. In addition to the component design, precipitation control techniques during the manufacturing process have been proposed.

이에 따라서 본 발명자들은 종래의 방향성전기강판을 1250~1340℃부근에서 열처리하여 열간압연을 행하도록 하는 성분계를 설계하였으며, 기존의 제조공정에서 추가적인 설비보완이나 시설이 없이도 작업이 가능한 새로운 제조방법을 확립하여 한국특허출원 93-23751호에, 부가적인 요소기술들을 한국특허출원 94-21388, 21389, 21390 및 21391호등에 제안하였다.Accordingly, the present inventors designed a component system for performing hot rolling by heat treating a conventional grain-oriented electrical steel sheet at around 1250 ~ 1340 ° C., and establishing a new manufacturing method that can work without additional equipment supplement or facility in the existing manufacturing process. Korean Patent Application Nos. 93-23751, and additional element technologies are proposed in Korean Patent Application Nos. 94-21388, 21389, 21390, and 21391.

상기에서 제안한 저온재가열법을 이용하여 실조업 생산시 높은 실수율 및 우수한 자기적 특성을 갖는 제품을 생산 할 수 있었다. 그러나 이듣 제조방법의 특징이 1차 냉간압연 후 통상 0.60~0.70㎜의 중간두께에서 탈탄소둔을 행하여야 만 하는 제조특징을 갖고 있으므로 최종 제품에서의 잔류탄소량 관리를 위해서는 장시간 고온에서의 탈탄이 불가피하다. 이러한 고온탈탄에 의해 2차냉간압연후에 탈탄방출구멍의 소지노출부가 생기고, 이 노출부에 융착분리제로 도포되는 MgO중심의 분말스러지와 직접 접촉하고, 이후 정상적인 유리질절연피막(Base Coating피막이라 부름)형성에 참여하지 못하고 고착하여 잔존하며, 이 잔존 고착 미반응 MgO는 통상의 산세조건에서는 완전 제거되지 못하여 제품화가 불가능할 수 있어서 실수율저하의요인이 되고 있다.By using the low temperature reheating method suggested above, it was possible to produce products with high error rate and excellent magnetic properties in the production of actual industries. However, this method of manufacturing has the characteristic of decarbonization annealing at the intermediate thickness of 0.60 ~ 0.70mm after the first cold rolling, so decarburization at high temperature for a long time is inevitable for the management of residual carbon in the final product. Do. Due to such high temperature decarburization, after the second cold rolling, the exposed part of the decarburization discharge hole is formed, and the exposed part directly contacts the powder sludge of the MgO center applied with the fusion separator, and then is called a normal glass coating film (base coating film). The remaining unfixed MgO is not completely removed under normal pickling conditions, which makes it impossible to commercialize it, which is a cause of lowering the error rate.

본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로서, 본 발명자들은 여러가지 방안을 연구한 결과 융착방지제의 조성물을 변화시켜 산세시 소재층과 미반응물과의 분리성을 향상시킬 수 있고, 이에 더하여 미반응물 제거를 위한 산세처리시 MgO와의 용해성을 대폭 향상시킬 수 있는 방법을 제안함으로서 미반응 MgO의 완전제거에 의한 미려한 표면특성을 갖는 제품을 생산하고자 하는 목적을 가지고 있다.The present invention has been made to solve the above-described problems, the present inventors have studied a number of ways to improve the separation of the material layer and the unreacted material when pickling by changing the composition of the anti-fusion agent, in addition to By suggesting a method to greatly improve the solubility with MgO during pickling to remove the reactants, it aims to produce products with beautiful surface characteristics by complete removal of unreacted MgO.

본 발명은 상술한 목적을 달성하기 위하여 중량%로 Si : 2.9~3.3%, C : 0.025~0.45%, P : 0.015%이하, 용존 AI : 0.008~0.020%, N : 0.0080~0.012%, S :0.007%이하, Mn : 0.12~0.42%이하, Cu : 0.6%이하를 기본성분으로 하여 기타 불가피하게 혼입되는 성분을 포함한 나머지를 Fe로 조성된 스라브를 1250~1340℃의 저온재가열하는 단계와, 1000℃이하의 온도에서 열연판소둔을 하는 단계와, 압연 사이에 습윤분위기에서 탈탄소둔을 포함한 2회의 냉간압연으로 최종두께로 조정하는 단계와, 이어 600℃이하의 건조분위기에서 회복소둔후 MgO를 주성분으로 하는 융착방지제를 도포하고 권취하여 대형코일로 제조하는 단계와, 최종 마무리소둔은 전 구간을 100% 수소분위기하에서 700~1200℃구간의 승온율을 15℃/hr이상 유지 하면서 1200±10℃의 온도에서 20시간 이상 균열한후 냉각하는 열사이클을 거치는 마무리 고온소둔단계와, 이때표면의 미반응 MgO를 산세처리하고 최종적으로 장력코팅제를 도포하고 건조하여 제조하는 단계와로 이루어지는 저온재가열 방향성전기강판의 제조방법에 있어서, 상기 MgO를 주성분으로 하는 융착방지제를 도포하는 단계에서 MgO에 TiO2분말을 2~4%첨가하여 제조하는 방향성 전기강판의 제조방법을 제공하는 것을 특징으로 한다.In order to achieve the above object, the present invention is Si: 2.9 to 3.3%, C: 0.025 to 0.45%, P: 0.015% or less, dissolved AI: 0.008 to 0.020%, N: 0.0080 to 0.012%, S: Reheating the slab composed of Fe with other components, which are inevitably mixed, based on 0.007% or less, Mn: 0.12 to 0.42% or less, Cu: 0.6% or less, at a low temperature of 1250 to 1340 ° C., and 1000 Performing hot-rolled sheet annealing at a temperature not higher than ℃, adjusting the final thickness by two cold rolling including decarbonization annealing in a wet atmosphere between rolling, and then recovering annealing at 600 ℃ or lower, and then recovering MgO as the main component. Applying and winding the fusion inhibitor to make a large coil, and the final finishing annealing is 1200 ± 10 ℃ of the entire section in 100% hydrogen atmosphere while maintaining the temperature increase rate of 700 ~ 1200 ℃ section over 15 ℃ / hr After 20 hours of cracking in temperature, In the method of manufacturing a low-temperature reheat oriented electrical steel sheet consisting of finishing high temperature annealing step, and pickling the unreacted MgO on the surface, and finally applying and drying the tension coating agent, the fusion inhibitor comprising MgO as a main component It characterized in that it provides a method for producing a grain-oriented electrical steel sheet prepared by adding 2 to 4% TiO 2 powder to MgO in the step of applying.

또한 본 발명은 상기 마무리 고온소둔단계후의 표면의 미반응 MgO를 제거하기 위한 산세처리단계에서 H2SO4의 2~10%용액에서 60~90℃온도의 범위로 15~45초이내 처리하는 방향성 전기강판의 제조방법을 제공하는 것을 특징으로 한다.In addition, the present invention is a directional treatment within 15 ~ 45 seconds in the range of 60 ~ 90 ℃ temperature in 2 ~ 10% solution of H 2 SO 4 in the pickling step to remove the unreacted MgO of the surface after the finishing high temperature annealing step It is characterized by providing a method for producing electrical steel sheet.

이하 본 발명에 대하여 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail.

본 발명은 저온재가열 방향성전기강판 제조공정에 있어서, 특히 MgO를 주성분으로 하는 융착방지제를 도포시 MgO에 TiO2분말을 2~4%첨가하는 것과 산세특성을최적화하기 위해 H2SO4의 2~10%용액에서 60~90℃온도의 범위로 15~45초이내 처리함에 의하여 잔존 미반응 MgO가 전혀 없는 미려한 표면특성을 갖는 방향성전기강판 제조기술을 제공하는 것을 특징으로 한다.The present invention relates to a low temperature reheat oriented electrical steel sheet production process, in particular the TiO 2 powder, a fusing agent for the MgO as a main component in the coating when MgO 2 - 4% 2 of the addition as H 2 SO 4 in order to optimize the pickling properties - It is characterized by providing a technique for producing a grain-oriented electrical steel sheet having a beautiful surface characteristics without any remaining unreacted MgO by treating within 10% solution in the range of 60 ~ 90 ℃ temperature within 15 ~ 45 seconds.

방향성전기강판 제품을 수요가에서 변압기로 가공사용시 시간의 경과(경시변화)에 따라서 소재내부의 잔류 탄소성분이 Fe3C등의 탄화물로 되어 결정입계에 주로 석출되어 자구의 이동을 방해하기 때문에 자기적특성이 열화되는 자기시효현상(magneticaging)이 나타난다. 따라서 제조공정에서는 최종제품의 탄소를 자기시효에 영향이 거의 없는 0.025%이하로 적극관리하고 있다. 전류탄소의 관리를 위해 본 발명의 중심소재인 저온재가열법인 한국 특허출원 93-23751에서는 1차압연후인 중간두께(0.6~0.75mm)에서의 탈탄소둔법을 적용하고 있기 때문에 잔류 탄소 관리를 위해 4~7분의 장시간 소둔을 제안하였고, 한편 탈탄소둔은 탈탄온도 940~980℃의 습윤분위기에서 탈탄소둔하게 함으로서 가능한 외부 산화물인 FeSiO4나 MnSiO3등의 다공성의 외부산화물층으로 변화시킴으로서 탄소원자의 외부확산을 촉진하여 후물재에서의 탈탄성을 향상시킬수 있는 방안등을 제안하고 있다. 이러한 고온 및 고이슬점 조업에서는 탈탄소둔시 외부산화물 결정입자들 사이로 0.5㎛이하의 미세한 탈탄구멍이 존재한다. 이러한 소재를 최종두께인 0.30㎜로 압연시에는 산화물층이 소재금속층보다 연성이 작아 미세 탈탄구멍은 부분적인 갈라짐(Crack)의 요인이 되고, 또한 구멍자국이 확대되어 1㎛까지 소재층이 노출되는 미세구멍들이 존재하게 된다.When the oriented electrical steel sheet is processed into a transformer at the demand price, the residual carbon component inside the material becomes carbide such as Fe 3 C, which precipitates mainly at the grain boundary due to the passage of time (change over time). Magnetic aging is observed, in which the deterioration of the characteristic occurs. Therefore, in the manufacturing process, the carbon of the final product is actively managed to 0.025% or less, which has little effect on self aging. In order to manage the current carbon, Korean Patent Application No. 93-23751, which is a low-temperature reheating method, which is the main material of the present invention, applies the decarbonization annealing at the intermediate thickness (0.6 to 0.75 mm) after primary rolling. A long time annealing of ˜7 minutes was proposed, while decarbonization annealing was carried out in a humid atmosphere at a decarburization temperature of 940 ° C. to 980 ° C., thereby transforming the carbon atom into a porous external oxide layer such as FeSiO 4 or MnSiO 3 , which is a possible external oxide. Proposals are proposed to promote diffusion and improve decarburization in thick materials. In such high temperature and high dew point operation, fine decarburization holes of 0.5 μm or less exist between the external oxide crystal grains during decarbonization annealing. When this material is rolled to the final thickness of 0.30 mm, the oxide layer is less ductile than the material metal layer, and the fine decarburization hole becomes a factor of partial cracking, and the hole marks are enlarged to expose the material layer up to 1 μm. Micropores will be present.

이러한 소지노출 미세구멍은 2차 회복소둔공정이 600℃이하의 저온처리이므로 노출부의 산화가 더이상 없는 상태대로 MgO를 주성분으로 하는 스러지들이 상부에 도포되어 최종 마무리 2차재결정소둔을 행하게 된다. 이때 소재층 표면산화물층이 없기 때문에 유리질절연피막 형성반응에 참여하지 못하고 대부분 미반응 고착상태로 존재하게 된다. 따라서 이러한고착 MgO는 통상의 산세에서는 분리성이 나빠 표면에 잔존하게 되므로 실수율저하의 주요인이 되고 있다. 이러한 고착미반응 MgO의 분리-용해특성 향상을 위해서 본 발명자들은 제반 관련 공정 등을 검토한 결과 2가지의 방안을 확보하여 본발명을 제안하게 된 것이다.Since the secondary exposed annealing process is a low temperature treatment of 600 ° C. or lower, the exposed micropores are applied with the sludge containing MgO as a main component in the state where there is no oxidation of the exposed portion any more, thereby performing the final finishing secondary recrystallization annealing. At this time, since there is no surface oxide layer of the material layer, it cannot participate in the glass insulating film formation reaction, and most of them exist in an unreacted fixed state. Therefore, such a fixed MgO has a poor separation in normal pickling and remains on the surface, which is a major cause of lowering the error rate. In order to improve the separation-dissolution characteristics of the non-fixed-reacted MgO, the present inventors have studied two related processes, etc., and have secured two methods to propose the present invention.

첫째는 소지노출부와 MgO와의 분리성을 향상시키는 방법으로 이것은 융착방지제 중에 TiO2분말의 양을 보다 증대시켜 이TiO2분말이 최종 마무리소둔시 형성되는 유리질절연피막 형성전인 800~950℃에서 분해되어 산소를 방출시킴으로서 노출부를 산화시켜 이후 고온소둔후 MgO분말과의 분리성을 향상시키는 방법이다.First, a method of improving separability between the possession of the exposed part and MgO which decomposes at 800 ~ 950 ℃ before forming insulating glass which this TiO 2 powder to increase than the amount of the TiO2 powder in the fusing agent formed during final annealing film By releasing oxygen, the exposed part is oxidized to improve separation from the MgO powder after high temperature annealing.

둘째는 형성된 잔존 미반응 고착MgO를산세처리시 용해성을 향상시켜 단시간에 용해 제거시키는 방법이다. 산세성향상을 위해서는 통상의 HC1용액보다 H2SO4용액이 보다 우수함을 확인하였으며, 또한 용액의 온도가 높아질수록 산세성은 급격하게 증가되나 정상피막인 유리질절연피막층(Forsterite)의 용해성은 극히 적어 표면품질의 영향은 거의 없음을 확인 할 수 있었다. 이때의 최상의 산세처리조건은 H2SO4의 2~10%용액의 60~90℃온도의 범위로 15~45초이내 처리함이 표면품질 유지 및 적정 생산성확보에 최적임을 확인함으로서 본 발명을 구성하게 된 것이다.Secondly, the remaining unreacted fixed MgO formed is dissolved and removed in a short time by improving solubility during pickling. It was confirmed that H 2 SO 4 solution is better than normal HC1 solution for pickling improvement. Also, as the temperature of solution increases, pickling is rapidly increased, but the solubility of the glassy layer (Forsterite), which is a normal coating, is extremely low. There was almost no impact on quality. The best pickling conditions at this time constitute the present invention by confirming that the treatment within 15 ~ 45 seconds in the range of 60 ~ 90 ℃ temperature of 2 ~ 10% solution of H 2 SO 4 is optimal for maintaining surface quality and ensuring proper productivity. It is done.

이하 본 발명강의 한정 이유에 대해 설명한다.Hereinafter, the reason for limitation of the inventive steel will be described.

C는 AIN석출물의 미세 고용 분산에 유리하게 하고, 적정한 압연조직을 형성하게 하며, 냉간압연시 가공에너지를 부여하기 때문에 가능한 한 상향관리하는 것이 유리하나 이후 탈탄공정의 어려움을 고려하여 0.025~0.045%까지로 한정하였다.C is advantageous to finely disperse AIN precipitates, form an appropriate rolled structure, and give processing energy during cold rolling, so it is advantageous to manage it upward as much as possible, but it is 0.025 ~ 0.045% considering the difficulty of decarburization process. It was limited to.

Si는 비저항치를 증가시켜 철심손실 즉 철손을 낮추는 역할을 한다. 2.9%미만에서는 철손특성이 나빠지고, 과잉 함유시 강이 취약해져 냉간압연성이 극히 나빠지므로 3.3%이하로 관리해야 한다.Si increases the resistivity and lowers iron core loss. If it is less than 2.9%, the iron loss property is deteriorated, and if it is excessively contained, the steel is vulnerable and the cold rolling is extremely bad.

Mn은 재가열시 석출물의 고용온도를 낮추며, 열간압연시 소재 양 끝부분에 생성되는 크랙을 방지하는 역할을 하므로 많이 첨가할 수록 유리하나 0.42%이상 첨가시 Mn산화물에 의해 고온소둔시 형성되는 포스테라이트피막의 밀착성이 악화되므로 그 이상의 과잉 함유는 억제한다.Mn lowers the solid solution temperature of the precipitate during reheating and prevents cracks formed at both ends of the material during hot rolling, so it is more advantageous to add Mn oxide. Since the adhesiveness of a light film deteriorates, further excess content is suppressed.

S는 가능한 한 하한관리가 필요하며 만약 0.007%이상이 함유되면 열연에서 저온재가열시 중심편석부의 고용 및 확산이 어려워지므로 탈 S공정등을 채용하여 강력 억제하여야 한다.S needs to be managed as low as possible, and if it contains more than 0.007%, it is difficult to employ and spread the central segregation part during low temperature reheating in hot rolled steel.

A1성분은 N과 함께 A1N의 석출물을 형성하여 입성장억제력을 확보하는 중심원소이며 0.008%미만에서는 2차재결정에 필요한 충분한 억제력을 갖지 못하기 때문에 결정립크기가 적고 불완전 미립자가 나타나며, 0.020%초과해서는 억제력이 너무 강해 2차재결정 형성 자체를 어렵게 하여 자기적 특성이 급격히 열화되므로 중점관리가 필요한 성분이다.The A1 component forms a precipitate of A1N with N to secure grain growth inhibition. If it is less than 0.008%, it does not have sufficient inhibitory power required for secondary recrystallization, resulting in small grain size and incomplete particulates, and exceeding 0.020%. It is a component that needs to be managed because the restraining force is so strong that the formation of the secondary recrystallization itself is difficult and the magnetic properties deteriorate rapidly.

N은 용존A1과 반응 석출물을 형성하여 2차재결정형성에 있어서 필수적인 성분이며, 0.008%미만에서는 형성 석출물이 부족하게 되고, 0.012%상향 첨가시에는 강판표면에 브리스터라는 결함이 생겨 제품의 표면특성을 열화시키므로 과잉 함유를 억제한다.N forms a reactive precipitate with dissolved A1, which is an essential component in secondary recrystallization. Formation precipitates are insufficient at less than 0.008%. When 0.012% is added upwards, a defect of blister occurs on the surface of the steel sheet, resulting in surface characteristics of the product. Since it deteriorates, excess content is suppressed.

Cu는 불순성분인 S와 결합하여 Cu2S의 석출물을 형성하고, 석출물중 가장 저온에서 고용되므로 가능한한 많이 첨가 할수록 유리하다. 그러나 0.6%이상 되면 탈탄소둔시 형성되는 산화물이 절연피막 형성에 악영향을 줌으로 0.6%이하로 한정한다.Cu combines with S, which is an impure component, to form a precipitate of Cu 2 S, and it is advantageous to add as much as possible because it is solid-solution at the lowest temperature among the precipitates. However, if it is more than 0.6%, the oxide formed during decarbonization annealing is adversely affected to the formation of the insulating film, so it is limited to less than 0.6%.

이 성분계를 사용하며 스라브 가열온도를 통상 일반 탄소강의 재가열온도인 1250℃에서 작업을 행하여도 자기적 특성의 확보가 가능하며, 이때 재가열온도가 1340℃를 넘으면 전기강판 스라브가 응용하는 온도이므로 제철소에서 가장 경제적이고 용이한 재가열온도인 1250℃~1340℃까지로 한정한다. 이를 1000℃이하의 온도에서 열연판소둔을 행하고, 1차 냉간압연시에 최종 2차냉연율이 46~69%가 되도록 중간두께를 조정하여야 한다. 중간 탈탄소둔은 온도 890~960℃의 습윤분위기에서 행하며, 890℃미만에서는 탈탄성이 저조하고 960℃초과해에서는 고온에 의한 과대한 구멍발생으로 적합하지 않다. 이어 2차 냉간압연을 행하여 최종 두께로 조정한 후에 600℃이하의 온도에서 회복소둔하고, MgO를 주성분으로 하는 융착방지제를 도포한다. 이때 보조제로 TiO2분말을 혼합 첨가하는데 2%미만에서는 소지노출부 산화에 효과가 적고, 4%를 초과해서는 최종제품의 표면색상이 다소 검게 변색되어 품질특성을 저하시킬 수 있다. 이후 건조 권취하여 대형코일로 만든 다음 최종 마무리소둔을 행한다. 최종 마무리소둔은 전구간이 100%수소분위기이며, 700~1200℃구간의 승온율을 15℃/hr이상 유지 하고, 1200±10℃의 온도에서 20시간 이상 균열한 후 냉각하는 열사이클을 거치는 마무리고온소둔을 행하여 2차재결정을 완료하고, 산세처리하여 표면의 미반응MgO를 제거하여야 한다.Using this component system, it is possible to secure magnetic properties even when the slab heating temperature is usually performed at 1250 ℃, which is the reheating temperature of ordinary carbon steel.In this case, if the reheating temperature exceeds 1340 ℃, the steel sheet slab is applied. It is limited to 1250 ℃ ~ 1340 ℃ which is the most economical and easy reheating temperature. Hot-rolled sheet annealing is performed at a temperature of 1000 ° C. or lower, and the intermediate thickness should be adjusted so that the final secondary cold rolling rate is 46 to 69% during the primary cold rolling. The intermediate decarbonization annealing is carried out in a humid atmosphere at a temperature of 890 to 960 ° C., and the decarburization is poor at below 890 ° C., and is not suitable for excessive pore generation due to high temperatures above 960 ° C. Subsequently, after performing secondary cold rolling to adjust to final thickness, it recovers and anneales at the temperature below 600 degreeC, and apply | coats the fusion inhibitor which has MgO as a main component. At this time, TiO 2 powder is added as an adjuvant, but less than 2% is less effective for oxidation of the exposed part, and if it exceeds 4%, the surface color of the final product is slightly blackened, which may lower the quality characteristics. Thereafter, it is wound up and dried to make a large coil, and then subjected to final finishing annealing. The final finishing annealing is 100% hydrogen atmosphere in all the zones, and maintains the temperature increase rate of 700 ~ 1200 ℃ over 15 ℃ / hr, and finishes the heat cycle after cooling over 20 hours at 1200 ± 10 ℃. Annealing should be done to complete the secondary recrystallization, and pickling should remove unreacted MgO from the surface.

이때 산세조건은 H2SO4용액으로 처리하며, 농도는 2%미만에서 산세효과가 부족하고 10%를 초과해서는 수증기 비산시 주변환경을 오염시킬 수 있다. 온도에 있어서 60℃미만에서는 용해성이 극히 낮고 90℃를 초과해서는 수증기 비산이 크다.이때 처리시간은 15초미만에서는 잔존 MgO가 남을 수 있고 45초를 초과하면 생산성이 부족하다. 최종적으로 산세처리 후 장력코팅제를 도포함으로서 최종 방향성전기강판을 제조할 수 있다.At this time, the pickling condition is treated with H 2 SO 4 solution, and the concentration is less than 2% and the pickling effect is insufficient, and if it exceeds 10%, it may contaminate the surrounding environment during steam scattering. The solubility is extremely low at temperatures below 60 ° C., and the water vapor scattering is high at temperatures above 90 ° C. At this time, residual MgO may remain at less than 15 seconds, and productivity is insufficient when the temperature is above 45 seconds. Finally, after the pickling treatment, the final grain-oriented electrical steel sheet may be manufactured by coating the tension coating agent.

그러나 본 발명의 구성에 있어서 융착방지제의 TiO2첨가량 및 산세조업처리조건을 제외하고는 기존 특허에 기술되어 있어서 본 발명에서는 특별히 한정하지 않는다.However, in the constitution of the present invention, except for the amount of TiO 2 added to the fusion inhibitor and the pickling operation treatment conditions, it is described in the existing patent and is not particularly limited in the present invention.

이하 실시예를 통하여 설명한다.It will be described through the following examples.

(실시예 1)(Example 1)

중량비로 Si : 3.21%, C : 0.033%, P : 0.014%, 용존 AI : 0.017%, N : 0.0098%, S : 0.004%, Mn : 0.31%, Cu : 0.45%이고 나머지를 Fe로 구성된 조성의 성분을 이용하여 220㎜ 두께의 스라브를 만들었다. 이것을 표면용융이 없는 1300℃의온도에서 4시간 저온재가열후 열간압연을 행하여 2.3㎜ 두께의 열연판을 만들었다. 이어 900℃에서 열연판소둔을 시행하고 산세후 0.65㎜ 두께까지 1차 냉간압연을 한후 중간 탈탄소둔을 실시하였다. 탈탄소둔 조건은 온도 900℃, 32.5%H2+67.5%N2분위기, PH2O/PH2가 0.56의 이슬점에서 재로시간 3분이었다. 이어서 2차냉간압연하여 최종두께인 0.30㎜로 조정하고, 550℃의 건조분위기에서 회복소둔 및 MgO를 주성분으로 하는 융착방지제를 도포하였다. 이때 융착방지제의 조성은 통상의 MgO 100기준 TiO2분말 1.5% 첨가조성을 기본으로 하여 TiO2분말의 첨가량을 1.5-5.0%까지 조정하여 도포하였다. 이것을 건조한 다음 각각 권취하여 대형코일로 만든 다음 최종 마무리 소둔공정을 행한다. 이때 최종 마무리 소둔은 전구간을 100% 수소분위기이며, 700~1200℃구간의 승온율을 18℃/hr로 유지하면서 1200℃의 온도에서 25시간 균열한후 냉각하는 열사이클을 거쳐 2차재결정소둔을 완료하였다. 이후 표면의 미반응 MgO주성분의 융착방지제 제거를 위해 상온상태의 2% HC1용액에서 브러싱(Bruching)하면서 산세하였으며 최종적으로 장력코팅제를 도포하여 방향성 전기강판제품을 만들었다. 이때 최종제품 표면의 미제거된 미반응 MgO조성물의 잔존상태를 육안으로 관찰하여 이들의 결과를 종합하여 표 1에 나타냈다.By weight ratio Si: 3.21%, C: 0.033%, P: 0.014%, dissolved AI: 0.017%, N: 0.0098%, S: 0.004%, Mn: 0.31%, Cu: 0.45%, and the rest is composed of Fe The components were used to make a 220 mm thick slab. It was hot-rolled after low-temperature reheating for 4 hours at a temperature of 1300 ° C. without surface melting to form a 2.3 mm thick hot rolled sheet. Subsequently, hot-rolled sheet annealing was performed at 900 ° C, followed by primary cold rolling to 0.65 mm thickness after pickling, followed by intermediate decarbonization annealing. The conditions for decarbonization annealing were 3 minutes in time at a temperature of 900 ° C., 32.5% H 2 + 67.5% N 2 atmosphere, and P H 2 O / P H 2 at a dew point of 0.56. Subsequently, secondary cold rolling was carried out to adjust the final thickness to 0.30 mm, and a fusion inhibitor mainly containing recovery annealing and MgO was applied in a dry atmosphere at 550 ° C. At this time, the composition of the anti-fusion agent was applied by adjusting the addition amount of TiO 2 powder to 1.5-5.0% based on the conventional composition of 1.5% TiO 2 powder based on MgO 100. It is dried and then wound up to make a large coil, followed by the final finishing annealing process. At this time, the final finishing annealing is 100% hydrogen atmosphere in all the zones, and the secondary recrystallization annealing is performed through a thermal cycle of cooling after cracking for 25 hours at a temperature of 1200 ° C. while maintaining a temperature rising rate of 700 to 1200 ° C. at 18 ° C./hr. Completed. Then, to remove the unreacted MgO main component fusion inhibitor on the surface of the surface was washed with a 2% HC1 solution at room temperature (Bruching) and finally pickled by applying a tension coating to make a grain-oriented electrical steel sheet products. At this time, the remaining state of the unreacted unreacted MgO composition on the surface of the final product was visually observed and the results are summarized in Table 1 below.

구 분division TiO2첨가율(%)TiO2 addition rate (%) 미반응 MgO 잔존상태(%)Unreacted MgO Remaining State (%) 제품판정Product judgment 평 균Average 극심부Deep 통상재Trade goods 1.51.5 3030 7070 불가Impossible 발명재aInvention Materiala 2.02.0 0.5이하0.5 or less 1~21 ~ 2 가능possible 발명재bInvention material b 3.03.0 00 00 가능possible 발명재cInvention material c 4.04.0 00 00 가능possible 비교재aComparative material a 5.05.0 00 00 가능possible

MgO대비 TiO2첨가율의 비교 결과인 표 1에서 보면, 통상조업재에서는 미반응MgO조성물이 많이 남아 있어 정상적인 제품화가 불가능하다. 그러나 TiO2첨가율이 2%이상되면 MgO잔존량이 극히 줄어 들어 부분적으로 심한 부분을 잘라버리면 제품화가 가능하였고(발명재a), 3%이상에서는 양호한 특성이 나타났다. 5%첨가의 경우 잔존 MgO가 없어서 제품화가 가능하지만 전체적인 색상이 다소 검고 광택이 부족하여 본 발명의 범위에서는 제외하였다.In Table 1, which is a comparison result of TiO 2 addition ratio to MgO, in general industrial materials, many unreacted MgO compositions remain, so that normal commercialization is impossible. However, when the TiO 2 addition rate was 2% or more, the residual amount of MgO was extremely reduced, so that part of the severe part was cut off and commercialized (inventive material a). In the case of 5% addition, there is no residual MgO, so that it can be commercialized, but the overall color is somewhat black and lacks gloss and is excluded from the scope of the present invention.

(실시예 2)(Example 2)

상기 실시예1의 2차 회복소둔판에 MgO를 주성분으로 하는 융착방지제를 도포시 통상의 조건인 MgO 100기준 TiO2분말 1.5%첨가하는 조성물을 도포하였다. 이것을 건조한 다음 권취하여 대형코일로 만들고 최종 마무리소둔공정을 행한다. 이때 최종 마무리소둔은 전 구간을 100% 수소분위기이며, 700~1200℃구간의 승온율을 18℃/hr로 유지하면서 1200℃의 온도에서 25시간 균열한후 냉각하는 열사이클을 거쳐 2차재결정소둔을 완료하였다. 이후 표면의 미반응 MgO주성분의 융착방지제제거를 위해 통상의 조건인 실온의 2% HC1용액에서 브러싱하면서 산세하는 방법과 본 발명의 H2SO4용액으로 처리하는 방법의 비교시험을 행하였다. 이어 초종적으로 장력코팅제를 도포하여 최종제품을 만들었다. 이때 초종제품 표면의 미제거된 미반응 MgO조성물의 잔존상태를 육안으로 관찰하여 이들의 결과를 종합하여 표 2에 나타냈다.When applying the anti-fusion agent containing MgO as a main component to the secondary recovery annealing plate of Example 1 was applied a composition that adds 1.5% MgO 100 standard TiO 2 powder. It is dried and then wound up to make a large coil and subjected to the final finishing annealing process. At this time, the final finishing annealing is 100% hydrogen atmosphere in all sections, and secondary recrystallization annealing through thermal cycle to cool after cracking at 1200 ℃ for 25 hours while maintaining the temperature raising rate of 700 ~ 1200 ℃ at 18 ℃ / hr. Completed. Thereafter, a comparative test was carried out to remove the unreacted MgO main component from the surface of the surface by rinsing with a 2% HC1 solution at room temperature and a method of treating with an H 2 SO 4 solution of the present invention. Subsequently, the final product was applied by applying a tension coating agent. At this time, the remaining state of the unreacted unreacted MgO composition on the surface of the first product was visually observed and the results are summarized in Table 2.

Figure pat00001
Figure pat00001

표 2에서 보면, 통상의 조건 대비 본 발명의 H2S04용액을 2%이상 사용시 미반응 MgO의 잔존이 거의 없어 정상적인 제품으로 생산이 가능하다. 그러나 비교재 b의 경우 고농도로 인한 수증기비산으로 공해문제로 본 발명의 조건에서는 제외하였다. 50℃이하에서는 산세상태가 불량하여 제품화가 불가능하였으며( 비교재c,d) 그 이상에서는 산세성이 양호하였다. 한편 용해시간 10초에서는 미용해분이 잔존하였고(비교재e), 과대 용해시 표면품질 열화 및 비산수증기량이 증대하므로 본발명의 조건에서 제외하였다. 이상의 결과를 보면, 최종 마무리고온소둔판 표면의 미반응 MgO를 제거하기 위한 산세처리시 H2SO4의 2~10%용액의 60~90℃온도에서 15~45초이내 처리함에 의하여 미려한 표면특성을 갖는 제품을 제조할 수 있었다.In Table 2, when using more than 2% of the H 2 SO 4 solution of the present invention compared to the normal conditions there is almost no residual of unreacted MgO can be produced as a normal product. However, the comparative material b was excluded from the conditions of the present invention due to pollution problems due to the water vapor scattering due to the high concentration. Under 50 ℃, the pickling condition was poor and it was impossible to commercialize (comparative materials c and d). On the other hand, undissolved water remained at the dissolution time of 10 seconds (comparative material e), and was excluded from the conditions of the present invention because the surface quality deteriorated and the amount of fugitive water increased when it was excessively dissolved. The above results show that the surface characteristics of the final finished high-temperature annealing plate are treated by pickling treatment to remove unreacted MgO within 15-45 seconds at 60-90 ℃ temperature of 2-10% solution of H 2 SO 4 . A product having

상술한 바와 같이 본 발명에 의한 방향성 전기강판의 제조시에, 최종 마무리고온소둔후의 잔존 미반응 MgO조성물의 산세특성을 향상시키기 위하여 융착방지제인 MgO조성물에 TiO2분말을 2~4%첨가시켜서 분리성을 높히고, 이후 고온소둔후 산세공정에서 산세성을 극대화 할 수 있는 최상의 조건에서 처리하게 함으로서 잔존 미반응 MgO가 전혀 없는 미려한 표면품질을 갖는 방향성전기강판의 제조가 가능하게 한 것이다As described above, in order to improve pickling characteristics of the remaining unreacted MgO composition after the final high temperature annealing, the TiO 2 powder is added by adding 2 to 4% of TiO 2 powder to the MgO composition, which is an anti-fusion agent, during the production of the grain-oriented electrical steel sheet according to the present invention. It is possible to manufacture a grain-oriented electrical steel sheet having a beautiful surface quality without any remaining unreacted MgO by increasing the properties and processing at the best conditions to maximize pickling properties in the pickling process after high temperature annealing.

Claims (2)

중량%로 Si : 2.9~3.3%, C : 0.025~0.45%, P : 0.015%이하, 용존 A1 : 0.008~0.020%, N : 0.0080~0.012%, S : 0.007%이하, Mn : 0.12~0.42%이하, Cu : 0.6%이하를 기본성분으로 하여 기타 불가피하게 혼입되는 성분을 포함한 나머지를 Fe로 조성된 스라브를 1250~1340℃의 저온재가열하는 단계와, 1000℃이하의 온도에서 열연판소둔을 하는 단계와, 압연 사이에 습윤분위기에서 탈탄소둔을 포함한 2회의 냉간압연으로 최종두께로 조정하는 단계와, 이어 600℃이하의 건조분위기에서 회복소둔후 MgO를 주성분으로 하는 융착방지제를 도포하고 권취하여 대형코일로 제조하는 단계와, 최종마무리소둔은 전 구간을 100% 수소분위기하에서 700~1200℃구간의 승온율을 15℃/hr이상 유지 하면서 1200±10℃의 온도에서 20시간 이상 균열한후 냉각하는 열사이클을 거치는 마무리 고온소둔단계와, 이때 표면의 미반응 MgO를 산세처리하고 최종적으로 장력코팅제를 도포하고 건조하여 제조하는 단계와로 이루어지는 저온재가열 방향성전기강판의 제조방법에있어서, 상기 MgO를 주성분으로 하는 융착방지제를 도포하는 단계에서 MgO에 TiO2분말을 2~4%첨가하는 것을 특징으로 하는 미려한 표면특성을 갖는 방향성 전기강판의 제조방법.By weight% Si: 2.9 ~ 3.3%, C: 0.025 ~ 0.45%, P: 0.015% or less, Dissolved A1: 0.008 ~ 0.020%, N: 0.0080 ~ 0.012%, S: 0.007% or less, Mn: 0.12 ~ 0.42% Below, Cu: reheating the slab made of Fe to low temperature of 1250 ~ 1340 ° C. with other components inevitably mixed with 0.6% or less as a basic ingredient, and performing hot-rolled annealing at a temperature of 1000 ° C. or less. Adjusting the final thickness between two steps of cold rolling including decarbonization annealing in a wet atmosphere between the steps and rolling, followed by applying and winding a fusion inhibitor containing MgO as a main component after recovery annealing in a dry atmosphere below 600 ℃. In the coil manufacturing step and final finishing annealing, the entire section is cooled after cracking for more than 20 hours at a temperature of 1200 ± 10 ℃ while maintaining the temperature raising rate of 700 ~ 1200 ℃ over 15 ℃ / hr under 100% hydrogen atmosphere. Finishing high temperature annealing step through heat cycle, and at this time Response in the MgO in the production process of low-temperature reheat oriented electrical steel sheet made of the method comprising the steps of pickling, and finally applying a tension coating and drying produced, TiO 2 powder, the MgO in the step of applying a sealing agent containing as a main component a MgO Method for producing a grain-oriented electrical steel sheet having a beautiful surface characteristics, characterized in that the addition of 2 to 4%. 제1항에 있어서, 상기 마무리 고온소둔단계후의 표면의 미반응 MgO를 제거하기 위한 산세처리단계에서 H2SO4의 2~10%용액에서 60~90℃온도의 범위로 15~45초이내 처리하는 것을 특징으로 하는 미려한 표면특성을 갖는 방향성 전기강판의 제조방법.The method according to claim 1, wherein the pickling treatment step for removing unreacted MgO on the surface after the finishing high temperature annealing step is performed within 15 to 45 seconds in a range of 60 to 90 ° C. in a 2 to 10% solution of H 2 SO 4. Method for producing a grain-oriented electrical steel sheet having a beautiful surface characteristics.
KR1019970075378A 1997-12-27 1997-12-27 Method for manufacturing grain oriented silicon steel sheet KR100325534B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970075378A KR100325534B1 (en) 1997-12-27 1997-12-27 Method for manufacturing grain oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970075378A KR100325534B1 (en) 1997-12-27 1997-12-27 Method for manufacturing grain oriented silicon steel sheet

Publications (2)

Publication Number Publication Date
KR19990055434A KR19990055434A (en) 1999-07-15
KR100325534B1 true KR100325534B1 (en) 2002-07-18

Family

ID=37478230

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970075378A KR100325534B1 (en) 1997-12-27 1997-12-27 Method for manufacturing grain oriented silicon steel sheet

Country Status (1)

Country Link
KR (1) KR100325534B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101850133B1 (en) 2016-10-26 2018-04-19 주식회사 포스코 Annealing separating agent composition for grain oriented electrical steel sheet, grain oriented electrical steel sheet, and method for manufacturing grain oriented electrical steel sheet
CN114622070A (en) * 2022-03-11 2022-06-14 安阳钢铁股份有限公司 Production method for improving adhesion of oriented silicon steel coating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06336616A (en) * 1993-05-28 1994-12-06 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet
JPH09249916A (en) * 1996-03-15 1997-09-22 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet and separation agent for annealing
JPH09291313A (en) * 1996-04-25 1997-11-11 Kawasaki Steel Corp Production of grain oriented silicon steel sheet excellent in magnetic property and film characteristic
KR970707320A (en) * 1994-11-16 1997-12-01 Manufacturing method of oriented electromagnetic steel sheet with excellent glass film and magnetic properties (PROCESS FOR PRODUCING DIRECTIONAL ELECTRICAL SHEET EXCELLENT IN GLASS COATING AND MAGNETIC PROPERTIES)

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06336616A (en) * 1993-05-28 1994-12-06 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet
KR970707320A (en) * 1994-11-16 1997-12-01 Manufacturing method of oriented electromagnetic steel sheet with excellent glass film and magnetic properties (PROCESS FOR PRODUCING DIRECTIONAL ELECTRICAL SHEET EXCELLENT IN GLASS COATING AND MAGNETIC PROPERTIES)
JPH09249916A (en) * 1996-03-15 1997-09-22 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet and separation agent for annealing
JPH09291313A (en) * 1996-04-25 1997-11-11 Kawasaki Steel Corp Production of grain oriented silicon steel sheet excellent in magnetic property and film characteristic

Also Published As

Publication number Publication date
KR19990055434A (en) 1999-07-15

Similar Documents

Publication Publication Date Title
JP5479448B2 (en) Method for producing directional silicon steel with high electromagnetic performance
KR101596446B1 (en) Pre-coating composition for forsterite film-eliminated grain oriented electrical steels, grain oriented electrical steels manufactured by using the same, and method for manufacturing the same grain oriented electrical steels
CN109554525A (en) A kind of manufacturing method of mirror surface-oriented silicon steel
KR100797997B1 (en) Method for manufacturing grain-oriented electrical steel sheets with excellent magnetic property and high productivity
EP0709470A1 (en) Production method of directional electromagnetic steel sheet of low temperature slab heating system
KR100325534B1 (en) Method for manufacturing grain oriented silicon steel sheet
KR100435478B1 (en) A method for manufacturing grain oriented electrical steel sheet with high magnetic induction using low temperature slab reheating process
KR100340506B1 (en) A Method of spraying MgO agent on Oriented Electrical Steel Sheet for Preventing Sticking of its edge parts
KR100340500B1 (en) A Method for Manufacturing Oriented Electrical Steel Sheets Having Superior Decarburization within Shot Annealing-time
KR100435456B1 (en) A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having no glass film
KR100406420B1 (en) A method for manufacturing grain oriented electrical steel sheet with high permeability
KR102319831B1 (en) Method of grain oriented electrical steel sheet
KR100276305B1 (en) The manufacturing method of oriented electric steel sheet with excellent cold rolling and annealing productivity
KR100514790B1 (en) A method for manufacturing grain-oriented electrical steel sheet with superior magnetic property using the low temperature heating method
KR0119557B1 (en) Method of manufcturing non-oriented electro magnetic steel sheet
KR100479994B1 (en) A method for manufacturing low temperature reheated grain-oriented electrical steel sheet having superior punching property
KR20000008646A (en) Process for preparing directional electrical sheet having a good magnetic property and productibilities by slab low temperature reheating
JPH02259017A (en) Production of grain-oriented silicon steel sheet excellent in film characteristic as well as in magnetic property
KR100268855B1 (en) The manufacturing method of oriented steelsheet with low reheat treatment
KR100340565B1 (en) A method of preventing sticking in the edge part of grain oriented electrical steel sheet
KR100435477B1 (en) A method for manufacturing grain-oriented electrical steel sheet having no surface defects and superior punching property
KR100435479B1 (en) A method for manufacturing low temperature slab reheating grain-oriented electrical steel sheet with superior film property
KR100782762B1 (en) A method for manufacturing non-oriented silicon steel with excellent magnetic property
KR100241003B1 (en) The manufacturing method of oriented electric steelsheet with excellent magnetic and surface quality property
JP4604369B2 (en) Method for producing grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130128

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140206

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160201

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee