KR100311940B1 - Method for diamond like carbon coating to drill bit and router bit - Google Patents

Method for diamond like carbon coating to drill bit and router bit Download PDF

Info

Publication number
KR100311940B1
KR100311940B1 KR1019990032755A KR19990032755A KR100311940B1 KR 100311940 B1 KR100311940 B1 KR 100311940B1 KR 1019990032755 A KR1019990032755 A KR 1019990032755A KR 19990032755 A KR19990032755 A KR 19990032755A KR 100311940 B1 KR100311940 B1 KR 100311940B1
Authority
KR
South Korea
Prior art keywords
tool
diamond
bit
rotor
cleaning
Prior art date
Application number
KR1019990032755A
Other languages
Korean (ko)
Other versions
KR20010017307A (en
Inventor
이태영
Original Assignee
민병성
삼신정밀(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 민병성, 삼신정밀(주) filed Critical 민병성
Priority to KR1019990032755A priority Critical patent/KR100311940B1/en
Publication of KR20010017307A publication Critical patent/KR20010017307A/en
Application granted granted Critical
Publication of KR100311940B1 publication Critical patent/KR100311940B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/04Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by chemical vapour deposition [CVD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S427/00Coating processes
    • Y10S427/103Diamond-like carbon coating, i.e. DLC
    • Y10S427/106Utilizing plasma, e.g. corona, glow discharge, cold plasma

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Drilling Tools (AREA)

Abstract

본 발명은 저온에서 직경이 작은 PCB용 드릴 비트 및 로터 비트와 같은 초경재질의 공구에 다이아몬드상 카본 코팅을 실시하여 재질의 기계적 성질의 변화없이 공구의 수명을 증대시키고 생산성 향상을 도모할 수 있도록 한 드릴 비트 및 로터 비트에 대한 다이아몬드상 카본 코팅 방법에 관한 것이다.The present invention is to apply diamond-like carbon coating to carbide tools such as drill bits and rotor bits for small diameter PCB at low temperatures to increase the life of the tool without improving the mechanical properties of the material and to improve productivity A diamond-like carbon coating method for drill bits and rotor bits.

본 발명은 드릴 비트 및 로터 비트와 같은 초경재질의 공구를 세정하는 단계와, 상기 세정단계를 거친 공구 표면의 습기를 제거하는 단계와, 상기 습기제거단계를 거친 공구를 항온조에 투입하는 단계와, 상기 항온조투입단계를 거친 공구를 진공챔버내에서 아르곤(Ar) 이온을 이용하여 세정하는 단계와, 상기 이온세정단계를 거친 공구에 다이아몬드상 카본 박막을 코팅시키는 단계로 이루어지는 것을 특징으로 한다.The present invention comprises the steps of cleaning the cemented carbide tools, such as drill bits and rotor bits, the step of removing the moisture of the surface of the tool after the cleaning step, the step of putting the tool through the moisture removal step into the thermostat, And cleaning the tool having undergone the incubation step using argon (Ar) ions in a vacuum chamber, and coating a diamond-like carbon thin film on the tool that has undergone the ion cleaning step.

Description

드릴 비트 및 로터 비트에 대한 다이아몬드상 카본 코팅 방법{METHOD FOR DIAMOND LIKE CARBON COATING TO DRILL BIT AND ROUTER BIT}Diamond-like carbon coating method for drill bits and rotor bits {METHOD FOR DIAMOND LIKE CARBON COATING TO DRILL BIT AND ROUTER BIT}

본 발명은 드릴 비트 및 로터 비트에 대한 다이아몬드상 카본 코팅 방법에 관한 것으로, 특히 저온에서 직경이 작은 PCB용 드릴 비트 및 로터 비트와 같은 초경재질의 공구에 다이아몬드상 카본 코팅을 실시하여 재질의 기계적 성질의 변화없이 공구의 수명을 증대시키고 생산성 향상을 도모할 수 있도록 한 드릴 비트 및 로터 비트에 대한 다이아몬드상 카본 코팅 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diamond-like carbon coating method for a drill bit and a rotor bit. In particular, mechanical properties of a material are formed by performing diamond-like carbon coating on a carbide tool such as a drill bit and a rotor bit for a small diameter at low temperatures. The present invention relates to a diamond-like carbon coating method for a drill bit and a rotor bit that can increase the life of the tool and improve the productivity without changing.

일반적으로 다이아몬드상 카본(DLC;Diamond Like Carbon) 코팅은 지구상의 물질중 가장 경도가 높은 다이아몬드와 유사한 상을 표면처리하는 첨단기술로서 이 코팅은 일반 코팅과 비교하여 마찰계수가 훨씬 낮고 필름의 경도는 2배 이상 강하므로 더욱 가혹한 절삭, 마모조건에서도 정밀하고 능률적인 작업의 수행이 가능한 장점을 가진다.In general, Diamond Like Carbon (DLC) coating is an advanced technology for surface treatment of diamond-like phases, which are the hardest of the earth's materials. This coating has a much lower coefficient of friction and a higher hardness than the general coating. Since it is more than twice as strong, it has the advantage of being able to perform precise and efficient work even under severe cutting and abrasion conditions.

이러한 잇점에 의하여 다이아몬드상 카본 코팅은 VCR의 헤드 및 헤드드럼은 물론, 반도체용 금형, 치공구, 절삭공구, 금형, 사출성형 기계부품, 세라믹, 신소재등 모든 산업분야에 광범위하게 적용되고 있다.Due to these advantages, diamond-like carbon coating is widely applied to all industries such as VCR heads and head drums, as well as semiconductor molds, tooling tools, cutting tools, molds, injection molding machine parts, ceramics and new materials.

한편, 종래 초경(Tungsten Carbide) 재질 드릴(Drill)에 대한 DLC 코팅에 있어서는 코팅 작업이 비교적 고온에서 이루어지므로 특히 PCB(인쇄회로기판)에 초경재질의 드릴 비트나 로터 비트(Bit)를 사용하여 천공 작업시, 상기 드릴 비트나 로터 비트는 지정된 수명 즉, 품질의 변경점에서 필히 교환하여 안정된 품질을 유지하여야 한다.Meanwhile, in the DLC coating of conventional Tungsten Carbide drills, the coating is performed at a relatively high temperature, and therefore, drilling is performed using a carbide drill bit or a rotor bit on a printed circuit board (PCB). In this case, the drill bit or the rotor bit must be replaced at a specified life, that is, a change in quality, to maintain stable quality.

이때, 상기 드릴 및 로터 비트는 상대적으로 작은(ψ0.4 이하) 직경을 가지고 사용되며 DLC 코팅시 초경재질이 열처리에 의해 그 기계적 성질이 변화되므로 직경이 작은 드릴 비트의 경우에는 DLC 코팅을 적용하지 않고 초경재질 그대로 사용하였다. 이에 따라 그 반복 사용에 따른 수명 감소는 물론, 교체에 따른 작업성 및 생산성 저하의 문제점이 있었다.In this case, the drill and rotor bits are used with a relatively small diameter (0.4 or less) and the DLC coating does not apply to a drill bit having a small diameter because the mechanical properties are changed by heat treatment when the DLC coating. Without cemented carbide. Accordingly, there is a problem in reducing the service life due to the repeated use, as well as the workability and productivity decrease due to the replacement.

PCB용 드릴 비트 및 로터 비트(Router Bit)는 60,000 R.P.M 이상의 초고속 회전과 작업 대상 물질이 인쇄회로기판으로서 작업 소재가 순간적으로 전환되는 대단히 열악한 작업환경을 가지고 있다.The drill bit and rotor bit for the PCB has a very poor working environment in which extremely high-speed rotation of 60,000 R.P.M or more and the target material is a printed circuit board, and the work material is instantly converted.

따라서 그 수명 향상을 위한 각종 표면처리에 관한 연구는 다양하게 진행되어 왔으나 실효를 거둔 방법은 없었다.Therefore, various studies on the surface treatment to improve the life has been progressed variously, but no effective method.

그 중 대표적인 방법으로 질화티탄 코팅과 이온주입법이 있다.Representative methods include titanium nitride coating and ion implantation.

상기 질화티탄(TiN) 코팅은 현재 공구강 또는 초경합금으로 제조된 범용 드릴, 엔드밀, 홉 커터(Hob Cutter) 등에 대해 폭넓게 적용되고 있는 방법이다.The titanium nitride (TiN) coating is a method widely applied to general-purpose drills, end mills, hob cutters, and the like, made of tool steel or cemented carbide.

그러나 이 기술은 코팅 온도가 400∼500 ℃ 정도로 비교적 높아서 PCB용 드릴 비트 및 로터 비트의 경우 변형을 초래할 우려가 있으며, 질화티탄 박막의 경도는 Hv 2,000∼2,200 정도이나 표면 윤활성이 낮아서 작업시 마찰응력, 마찰열 및 그에 따른 소성변형에 의하여 마멸현상이 촉진된다.However, this technique has a high coating temperature of about 400 ~ 500 ℃, which may cause deformation in the case of drill bit and rotor bit for PCB.The hardness of titanium nitride thin film is about Hv 2,000 ~ 2,200 but the surface lubricity is low, so the frictional stress during working Abrasion is promoted by frictional heat and plastic deformation.

따라서 특히 사용환경이 열악한 PCB용 드릴 비트 및 로터 비트에 대해서는 그 수명 향상 정도가 경제성을 충족시키지 못해 적용이 어려운 문제점이 있다.Therefore, in particular, the drill bit and the rotor bit for a PCB having a poor use environment have a problem in that its lifespan improvement does not meet economic efficiency and thus is difficult to apply.

한편, 이온주입법은 반도체 제조공정에 필수적으로 사용되는 방법이며, 이를 금속표면처리용으로 개선한 전용기로 실험하였다.On the other hand, the ion implantation method is an essential method used in the semiconductor manufacturing process, and experimented with a dedicated machine improved for the metal surface treatment.

이때 주입이온은 질소와 탄소, 가속에너지는 40∼120 KeV를 사용해서 다양한 공정변수로서 실험하였으나 품질에 대한 표본 오차가 대단히 커서 그 수명향상 정도가 -20 ∼ +350 까지 나타났다.In this case, the implanted ions were tested with various process variables using nitrogen, carbon, and accelerated energy of 40-120 KeV, but the sample life on the quality was very large, resulting in the life improvement of -20 ~ +350.

이러한 이온 주입법은 금속 모재에 불순물 원자(질소, 탄소등)를 강제로 침투시킴으로써 모재 표면의 소성변형 억제 효과에 의한 경도 향상을 도모한 방법이나, PCB용 드릴 비트 및 로터 비트의 소재인 초경합금의 경우 경도향상 정도가 20∼30 에 불과하다.The ion implantation method is designed to improve the hardness due to the effect of suppressing plastic deformation of the surface of the base material by forcibly impregnating impurity atoms (nitrogen, carbon, etc.) into the metal base material. The degree of hardness improvement is only 20-30.

더욱이 초경합금 자체가 대단히 취약한 특성을 지니고 있으므로 이온 주입을 실시할 경우, 날이 채 길들여 지기 전 초기 수백 히트(Hit) 내에 표면에서의 미세균열 발생에 의해 비트의 초기 손상이 초래됨에 따라 수명의 불균일 현상이 초래되고 따라서 PCB 제조 공정과 같은 자동화 생산 공정에는 그 적용이 불가능한 문제점이 있었다.Moreover, the cemented carbide itself is very fragile, so when the ion implantation is performed, the life of the bit is uneven due to the initial damage of the bit due to the occurrence of microcracks on the surface within the initial hundreds of hits before the blade is tamed. This has led to problems that cannot be applied to automated production processes such as PCB manufacturing processes.

또한, 최근에 들어서는 BGA(Ball Grid Array)나 μBGA, 또는 FBGA(Flexible BGA) 등의 등장으로 단위면적당의 천공수를 더 필요로 하게 되었고 이에 따라 단위 시간에 기존의 공구로서 더 많은 천공이 이루어질 수 있는 초경공구의 다이아몬드 코팅 방법의 필요성이 제기되었다.In addition, the recent introduction of ball grid array (BGA), μBGA, or flexible BGA (FBGA) has required more perforations per unit area, and thus more perforations can be achieved with existing tools in unit time. There is a need for a diamond coating method for cemented carbide tools.

본 발명은 전술한 바와 같은 종래의 제반 문제점과 필요성을 감안하여 창안된 것으로, 본 발명의 목적은 저온에서 직경이 작은 초경공구를 코팅하여 기계적 성질을 변화시키지 않고 공구의 수명을 향상시킬 수 있는 드릴 비트 및 로터 비트에 대한 다이아몬드상 카본 코팅 방법을 제공하는 데 있다.The present invention was devised in view of the above-mentioned problems and necessities of the related art, and an object of the present invention is to coat a carbide tool having a small diameter at low temperature so that the drill life can be improved without changing mechanical properties. A diamond-like carbon coating method for bits and rotor bits is provided.

본 발명의 다른 목적은 교체에 따른 불편함이 없이 작업성 및 생산성을 향상시킬 수 있는 드릴 비트 및 로터 비트에 대한 다이아몬드상 카본 코팅 방법을 제공하는 데 있다.It is another object of the present invention to provide a diamond-like carbon coating method for drill bits and rotor bits that can improve workability and productivity without the inconvenience of replacement.

도 1은 본 발명에 따른 드릴 비트 및 로터 비트에 대한 다이아몬드상 카본 코팅 방법의 공정흐름도이다.1 is a process flow diagram of a diamond-like carbon coating method for a drill bit and a rotor bit according to the present invention.

상기 목적을 달성하기 위하여 본 발명은 드릴 비트 및 로터 비트와 같은 초경재질의 공구를 세정하는 단계와, 상기 세정단계를 거친 공구 표면의 습기를 제거하는 단계와, 상기 습기제거단계를 거친 공구를 항온조에 투입하는 단계와, 상기 항온조투입단계를 거친 공구를 진공챔버내에서 아르곤(Ar) 이온을 이용하여 세정하는 단계와, 상기 이온세정단계를 거친 공구에 다이아몬드상 카본 박막을 코팅시키는 단계로 이루어지는 것을 특징으로 한다.In order to achieve the above object, the present invention provides a method for cleaning a tool made of cemented carbide, such as a drill bit and a rotor bit, removing moisture from the surface of the tool after the cleaning, and removing the moisture from the tool. And a step of cleaning the tool having been subjected to the incubation step using argon (Ar) ions in a vacuum chamber, and coating a diamond-like carbon thin film on the tool having been subjected to the ion cleaning step. It features.

이때, 상기 세정단계는 공구를 알칼리 세제에서 세정한 후 순수로 세정하는 단계와, 순수로 초음파 세정하는 단계와, 메탄올로 초음파 세정하는 단계와, 발탄으로 초음파 세정하는 단계로 이루어지는 것을 특징으로 한다.In this case, the washing step is characterized in that the tool is washed with an alkaline detergent, followed by washing with pure water, ultrasonic cleaning with pure water, ultrasonic cleaning with methanol, ultrasonic cleaning with ballistics.

또한, 상기 습기제거단계에서는 질소 가스로 공구 표면을 히트 블로워하는 것을 특징으로 한다.In addition, the moisture removal step is characterized in that the heat blow the tool surface with nitrogen gas.

또한, 상기 항온조투입단계에서는 공구를 2차에 걸쳐 항온 처리하는 것을 특징으로 한다.In addition, the thermostatic step is characterized in that the tool is incubated over a second time.

또한, 상기 이온세정단계에서의 진공도는 2.7×10-4Torr로 유지하는 것을 특징으로 한다.In addition, the vacuum degree in the ion cleaning step is characterized in that to maintain at 2.7 × 10 -4 Torr.

이하, 이러한 제조 조건에 대해 상세히 설명한다.Hereinafter, these manufacturing conditions are explained in full detail.

드릴 및 로터 비트(이하 공구라 칭함)를 1차적으로 알칼리 세제에서 20분간 세정한 후, 2차적으로 순수(Pure Water)로 세정한다.The drill and rotor bits (hereinafter referred to as tools) are first washed with alkaline detergent for 20 minutes and then secondly with pure water.

이후, 3차적으로 순수로 15분간 초음파 세정하고, 4차적으로 99.9순도의 메탄올로 9분간 초음파 세정한다.Thereafter, ultrasonically clean for 15 minutes with pure water and ultrasonically clean for 9 minutes with 99.9 purity methanol.

다음 5차적으로 99.9순도의 세척용 유기 용제인 발탄(Valtane)으로 6분간 초음파 세정하고 6차적으로 99.9의 질소 가스로서 히트 블로워(Heat Blower)하여 공구 표면의 습기를 제거한다.Next, ultrasonic cleaning is performed for 5 minutes with Valtan, a 99.9-purity organic solvent, followed by heat blower with 99.9 nitrogen gas to remove moisture from the surface of the tool.

다음 상기 공구를 50배의 실체 현미경을 통하여 스캐닝(Scanning)한다. 이때 상기 스캐닝시 이물질이 발견되면 다시 1차부터 재시도한다.The tool is then scanned through a 50x stereo microscope. At this time, if a foreign object is found during the scanning, it is tried again from the first time.

상기 스캐닝 완료 후, 공구를 2차에 걸쳐 즉, 40∼60℃의 항온조에 넣어서 1차로 6시간 동안 항온 처리하고, 이후 20∼40℃의 항온조에 넣어서 2차로 4시간 동안 항온 처리한다.After the scanning is completed, the tool is incubated for the first time over a second time, i.e., in a thermostat at 40-60 占 폚 for 6 hours, and then incubated for 2 hours in a second thermostat at 20-40 占 폚.

이하에 본 발명을 실시예에 의거 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to Examples.

상기와 같이 준비된 공구를 진공챔버(Chamber)에 넣고, 로터리 펌프와 유확산 펌프를 이용하여 그 진공도를 2.1×10-6∼2.1×10-7Torr로 한 상태에서 바이어스 볼트(bias volt)를 2,000V로 30분간 지속시킨다.The tool prepared as described above is placed in a vacuum chamber, and the bias volt is 2,000 using a rotary pump and a diffusion pump with the vacuum degree of 2.1 × 10 -6 to 2.1 × 10 -7 Torr. Continue for 30 minutes at V.

이후, 아르곤(Ar) 가스를 Ar+ 이온으로 이온화하면서 진공도를 2.7×10-4Torr로하여 공구를 1시간동안 이온세정시킨다.Thereafter, the tool is ion-washed for 1 hour at a vacuum degree of 2.7 × 10 −4 Torr while ionizing argon (Ar) gas to Ar + ions.

상기와 같이 Ar+ 이온 세정을 마친 후, 10분간 휴지 시간을 거친다.After the Ar + ion cleaning is finished as above, a 10 minute rest period is passed.

본 발명에서는 PECVD(Plasma Enhanced Chemical Vapor Deposition; 플라즈마 보조 진공화학증착)법을 이용하여 코팅을 실시하였다.In the present invention, the coating was performed using PECVD (Plasma Enhanced Chemical Vapor Deposition).

일반적으로 DLC 코팅에서 원료로 사용되는 탄화수소 가스는 원래 고온 (800℃ 이상)에서 화학 반응이 가능하나 PECVD법은 진공중에서 플라즈마 에너지(Plasma Energy)를 이용해서 비교적 저온(200∼600℃)에서 코팅을 수행한다.Generally, hydrocarbon gas, which is used as a raw material in DLC coating, can be chemically reacted at high temperature (over 800 ℃), but PECVD method is applied at relatively low temperature (200 ~ 600 ℃) by using plasma energy in vacuum. Perform.

이때 플라즈마 에너지를 얻은 탄화수소 가스는 여기(Excitation)되거나 이온화하여 전지화학적 활성 상태를 유지함으로써 DLC막을 얻기 위한 소요의 반응이 비교적 저온에서도 가능하게 된다.At this time, the hydrocarbon gas obtained by plasma energy is excited or ionized to maintain the electrochemical activity, so that the reaction required to obtain the DLC film can be performed at a relatively low temperature.

플라즈마 에너지원으로서는 DC 또는 RF 전원을 직접 사용하는 것이 일반적이나, 본 코팅 방법에서는 추가로 외부 플라즈마 에너지원을 이중으로 장착함으로써 작업온도는 더욱 낮추고(150℃ 이하) 밀착력과 강도를 대폭 향상시킨 새로운 개념의 PECVD법을 적용하였다.It is common to use DC or RF power directly as plasma energy source, but in this coating method, by additionally installing double external plasma energy source, new concept that further lowers working temperature (below 150 ℃) and greatly improves adhesion and strength. PECVD method was applied.

< 실시예 1 ><Example 1>

진공챔버내의 진공도를 2.1×10-5∼2.1×10-7으로 맞추면서 C:H Bond Gas 중에서 아세틸렌 가스(C2H2)를 주입하여이온으로 이온화시킨다.While adjusting the vacuum degree in the vacuum chamber to 2.1 × 10 -5 to 2.1 × 10 -7 , injecting acetylene gas (C 2 H 2 ) from C: H Bond Gas Ionize with ions.

이때의 진공도를 5.6×10-4Torr로 셋팅하고, 표 1과 같은 조건에 의해 공구를 코팅하여 1.3㎛ ± 0.2 ㎛ 두께의 DLC 박막(시편 1)을 얻었다.At this time, the degree of vacuum was set to 5.6 × 10 −4 Torr, and the tool was coated under the conditions shown in Table 1 to obtain a DLC thin film (sample 1) having a thickness of 1.3 μm ± 0.2 μm.

바이어스볼트(V)Bias bolt (V) 시간(분)Minutes 온도(℃)Temperature (℃) 비 고Remarks 1One 3,0003,000 1010 450∼550450-550 22 1,5001,500 2020 450∼500450-500 33 1,0001,000 5050 600∼700600-700 44 800800 5050 650∼750650-750 55 400400 4040 450∼500450-500

< 실시예 2 ><Example 2>

다시 진공챔버내의 진공도를 2.1×10-5∼2.1×10-7으로 맞추면서 C:H Bond Gas 중에서 아세틸렌 가스(C2H2)를 주입하여이온으로 이온화시킨다.Injecting acetylene gas (C 2 H 2 ) in C: H Bond Gas while adjusting the vacuum degree in the vacuum chamber to 2.1 × 10 -5 to 2.1 × 10 -7 Ionize with ions.

이때의 진공도를 2.1×10-4Torr로 셋팅하고, 표 2과 같은 조건에 의해 공구를 코팅하여 1㎛ 두께의 DLC 박막(시편 2)을 얻었다.At this time, the degree of vacuum was set at 2.1 × 10 −4 Torr, and the tool was coated under the conditions shown in Table 2 to obtain a 1 μm-thick DLC thin film (Sample 2).

바이어스볼트(V)Bias bolt (V) 시간(분)Minutes 온도(℃)Temperature (℃) 비 고Remarks 1One 100100 6060 80∼15080 to 150 22 200200 120120 200∼350200-350 33 300300 6060 200∼350200-350

< 실시예 3 ><Example 3>

다시 진공챔버내의 진공도를 2.1×10-5∼2.1×10-7Torr로 만든 후 C:H Bond Gas 중에서 아세틸렌 가스(C2H2)를 주입하여이온으로 이온화시킨다.After making the vacuum degree in the vacuum chamber to 2.1 × 10 -5 to 2.1 × 10 -7 Torr, injecting acetylene gas (C 2 H 2 ) from C: H Bond Gas Ionize with ions.

이때의 진공도를 3.2×10-4Torr로 셋팅하고, 표 3과 같은 조건에 의해 공구를 코팅하여 1.6㎛ 두께를 갖는 DLC 박막(시편 3)을 얻었다.The vacuum degree at this time is 3 . 2 × 10 −4 Torr was set and the tool was coated under the conditions shown in Table 3 to obtain a DLC thin film (Sample 3) having a thickness of 1.6 μm.

바이어스볼트(V)Bias bolt (V) 시간(분)Minutes 온도(℃)Temperature (℃) 비 고Remarks 1One 00 120120 150∼180150 to 180 22 5050 120120 200∼220200-220 33 180180 120120 250∼280250-280

< 실시예 4 ><Example 4>

다시 진공챔버내의 진공도를 2.1×10-5∼3.0×10-7Torr로 만든 후 C:H Bond Gas 중에서 아세틸렌 가스(C2H2)를 주입하여이온으로 이온화시킨다.After making the vacuum degree in the vacuum chamber to 2.1 × 10 -5 to 3.0 × 10 -7 Torr, injecting acetylene gas (C 2 H 2 ) from C: H Bond Gas Ionize with ions.

이때의 진공도를 2.8×10-4Torr로 셋팅하고, 표 4과 같은 조건에 의해 공구를 코팅하여 1.7㎛ 두께를 갖는 DLC 박막(시편 4)을 얻었다.The vacuum degree at this time is 2 . 8 × 10 −4 Torr was set and the tool was coated under the conditions shown in Table 4 to obtain a DLC thin film (Sample 4) having a thickness of 1.7 μm.

바이어스볼트(V)Bias bolt (V) 시간(분)Minutes 온도(℃)Temperature (℃) 비 고Remarks 1One 00 3030 6060 22 100100 3030 70∼8070-80 33 110110 6060 70∼8070-80 44 120120 8080 100∼140100-140 55 130130 8080 120∼180120 to 180

< 실시예 5 ><Example 5>

다시 진공챔버내의 진공도를 2.8×10-5∼2.1×10-7Torr로 만든 후 C:H Bond Gas 중에서 메탄 가스(CH4)를 주입하여이온으로 이온화시킨다.After making the vacuum degree in the vacuum chamber to 2.8 × 10 -5 to 2.1 × 10 -7 Torr, injecting methane gas (CH 4 ) in C: H Bond Gas Ionize with ions.

이때의 진공도를 5.2×10-4Torr로 셋팅하고, 표 5과 같은 조건에 의해 공구를 코팅하여 1.6㎛ 두께를 갖는 DLC 박막(시편 5)을 얻었다.The vacuum degree at this time was set to 5.2 × 10 −4 Torr, and the tool was coated under the conditions shown in Table 5 to obtain a DLC thin film (sample 5) having a thickness of 1.6 μm.

바이어스볼트(V)Bias bolt (V) 시간(분)Minutes 온도(℃)Temperature (℃) 비 고Remarks 1One 200200 2020 200∼250200-250 22 400400 2020 200∼350200-350 33 600600 4040 350∼410350-410 44 800800 4040 370∼480370-480 55 1,0001,000 2020 500∼600500-600 66 800800 4040 550∼580550-580 77 600600 4040 450∼550450-550 88 400400 2020 500∼550500-550 99 200200 2020 450∼460450-460

< 실시예 6 ><Example 6>

다시 진공챔버내의 진공도를 2.8×10-5∼2.1×10-6Torr로 만든 후 C:H Bond Gas 중에서 메탄 가스(CH4)를 주입하여이온으로 이온화시킨다.After making the vacuum degree in the vacuum chamber to 2.8 × 10 -5 to 2.1 × 10 -6 Torr, injecting methane gas (CH 4 ) in C: H Bond Gas Ionize with ions.

이때의 진공도를 4.1×10-3Torr로 셋팅하고, 표 6과 같은 조건에 의해 공구를 코팅하여 1.5㎛ 두께를 갖는 DLC 박막(시편 6)을 얻었다.The vacuum degree at this time is 4 . 1 × 10 −3 Torr was set and the tool was coated under the conditions shown in Table 6 to obtain a DLC thin film (Sample 6) having a thickness of 1.5 μm.

바이어스볼트(V)Bias bolt (V) 시간(분)Minutes 온도(℃)Temperature (℃) 비 고Remarks 1One 3,0003,000 2020 450∼500450-500 22 2,0002,000 4040 500∼550500-550 33 3,0003,000 2020 400∼500400-500 44 1,5001,500 1515 300∼350300-350 55 1,0001,000 4040 300∼350300-350

< 실시예 7 ><Example 7>

다시 진공챔버내의 진공도를 2.8×10-5∼2.8×10-7Torr로 만든 후 C:H Bond Gas 중에서 메탄 가스(CH4)를 주입하여이온으로 이온화시킨다.After making the vacuum degree in the vacuum chamber to 2.8 × 10 -5 ~ 2.8 × 10 -7 Torr, injecting methane gas (CH 4 ) in C: H Bond Gas Ionize with ions.

이때의 진공도를 4.9×10-4Torr로 셋팅하고, 표 7과 같은 조건에 의해 공구를 코팅하여 1.5㎛ 두께를 갖는 DLC 박막(시편 7)을 얻었다.The vacuum degree at this time is 4 . 9 × 10 −4 Torr was set and the tool was coated under the conditions shown in Table 7 to obtain a DLC thin film (Sample 7) having a thickness of 1.5 μm.

바이어스볼트(V)Bias bolt (V) 시간(분)Minutes 온도(℃)Temperature (℃) 비 고Remarks 1One 200200 1515 175175 22 1,8001,800 1515 200∼250200-250 33 200200 1515 200∼250200-250 44 300300 4040 230∼310230-310 55 200200 4040 230∼310230-310 66 1,8001,800 4040 280∼320280 to 320 77 300300 4040 260∼290260-290 88 200200 4040 260∼290260-290

상기와 같이 얻어진 7개의 시편을 이용하여 테스트한 결과가 표 8 및 표 9에 나타나 있다.The test results using the seven specimens obtained as described above are shown in Tables 8 and 9.

이때 사용한 기계는 미국 EXCELLON 社의 PCB용 드릴링 머신(최대 회전수 120,000 R.P.M)인 'EXCELLON '을 사용하였다.The machine used was 'EXCELLON', a drilling machine for PCB (Max. Rotation 120,000 R.P.M) of EXCELLON, USA.

이때, 가공조건은 5개의 축을 사용하였고, 분당회전수(R.P.M)은 92,000 으로 하였다.At this time, the processing conditions were 5 axes, and the revolutions per minute (R.P.M) was 92,000.

또한, 분당 가공 홀수는 190 bit/min, PCB는 6 Layer를 갖는 1.2t 짜리 MLB(Multy Layer Board; 다층기판) 3매를 축당 3매씩 적층하였다.In addition, three 1.2t MLBs (MULTI LAYER BOARDS) having 190 bits / min and PCB having 6 layers per minute were stacked three per axis.

또한, 평균 공구 수명은 2,000 비트 후 교환하였고, 드릴 비트 사이즈는 ψ 0 .4 ㎜, 로터 비트 사이즈는 ψ2 ㎜로 하였다.In addition, the average tool life was changed after 2,000 bits, and the drill bit size was? 0.4 mm, and the rotor bit size was? 2 mm.

범례 : ○ 양호, △ 보통, × 나쁨Legend: ○ Good, △ Normal, × Bad 시편및 상태비트Specimen and Status Bits 시편 1Psalm 1 시편 2Psalm 2 시편 3Psalm 3 시편 4Psalm 4 시편 5Psalm 5 시편 6Psalm 6 시편 7Psalm 7 비 고Remarks 공구상태Tool condition PCBBURR상태PCBBURR Status 공구상태Tool condition PCBBURR상태PCBBURR Status 공구상태Tool condition PCBBURR상태PCBBURR Status 공구상태Tool condition PCBBURR상태PCBBURR Status 공구상태Tool condition PCBBURR상태PCBBURR Status 공구상태Tool condition PCBBURR상태PCBBURR Status 공구상태Tool condition PCBBURR상태PCBBURR Status 2,0002,000 4,0004,000 6,0006,000 8,0008,000 10,00010,000 ×× 13,00013,000 ×× ×× ×× ×× ×× 15,00015,000 ×× ×× ×× ×× ×× ×× ××

범례 : ○ 양호, △ 보통, × 나쁨Legend: ○ Good, △ Normal, × Bad 시편및 상태구분Specimen and Status 시편 1Psalm 1 시편 2Psalm 2 시편 3Psalm 3 시편 4Psalm 4 시편 5Psalm 5 시편 6Psalm 6 시편 7Psalm 7 비 고Remarks 공구상태Tool condition PCBBURR상태PCBBURR Status 공구상태Tool condition PCBBURR상태PCBBURR Status 공구상태Tool condition PCBBURR상태PCBBURR Status 공구상태Tool condition PCBBURR상태PCBBURR Status 공구상태Tool condition PCBBURR상태PCBBURR Status 공구상태Tool condition PCBBURR상태PCBBURR Status 공구상태Tool condition PCBBURR상태PCBBURR Status 20 M/T20 M / T 25 '25 ' ×× ×× 30 '30 ' ×× ×× 35 '35 ' ×× ×× 40 '40 ' ×× ×× ×× ×× 45 '45 ' ×× ×× ×× ×× ×× ×× 50 '50 ' ×× ×× ×× ×× ×× ×× ×× 55 '55 ' ×× ×× 60 '60 ' ××

표 8에 나타난 바와 같이, 시편 4가 가장 우수한 드릴로 나타나고 있으며, 기존의 방법 대비 7배의 수명이 향상되는 것으로 나타났다.As shown in Table 8, Specimen 4 is shown to be the best drill, 7 times longer than the conventional method.

또한, 표 9에 나타난 바와 같이, 시편 6이 가장 우수한 비트로 나타났고, 기존의 방법 대비 최소 2배의 수명이 향상되는 것으로 나타났다.In addition, as shown in Table 9, Specimen 6 was found to be the best bit, and the service life was improved by at least twice as compared to the conventional method.

이상에서와 같이 본 발명에 의하면 저온에서 초경공구에 대한 코팅 작업이 이루어질 수 있으므로 특히 PCB용 드릴 비트 및 로터 비트와 같이 직경이 작은 초경재질 공구의 기계적 성질을 변화시키는 일이 없이 그 수명을 증대시킬 수 있는 효과가 있다.As described above, according to the present invention, since the coating work can be performed at a low temperature, the life of the carbide tool can be increased without changing the mechanical properties of the carbide tool having a small diameter such as a drill bit and a rotor bit for PCB. It can be effective.

또한, 초경재질 공구의 교체를 필요로 하지 않고 작업이 이루어짐에 의하여 작업성 및 생산성이 대폭 향상되는 효과가 있다.In addition, there is an effect that workability and productivity is greatly improved by the work is done without the need to replace the cemented carbide tool.

Claims (5)

드릴 비트 및 로터 비트와 같은 초경재질의 공구를 세정하는 단계와,Cleaning carbide tools such as drill bits and rotor bits, 상기 세정단계를 거친 공구 표면의 습기를 제거하는 단계와,Removing moisture from the tool surface which has been subjected to the cleaning step; 상기 습기제거단계를 거친 공구를 항온조에 투입하는 단계와,Injecting the tool that has undergone the dehumidification step into a thermostat, 상기 항온조투입단계를 거친 공구를 진공챔버내에서 아르곤(Ar) 이온을 이용하여 세정하는 단계와,Cleaning the tool having undergone the incubation step using argon (Ar) ions in a vacuum chamber, 상기 이온세정단계를 거친 공구에 다이아몬드상 카본 박막을 코팅시키는 단계로 이루어지는 것을 특징으로 하는 드릴 비트 및 로터 비트에 대한 다이아몬드상 카본 코팅 방법.Diamond-like carbon coating method for the drill bit and the rotor bit, characterized in that the step of coating a diamond-like carbon thin film on the tool that has undergone the ion cleaning step. 제 1항에 있어서, 상기 세정단계는 공구를 알칼리 세제에서 세정한 후 순수로 세정하는 단계와, 순수로 초음파 세정하는 단계와, 메탄올로 초음파 세정하는 단계와, 발탄으로 초음파 세정하는 단계로 이루어지는 것을 특징으로 하는 드릴 비트 및 로터 비트에 대한 다이아몬드상 카본 코팅 방법.The method of claim 1, wherein the cleaning step comprises the steps of washing the tool in an alkaline detergent followed by washing with pure water, ultrasonic cleaning with pure water, ultrasonic cleaning with methanol, and ultrasonic cleaning with ballistics. Diamond diamond coating method for drill bit and rotor bit characterized in that. 제 1항에 있어서, 상기 습기제거단계에서는 질소 가스로 공구 표면을 히트 블로워하는 것을 특징으로 하는 드릴 비트 및 로터 비트에 대한 다이아몬드상 카본 코팅 방법.The method of claim 1, wherein in the dehumidification step, the diamond-like carbon coating method for the drill bit and the rotor bit, characterized in that the heat blow the tool surface with nitrogen gas. 제 1항에 있어서, 상기 항온조투입단계에서는 공구를 2차에 걸쳐 항온 처리하는 것을 특징으로 하는 드릴 비트 및 로터 비트에 대한 다이아몬드상 카본 코팅 방법.The method of claim 1, wherein in the incubation step, the diamond-like carbon coating method for the drill bit and the rotor bit, characterized in that the tool is incubated in two times. 제 1항에 있어서, 상기 이온세정단계에서의 진공도는 2.7×10-4Torr로 유지하는 것을 특징으로 하는 드릴 비트 및 로터 비트에 대한 다이아몬드상 카본 코팅 방법.The method of claim 1, wherein the vacuum degree in the ion washing step is a diamond-like carbon coating method for the drill bit and the rotor bit, characterized in that to maintain 2.7 × 10 -4 Torr.
KR1019990032755A 1999-08-10 1999-08-10 Method for diamond like carbon coating to drill bit and router bit KR100311940B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990032755A KR100311940B1 (en) 1999-08-10 1999-08-10 Method for diamond like carbon coating to drill bit and router bit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990032755A KR100311940B1 (en) 1999-08-10 1999-08-10 Method for diamond like carbon coating to drill bit and router bit

Publications (2)

Publication Number Publication Date
KR20010017307A KR20010017307A (en) 2001-03-05
KR100311940B1 true KR100311940B1 (en) 2001-11-14

Family

ID=19606703

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990032755A KR100311940B1 (en) 1999-08-10 1999-08-10 Method for diamond like carbon coating to drill bit and router bit

Country Status (1)

Country Link
KR (1) KR100311940B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220060062A (en) 2020-11-03 2022-05-11 한국생산기술연구원 Low-friction and long-span drill bit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272045A (en) * 1993-03-18 1994-09-27 Idemitsu Petrochem Co Ltd Method for heat-treating base material and production of diamond-coated member
JPH08243804A (en) * 1995-03-10 1996-09-24 Mitsubishi Materials Corp Diamond coated cemented-carbide-made cutting tool excellent in resistance against cutting damage
KR960040080A (en) * 1995-04-28 1996-11-25 민병성 Diamond coating method of speaker diaphragm and its device
KR970070236A (en) * 1996-04-26 1997-11-07 박원훈 Diamond coating method of carbide tools
KR19980034467A (en) * 1996-11-07 1998-08-05 우덕창 Method of manufacturing diamond-coated cemented carbide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272045A (en) * 1993-03-18 1994-09-27 Idemitsu Petrochem Co Ltd Method for heat-treating base material and production of diamond-coated member
JPH08243804A (en) * 1995-03-10 1996-09-24 Mitsubishi Materials Corp Diamond coated cemented-carbide-made cutting tool excellent in resistance against cutting damage
KR960040080A (en) * 1995-04-28 1996-11-25 민병성 Diamond coating method of speaker diaphragm and its device
KR970070236A (en) * 1996-04-26 1997-11-07 박원훈 Diamond coating method of carbide tools
KR19980034467A (en) * 1996-11-07 1998-08-05 우덕창 Method of manufacturing diamond-coated cemented carbide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220060062A (en) 2020-11-03 2022-05-11 한국생산기술연구원 Low-friction and long-span drill bit

Also Published As

Publication number Publication date
KR20010017307A (en) 2001-03-05

Similar Documents

Publication Publication Date Title
CN101517127B (en) Coated cutting tool
US7732066B2 (en) Surface-coated machining tools
EP2295616B1 (en) Hard coating layer and method for forming the same
EP0199527B2 (en) A process for the production of a surface-coated article
JP2004308008A (en) Cutting tool and method for manufacturing the same
CN106086886A (en) A kind of self-lubricating titanium diboride/diamond-like coating and its preparation method and application
CN114231926B (en) Coating capable of prolonging service life of cutting tool and preparation method thereof
KR100311940B1 (en) Method for diamond like carbon coating to drill bit and router bit
CN107012424B (en) TiZrB2Hard coating and preparation method and application thereof
US6592726B1 (en) Vacuum arc evaporation method, vacuum arc evaporation system, and rotary cutting tool
CN1116451C (en) Method of removing hard carbon film formed on inner circumferential surface of guide bush
KR100533070B1 (en) Method for increasing wear-resistibility of metal products using plasma ion implantation method
JP3519260B2 (en) Hard member coated with diamond film with excellent peel resistance
JP2011131347A (en) Diamond-coated cemented carbide cutting tool
JP4106934B2 (en) Tool film forming apparatus and film forming method
JP2010531242A (en) Cutting tool with plasma deposited carbon coating
KR100655116B1 (en) The coating substrate as cutting tool having excellent surface roughness and a method of thereof
JP2010172972A (en) Cutting tool
KR20160044082A (en) Cutting tools coated with diamond, method of coating diamond for cutting tools and apparatus for the method
TWI650876B (en) Groove machining tool and scoring device with the same
JP2005335040A (en) Surface coating cutting tool
CN114959574A (en) CrAlN coating of PCB milling cutter and processing method thereof
CN111910169B (en) Cutter with conductive diamond coating and preparation method thereof
Czarniak et al. Initial Study of the Effect of Some PVD Coatings TiN/AlTiN” and “TiAlN/aC: N”) on the Wear Resistance of Wood Drilling Tools. Forests 2022, 13, 286
CN117836078A (en) Cladding tool

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee