KR100310039B1 - Photo semiconductive composite ceramics and the manufacturing method - Google Patents

Photo semiconductive composite ceramics and the manufacturing method Download PDF

Info

Publication number
KR100310039B1
KR100310039B1 KR1019990009735A KR19990009735A KR100310039B1 KR 100310039 B1 KR100310039 B1 KR 100310039B1 KR 1019990009735 A KR1019990009735 A KR 1019990009735A KR 19990009735 A KR19990009735 A KR 19990009735A KR 100310039 B1 KR100310039 B1 KR 100310039B1
Authority
KR
South Korea
Prior art keywords
sol
silver
composite ceramics
sio
tio
Prior art date
Application number
KR1019990009735A
Other languages
Korean (ko)
Other versions
KR20000012172A (en
Inventor
전형탁
Original Assignee
전형탁
(주)바이오세라
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전형탁, (주)바이오세라 filed Critical 전형탁
Priority to KR1019990009735A priority Critical patent/KR100310039B1/en
Publication of KR20000012172A publication Critical patent/KR20000012172A/en
Application granted granted Critical
Publication of KR100310039B1 publication Critical patent/KR100310039B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint

Abstract

본 발명은 광반도성 복합 세라믹스와 그 제조방밥에 관한 것으로, Ti[OCH(CH3)2]4와 (CH3)2CHOH로 제조한 TiO2sol 0.57mol/ℓ, C8H20O4Si와 (CH3)2CHOH로 제조한 SiO2sol 0.44mol/ℓ, Zn(C2H3O3)2로부터 제조한 ZnO sol 0.5mol/ℓ그리고 Silver를 각각 제조하여 이를 중량대비 TiO2sol, SiO2sol, ZnO sol와 Silver로 복합 처리한 수용액 또는 분말 상태로 이루어짐으로써, 항균, 탈취, 대기·수질 오염물질의 분해, 원적외선 방사 및 자외선 차단 등의 복합적 기능을 발휘하는 광반도성 복합 세라믹스를 수십 나노미터 크기의 미립자로 제조하여, 이것을 섬유류, 요염제품류 및 수지(플라스틱)류 등 산업분야 및 실생활에 적용함으로써 기능의 지속성, 내열성, 안정성 등을 증진시킬 수 있는 효과가 있다.The present invention relates to a light semiconducting composite ceramics and a manufacturing method thereof, wherein TiO 2 sol 0.57 mol / L made of Ti [OCH (CH 3 ) 2 ] 4 and (CH 3 ) 2 CHOH, C 8 H 20 O 4 0.44 mol / l SiO 2 sol prepared from Si and (CH 3 ) 2 CHOH, 0.5 mol / l ZnO sol prepared from Zn (C 2 H 3 O 3 ) 2 , and Silver, respectively, and prepared TiO 2 sol by weight , Which is composed of aqueous solution or powder in combination with SiO 2 sol, ZnO sol and Silver, exhibits complex functions such as antibacterial, deodorization, decomposition of air and water pollutants, far infrared radiation and UV protection. It is made of fine particles of several tens of nanometers size, and it is applied to industrial fields and real life such as fibers, gloss products and resins (plastics) has the effect of improving the durability, heat resistance, stability and the like.

Description

광반도성 복합 세라믹스와 그 제조방법{Photo semiconductive composite ceramics and the manufacturing method}Photo semiconductive composite ceramics and the manufacturing method

[산업상 이용분야][Industrial use]

본 발명은 광반도성 복합 세라믹스와 그 제조방법에 관한 것으로, 특히 항균, 탈취, 대기·수질 오염물질의 분해, 원적외선 방사 및 자외선 차단 등의 복합적 기능을 발휘할 수 있도록 한 광반도성 복합 세라믹스와 그 제조방법에 관한 것 이다.BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to a light semiconducting composite ceramic and a method for manufacturing the same. Particularly, a light semiconducting composite ceramic and a compound having such a function as antibacterial, deodorization, decomposition of air and water pollutants, far-infrared radiation, and UV protection are provided It is about a manufacturing method.

[종래 기술][Prior art]

일반적으로 섬유 및 제지류, 페인트, 식품용기, 포장필름 등의 수지류에 세라믹스 미분말을 함침시키는 것에 의해 항균작용, 탈취작용, 원적외선 방사특성으로 자외선차단 및 각종 세균으로부터의 보호, 신선도 증진, 환경오염방지에 큰 역할을 하고 있다.Generally, impregnating fine powders of ceramics into resins such as textiles, paper, paint, food containers, packaging films, etc., to protect against UV rays and various bacteria, improve freshness, and prevent environmental pollution by antibacterial, deodorizing and far-infrared radiation characteristics. Plays a big role in.

이러한 특성을 갖는 세라믹스로서는 광촉매 역할을 하는 것으로서 TiO2가 잘 알려져 있으며 항균성, 자외선 조사에 의한 자동차 배기가스와 대기 중의 NOx,SOx의 분해 및 정화, 농약 및 유기염소 화합물로 오염된 토양의 정화, 병원 및 공공장소에서의 공조설비에 장착함으로써 살균, 탈취에 크게 효과적이며 또 ZnO는 자외선 흡수효과가 매우 커서 자외선 차단제로 크게 기대되는 세라믹 쟤료이며 SiO2, Al2O3등도 역시 원적외선을 대량 방출하는 특성이 있다.As ceramics having such characteristics, TiO 2 is well known as a photocatalyst and has antibacterial properties, decomposition and purification of NOx and SOx in automobile exhaust gases and air by UV irradiation, purification of soil contaminated with pesticides and organic chlorine compounds, and hospitals. It is very effective for sterilization and deodorization because it is installed in air conditioning facilities in public places and ZnO is a ceramic material that is expected to be a great sunscreen due to its high UV absorption effect, and SiO 2 and Al 2 O 3 also emit far infrared rays in large quantities. There is this.

[종래기술의 문제점][Problems with Prior Art]

그 동안 국내, 외에서 초미립자를 제조하는 방법으로는 분무 변환법, 축합 공침법 등(한국특허공고 93-10558, 96-2416) 다양한 방법이 있고, 나노 미립자로 항균성, 자외선 차단 등의 단독 기능만을 발휘(미국특허 5180585)하거나, 원적외선 방사와 항균성 등 복합기능을 발휘하지만 입자경이 수 마이크로미터(일본특허공개평9-77620, 한국특허공고 93-8252,96-3672) 등의 선행기술은 있지만 복합기능을 발휘하면서 수십 나노미터 크기의 초미세 분말을 얻지 못하는 문제점이 있었다.In the meantime, there are various methods of manufacturing ultra-fine particles in Korea and abroad (spray conversion method, condensation coprecipitation method, etc.) (Korean Patent Publication 93-10558, 96-2416), and nanoparticles exhibit only antimicrobial activity and UV protection alone. US Pat. No. 51,805,85) or a combination of far-infrared radiation and antimicrobial properties, but the prior art, such as a few micrometers (Japanese Patent Application Laid-Open No. 9-77620, Korean Patent Publication No. 93-8252,96-3672), has multiple functions. Exercising there was a problem that can not obtain ultra-fine powder of several tens of nanometers size.

따라서 이와 같은 문제점을 해결하기 위해서는 세라믹스의 복합기능 발현을 위한 세라믹스 성분의 최적조성과 나노 미립자화는 더욱 연구개발이 요구되며, 특히 세라믹스를 섬유 등에 적용시킬 때 분말의 응집 등에 관한 문제가 해결된다면 섬유방사시 사절(絲絶)문제도 없으면서, binder 없이 후처리 가공도 가능한 고부가가치의 제품이 개발될 수 있으리라 생각된다.Therefore, in order to solve such a problem, the optimum composition and nano-particulation of ceramic components for the expression of complex functions of ceramics are required for further research and development. It is thought that a high value-added product can be developed without post-treatment problems without spinning, and can be processed after binder without binder.

[발명의 목적][Purpose of invention]

이에 본 발명은 상기한 바와 같은 제문제점을 해결하기 위해 안출된 것으로서 복합기능발현을 위한 세라믹스 성분의 최적조성과 나노 미립화에 대한 기술로서항균, 탈취, 자외선 차단, 원적외선 방사율 등이 90% 이상을 보이는 나노사이즈의 광반도성 복합 세라믹스와 그의 제조방법을 제공하는데 그 목적이 있다.Accordingly, the present invention has been made to solve the problems described above, and as a technique for the optimum composition and nano-atomization of the ceramic component for complex function expression, antibacterial, deodorization, UV blocking, far infrared emissivity, etc. shows more than 90% An object of the present invention is to provide a nanosized optically-conductive composite ceramics and a method of manufacturing the same.

[목적을 달성하기 의한 수단][Means by achieving purpose]

상기한 바와 같은 목적을 달성하기 위한 본 발명에 따른 광반도성 복합 세라믹스와 그 제조방법은 Titanium isopropoxide(Ti[OCH(CH3)2]4)와 Isopropyl alcohol((CH3)2CHOH)로 제조한 TiO2sol 0.5mol/ℓ, Tetraethyl orthosilicate Tetraethoxysilane(C8H20O4Si)와 Isopropyl alcohol((CH3)2CHOH)로 제조한 SiO2sol 0.44mol/ℓ, Zn acetate(Zn(C2H3O2)2)로부터 제조한 ZnO sol 0.5mol/ℓ 그리고 Silver를 각각 제조하여 이를 중량대비 TiO2sol, SiO2sol, ZnO sol와 Silver로 복합 처리한 수용액 또는 분말 상태로 이루어짐과 방법을 특징으로 한다.Optical semiconducting composite ceramics and a method for manufacturing the same according to the present invention for achieving the object as described above are prepared with Titanium isopropoxide (Ti [OCH (CH 3 ) 2 ] 4 ) and Isopropyl alcohol ((CH 3 ) 2 CHOH) 0.52 mol / l TiO 2 sol, 0.44 mol / l SiO 2 sol prepared with tetraethyl orthosilicate Tetraethoxysilane (C 8 H 20 O 4 Si) and Isopropyl alcohol ((CH 3 ) 2 CHOH), Zn acetate (Zn (C 2 ZnO sol 0.5 mol / L and Silver prepared from H 3 O 2 ) 2 ) and Silver respectively prepared by TiO 2 sol, SiO 2 sol, ZnO sol and silver solution solution or powder form It features.

발명이 이루고자 하는 기술적 과제 누락Missing technical challenges for invention

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명에 따른 광반도성 복합 세라믹스는 Titanium isopropoxide {Ti[OCH(CH3)2]4}와 Isopropyl alcohol [(CH3)2CHOH]로 제조한 TiO2sol 0.57mol/ℓ, Tetraethyl orthosilicate Tetraethoxysilane (C8H20O4Si)와 Isopropyl alcohol [(CH3)2CHOH]로 제조한 SiO2sol 0.44mol/ℓ, Zn acetate [Zn(C2H3O2)2]로부터 제조한 ZnO sol 0.5mol/ℓ그리고 Silver (Ag)용액을 각각 제조하여 이를 중량대비 TiO2sol, SiO2sol, ZnO sol와 Silver 용액으로 복합 처리한 수용액 또는 분말 상태로 이루어짐을 특징으로 한다.The optical semiconducting composite ceramics according to the present invention are made of titanium dioxide isopropoxide {Ti [OCH (CH 3 ) 2 ] 4 } and isopropyl alcohol [(CH 3 ) 2 CHOH], TiO 2 sol 0.57 mol / l, tetraethyl orthosilicate Tetraethoxysilane ( SiO 2 sol 0.44 mol / l prepared with C 8 H 20 O 4 Si) and Isopropyl alcohol [(CH 3 ) 2 CHOH], ZnO sol 0.5 prepared from Zn acetate [Zn (C 2 H 3 O 2 ) 2 ] It is characterized in that the mol / ℓ and Silver (Ag) solution is prepared by the aqueous solution or powder in combination with the TiO 2 sol, SiO 2 sol, ZnO sol and Silver solution by weight.

여기서, 이를 중량대비 TiO2sol 50%, SiO2sol 40%, ZnO sol 9% 와 Silver 1% 비율로 복합 처리한 수용액 또는 분말 상태로 이루어짐을 특징으로 한다.Here, it is characterized in that it consists of an aqueous solution or powder state of the composite treatment in a ratio of TiO 2 sol 50%, SiO 2 sol 40%, ZnO sol 9% and Silver 1% by weight.

한편, 본 발명에 따른 광반도성 복합 세라믹스 제조방법은 Titanium isopropoxide {Ti[OCH(CH3)2]4}와 Isopropyl alcohol [(CH3)2CHOH]로 제조한 TiO2sol 0.57mol/ℓ, Tetraethyl orthosilicate Tetraethoxysilane (C8H20O4Si)와 Isopropyl alcohol [(CH3)2CHOH]로 제조한 SiO2sol 0.44mol/ℓ, Zn acetate [Zn(C2H3O2)2]로부터 제조한 ZnO sol 0.5mol/ℓ그리고 Silver (Ag)용액을 각각 제조하여 이를 중량대비 TiO2sol, SiO2sol, ZnO sol와 Silver 용액으로 복합 처리한 수용액 또는 분말 상태로 제조함을 특징으로 한다.On the other hand, the manufacturing method of the optical semiconducting composite ceramics according to the present invention, TiO 2 sol 0.57 mol / l made of titanium isopropoxide {Ti [OCH (CH 3 ) 2 ] 4} and Isopropyl alcohol [(CH 3 ) 2 CHOH], Prepared from SiO 2 sol 0.44 mol / l, Zn acetate [Zn (C 2 H 3 O 2 ) 2 ], made of tetraethyl orthosilicate Tetraethoxysilane (C 8 H 20 O 4 Si) and Isopropyl alcohol [(CH 3 ) 2 CHOH] A ZnO sol 0.5mol / ℓ and a silver (Ag) solution is prepared, respectively, characterized in that the TiO 2 sol, SiO 2 sol, ZnO sol and a solution in the form of an aqueous solution or powder complex treatment with a silver solution.

또한, 이를 중량대비 TiO2sol 50%, SiO2sol 40%, ZnO sol 9%와 Silver 1% 비율로 복합 처리한 수용액 또는 분말 상태로 제조함을 특징으로 한다.In addition, it is characterized in that the TiO 2 sol 50% by weight, SiO 2 sol 40%, ZnO sol 9% and silver 1% of the composite treatment in the aqueous solution or powder state characterized in that it is prepared.

여기서, 상기 수용액 또는 분말 상태를 수지류, 섬유류, 세라믹, 숯, 키토산, 유리, 도료, 종이 등에 코팅 또는 첨가하여 화합물을 제조함을 특징으로 한다.상기한 바와 같은 구성으로 이루어진 본 발명에 따른 광반도성 복합세라믹스의 제조방법은 TiO2, SiO2, ZnO 등 금속 또는 금속염 중 1종 이상의 금속 또는 금속염을 물, 벤젠, 알콜, 염산, 질산, 암모니아, 과산화수소 중 1종 이상과 반응시켜 각각의 sol을 제조하는 제1의 단계와 이어서 상기한 금속 또는 금속염에 Ag, Zn, Cu 중 1종 이상의 금속이온을 담지하는 제2의 단계, 그리고 상기 금속이온을 첨가한 상기 금속염의 복합세라믹스 조성물을 만드는 제3의 단계로 이루어진다.이렇게 제조된 광반도성 복합세라믹에 대하여 투과전자현미경(Model. CM-12/3TEM, Philps, Netherlend)과 주사전자현미경(Model. DS-13-S, Akashi, Japan)을 사용하여 입자의 형태 및 크기를 관찰한 결과 모두 구형에 가까운 입자형태를 이루고 있었으며, 수용액의 경우 5~20nm의 초미세입자가 고르게 분포되어 있으며, 분말의 경우 10~1,000nm이하의 초미립자로 5~20nm의 1차입자들이 약한 응집상태로 관찰되었다.Herein, the aqueous solution or powder is coated or added to resins, fibers, ceramics, charcoal, chitosan, glass, paint, paper, etc. to prepare a compound. The light according to the present invention having the above-described configuration The method for preparing a semiconducting composite ceramics is obtained by reacting at least one metal or metal salt among metals or metal salts such as TiO 2 , SiO 2 , ZnO with at least one of water, benzene, alcohol, hydrochloric acid, nitric acid, ammonia, and hydrogen peroxide. A first step of preparing a second step followed by a second step of supporting at least one metal ion of Ag, Zn, Cu on the metal or metal salt, and a method of preparing a composite ceramic composition of the metal salt to which the metal ion is added The optical semiconducting composite ceramics thus prepared were subjected to transmission electron microscopy (Model. CM-12 / 3TEM, Philps, Netherlend) and scanning electron microscopy (Model. DS-13-S, Akashi, As a result of observing the shape and size of the particles using Japan), all of them were in the form of particles that are almost spherical.In the case of aqueous solution, the ultrafine particles of 5-20nm are evenly distributed, and in the case of powder, the ultrafine particles of 10 ~ 1,000nm or less Primary particles of 5 to 20 nm were observed in weak aggregates.

[실시예]EXAMPLE

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예1Example 1

본 발명의 실시예1은 상기한 광반도성 복합 세라믹스를 면섬유에 함침시켜 광반도성 섬유(실시예)를 제조하였다.In Example 1 of the present invention, the optical semiconducting composite ceramics were impregnated into cotton fibers to prepare optical semiconducting fibers (Example).

이렇게 제조한 광반도성 섬유의 항균효과 원적외선 방사효과를 일반 면섬유(비교예)와 다음과 같은 조건으로 시험을 실시하였다.1. 항균(세균사멸)효과 시험The antimicrobial effect of the optical semiconducting fiber thus prepared was tested under the following conditions with general cotton fiber (Comparative Example). Antibacterial (bacterial killing) effect test

가. 시험기기 : ① Clean Bench (덕우과학, 한국)② Colony Counter (덕우과학, 한국)③ Incubater (덕우과학, 한국)end. Test equipment: ① Clean Bench (Deokwoo Science, Korea) ② Colony Counter (Deokwoo Science, Korea) ③ Incubater (Deokwoo Science, Korea)

나. 시험방법 : 진탕배양법 (Shake Flask Method)다. 시험조건 :① 시험조건 : 시험균액을 25℃에서 24 hr 진탕배양 후 균수측정(진탕횟수 150회/분)② 시료표면적 : 60㎠③ 사용공시균주 :Escherichia coli(ATCC 25922)라. 시험결과 : 결과는 아래와 같이 99.8%의 항균력을 보이는 것을 알 수 있으며, 이것으로 광반도성 복합 세라믹스의 항균효과가 충분히 발휘되고 있다는 것을 확인할 수 있다.I. Test Method: Shake Flask Method. Test condition: ① Test condition: Test bacteria after incubation at 25 ℃ for 24 hr shaking culture (Bubble count 150 times / minute) ② Sample surface area: 60㎠ ③ Application strain: Escherichia coli (ATCC 25922). Test Results: The results show that 99.8% of the antimicrobial activity as shown, which can be seen that the antimicrobial effect of the photoconductive composite ceramics is fully exhibited.

2. 원적외선방사 시험가. 시험방법 및 조건실시예와 비교예에 대하여 37℃에서 FT-IR Spectrpmeter를 이용한 Black Body대비 원적외선 방사율을 측정하였다.나. 시험결과 : 2. Far-infrared radiation test Test Methods and Conditions For Examples and Comparative Examples, far-infrared emissivity was measured at 37 ° C. using a FT-IR Spectrpmeter. Test result :

실시예2Example 2

본 발명의 실시예2는 상기한 광반도성 복합 세라믹을 도자기 유약에 분말과 수용액상태로 첨가하여 항균특성을 조사하였다.In Example 2 of the present invention, the antimicrobial properties were investigated by adding the optical semiconducting composite ceramic to the porcelain glaze in the form of powder and aqueous solution.

도자기 유약의 4wt%에 상당하는 광반도성 복합 세라믹을 수용액상태로 유약에 첨가하고 1,300℃로 소성하여 도자기를 제조하였고 다음과 같은 조건에서 항균성 실험을 실시하였다.Photoconductive composite ceramics equivalent to 4wt% of porcelain glaze were added to the glaze in aqueous solution and calcined at 1,300 ° C. to prepare porcelain, and antimicrobial experiments were conducted under the following conditions.

가. 시험기기 : ① Clean Bench (덕우과학, 한국)② Colony Counter (덕우과학, 한국)③ Incubater (덕우과학, 한국)나. 시험방법 : 가압밀착법다. 시험조건 :① 시험조건 : 시험균액을 25℃에서 24 hr 정치배양 후 균수측정end. Test equipment: ① Clean Bench (Deokwoo Science, Korea) ② Colony Counter (Deokwoo Science, Korea) ③ Incubater (Deokwoo Science, Korea) b. Test Method: Pressurization Test condition: ① Test condition: Test bacteria after incubation for 24 hr at 25 ℃

② 시료표면적 : 60㎠② Sample surface area: 60㎠

③ 사용공시균주 : 균주1.Escherichia coli(ATCC 43895)③ Used strain: Strain 1. Escherichia coli (ATCC 43895)

균주2.Bacillus megatherium(ATCC 10778)Strain 2. Bacillus megatherium (ATCC 10778)

라. 시험결과 : 결과는 아래와 같이 98.5%의 멸균율을 보이며, 이러한 결과로부터 도자기나 타일에 광반도성 복합 세라믹스를 사용하는 경우에는 도자기나 타일의 제조공정상 분말이든 수용액이든 커다란 차이가 없음을 알 수 있다.la. Test Result: The result shows the sterilization rate of 98.5%. From these results, it can be seen that there is no significant difference in the manufacturing process of porcelain or tile, whether powder or aqueous solution, when using photoconductive composite ceramics. .

실시예3Example 3

본 발명의 실시예3은 광반도성 복합 세라믹 분말의 광화학 반응의 효율을 측정하기 위하여 다량의 부유물질을 포함한 담갈색의 염류폐수를 이용하여 COD, BOD, 색도의 분해반응 정도를 측정하여 대상물질의 광화학 반응 정도를 측정하였다.Example 3 of the present invention measures the decomposition reaction of COD, BOD, chromaticity by using light brown salt wastewater containing a large amount of suspended solids to measure the photochemical reaction efficiency of the photoconductive composite ceramic powder. The degree of photochemical reaction was measured.

가. 시험기기 :① COD자동측정기 (Model CE-UV100N, 정엔지니어링, 한국)② BOD자동측정기 (Model SP100, SKALAR,NETHERLANDS)③ UV식 수질오탁도 검사장치 (Model PL-18, 썬엔지니어링, 한국)나. 시험방법 :자외선 램프가 내장된 반응기(Batch type)에 원수를 여과지를 이용하여 여과한 여과수에 대하여 광반도성 복합 세라믹스 분말을 투입하여 교반하였다. 이후 황산을 이용하여 원수의 pH를 6.79에서 3.0으로 조절하였으며, 시간의 경과에 따른 CODMn, BOD, 색도의 변화를 측정하였다.다. 원수의 성상 - 다량의 부유물질을 포함한 담갈색의 염류폐수① CODMn: 220.0ppmend. Test equipment: ① COD automatic measuring machine (Model CE-UV100N, Jeong Engineering, Korea) ② BOD automatic measuring machine (Model SP100, SKALAR, NETHERLANDS) ③ UV water turbidity tester (Model PL-18, Sun Engineering, Korea) . Test Method: The optical semiconducting composite ceramic powder was added to the filtrate filtered from the filter paper using a filter paper and stirred in a reactor (Batch type) in which an ultraviolet lamp was built. Since the pH of raw water was adjusted from 6.79 to 3.0 using sulfuric acid, the change of COD Mn , BOD, chromaticity over time was measured. Characteristics of Raw Water-Light Brown Salt Wastewater Containing Large Amount of Suspended Matter ① COD Mn : 220.0ppm

② BOD : 161.25PPM② BOD: 161.25PPM

③ 색도 : 9,134.98도라. 시험결과 : ③ Chromaticity: 9,134.98 degrees. Test result :

실시예4Example 4

본 발명의 실시예4는 상기한 광반도성 복합세라믹스 수용액을 형광램프에 코팅 처리하여 이 코팅처리 된 형광램프(실시예)와 일반형광램프(비교예)의 광촉매 작용에 의한 탈취효과, 방오효과 및 항균효과를 비교하였다.In Example 4 of the present invention, the optical semiconductive composite ceramics solution is coated on a fluorescent lamp to deodorize and antifouling effect by the photocatalytic action of the coated fluorescent lamp (example) and a general fluorescent lamp (comparative example). And antimicrobial effect.

1. 탈취(악취제거)효과 시험1. Deodorization (odor removal) effect test

가. 시험 기기 :① Gas Detector Pump (Model 801, GASTEC Co, Japan)end. Tester: ① Gas Detector Pump (Model 801, GASTEC Co, Japan)

② Gas Tube (No.92, GASTEC Co, Japan)③ 밀폐 BOX (25 ×25 ×65㎤)② Gas Tube (No.92, GASTEC Co, Japan) ③ Sealed BOX (25 × 25 × 65cm 3)

나. 시험 방법 : 가스검지관법밀폐 BOX內에 악취발생원인인 아세트알데히드를 주입한 후, 측정하여 초기농도가 1000ppm이 되도록 하고, 램프를 점등하여 시간이 경과됨에 따른 아세트알데히드의 농도 변화를 측정하였다.I. Test method: After acetic aldehyde was injected into the gas detection tube sealed box 측정, the initial concentration was 1000ppm, and the lamp was turned on to measure the change of acetaldehyde concentration over time.

다. 시험 조건 : ① 실내온도 : 25 ± 2℃All. Test condition: ① Room temperature: 25 ± 2 ℃

② 상대습도 : 25 ± 2%② Relative Humidity: 25 ± 2%

③ Sample양 : FL 20S EX-D/18 ×3개③ Sample quantity: FL 20S EX-D / 18 × 3

라. 시험 결과 :la. Test result :

2. 방오(오염물질 분해)효과 시험2. Antifouling (pollutant decomposition) effect test

가. 시험 기기 : 휘도계 (Model BM-7, TOPCON Co, JAPAN)end. Test instrument: Luminometer (Model BM-7, TOPCON Co, JAPAN)

나. 시험 방법 :램프를 점등한 상태에서 측정한 값을 최대휘도로 하고, 램프 표면에 오염물질(적색잉크)을 도포한 후 측정한 휘도를 초기휘도로 하여 시간경과에 따른 휘도의 변화를 측정, 오염물질의 분해율을 구한다.I. Test method: Measure the change in luminance over time by using the value measured with the lamp turned on as the maximum brightness, applying contaminant (red ink) to the surface of the lamp, and using the measured brightness as the initial brightness. Find the decomposition rate of the substance.

다. 시험조건 : ① 실내온도 : 25 ± 2℃All. Test condition: ① Room temperature: 25 ± 2 ℃

② 상대습도 : 55 ±5%② Relative Humidity: 55 ± 5%

③ Sample양 : FL 20S EX-D/18 × 1개③ Sample quantity: FL 20S EX-D / 18 × 1

라. 시험결과la. Test result

3. 항균(세균사멸)효과 시험3. Antibacterial (bacterial killing) effect test

가. 시험 기기 : ① Clean Bench (덕우과학, 한국)end. Test equipment: ① Clean Bench (Dukwoo Science, Korea)

② Colony Counter (덕우과학, 한국)② Colony Counter (Dukwoo Science, Korea)

③ Incubater (덕우과학, 한국)③ Incubater (Dukwoo Science, Korea)

나. 시험 방법 : 광반도성 복합세라믹스가 코팅된 배양접시(실시예)에 10㎖의 대장균을 담아 자외선 강도 0.5mW/㎠의 형광램프를 조사하여 시간대별 세균의 사멸율을 측정하고, 광촉매가 코팅 안된 배양접시(비교예)에 대해서도 동일 방법으로 비교 측정하였다.I. Test method: 10 ml of E. coli was added to a culture plate coated with a photo-semiconductor composite ceramics (Example) and irradiated with a fluorescent lamp having a UV intensity of 0.5 mW / cm 2 to measure the mortality rate of bacteria at each time interval, and the photocatalyst was not coated. The culture dish (comparative example) was also measured and compared in the same manner.

다. 시험 조건 :① 시험조건 : 시험균액을 25℃에서 24 hr 정치배양 후 균수측정② 사용공시균주 :Escherichia Coli(ATCC 25922)All. Test condition: ① Test condition: Test bacteria after incubation at 25 ℃ for 24 hr. ② Test strain: Escherichia Coli (ATCC 25922)

라. 시험 결과la. Test result

본 발명의 실시예에서도 실시예 1, 2, 3과 마찬가지로 광반도성 복합 세라믹스의 광촉매 효능은 항균, 탈취, 방오에 상당한 효능이 있음을 알 수 있다.As in Examples 1, 2, and 3 of the present invention, it can be seen that the photocatalytic efficacy of the optical semiconducting composite ceramics has significant effects on antibacterial, deodorizing, and antifouling.

실시예5Example 5

본 발명의 실시예5는 상기한 광반도성 복합세라믹스를 섬유에 처리하였을 때 섬유의 광촉매 효능으로 인한 탈취, 방오효과 및 항균효과를 시험하였다.Example 5 of the present invention tested the deodorization, antifouling effect and antibacterial effect due to the photocatalytic effect of the fiber when the optical semiconductive composite ceramics described above.

표5. 섬유의 광화학 반응 처리결과Table 5. Photochemical reaction process result of fiber

본 발명의 실시예5에서도 실시예 1, 2, 3, 4와 마찬가지로 광반도성 복합 세라믹스를 섬유에 처리하였을 때 광화학 반응 처리결과가 90%로 우수하게 나왔다.In Example 5 of the present invention, as in Examples 1, 2, 3, and 4, when the photoconductive composite ceramics were treated to the fiber, the photochemical reaction result was excellent as 90%.

이상에서 설명한 바와 같이 본 발명에 따른 광반도성 복합 세라믹스와 그 제조방법은 항균, 탈취, 대기·수질 오염물질의 분해, 원적외선 방사 및 자외선 차단등의 복합적 기능을 발휘하는 광반도성 복합 세라믹스를 수십 나노미터 크기의 미립자로 제조하여, 이것을 섬유류, 요업제품류 및 수지(플라스틱)류 등 산업분야 및 실생활에 적용함으로써 기능의 지속성, 내열성, 안정성 등을 증진시킬 수 있는 효과가 있다.As described above, the optical semiconducting composite ceramics and the method of manufacturing the same according to the present invention have several dozens of optical semiconducting composite ceramics exhibiting complex functions such as antibacterial, deodorization, decomposition of air and water pollutants, far-infrared radiation and UV blocking. It is made of nanometer-sized fine particles and applied to industrial fields and real life such as fibers, ceramic products, and resins (plastics), thereby improving the durability, heat resistance, stability, and the like.

본 발명의 명세서에 기재한 비람직한 실시예는 예시적인 것으로써 한정적인 것은 아니며, 발명의 범위는 첨부된 특허청구범위에 의해서 나타나 있고, 그들 특허 청구범위의 의미중에 들어가는 모든 변형예는 본 발명에 포함되는 것이다.Preferred embodiments described in the specification of the present invention are illustrative and not restrictive, the scope of the invention is indicated by the appended claims, all modifications falling within the meaning of those claims are present invention It is included in.

Claims (6)

Ti[OCH(CH3)2]4와 (CH3)2CHOH로 제조한 TiO2sol 0.57mol/ℓ, C8H20O4Si와 (CH3)2CHOH로 제조한 SiO2sol 0.44mol/ℓ, Zn(C2H3O2)2로부터 제조한 ZnO sol 0.5mol/ℓ 그리고 Silver를 각각 제조하여 이를 중량대비 TiO2sol, SiO2sol, ZnO sol와 Silver로 복합 처리한 수용액 또는 분말 상태로 이루어짐을 특징으로하는 광반도성 복합 세라믹스.0.57 mol / l TiO 2 sol made of Ti [OCH (CH 3 ) 2 ] 4 and (CH 3 ) 2 CHOH, SiO 2 sol 0.44 mol made of C 8 H 20 O 4 Si and (CH 3 ) 2 CHOH ZnO sol 0.5mol / l and Silver prepared from / L, Zn (C 2 H 3 O 2 ) 2 and Silver, respectively, and aqueous solution or powder mixed with TiO 2 sol, SiO 2 sol, ZnO sol and Silver by weight Photoconductive composite ceramics, characterized in that the state. 제1항에 있어서, 이를 중량대비 TiO2sol 50%, SiO2sol 40%, ZnO sol 9%와 Silver 1% 비율로 복합 처리힌 수용액 또는 분말 상태로 이루어짐을 특징으로 하는 광반도성 복합 세라믹스.The photoconductive composite ceramics according to claim 1, wherein the composition is composed of an aqueous solution or a powder mixed with TiO 2 sol 50%, SiO 2 sol 40%, ZnO sol 9% and Silver 1%. Ti[OCH(CH3)2]4와 (CH3)2CHOH로 제조한 TiO2sol 0.57mol/ℓ, C8H20O4Si와 (CH3)2CHOH로 제조한 SiO2sol 0.44mol/ℓ, Zn(C2H3O2)2로부터 제조한 ZnO sol 0.5mol/ℓ 그리고 Silver를 각각 제조하여 이를 중량대비 TiO2sol, SiO2sol, ZnO sol와 Silver로 복합 처리한 수용액 또는 분말 상태로 제조함을 특징으로 하는 광반도성 복합 세라믹스 제조방법.0.57 mol / l TiO 2 sol made of Ti [OCH (CH 3 ) 2 ] 4 and (CH 3 ) 2 CHOH, SiO 2 sol 0.44 mol made of C 8 H 20 O 4 Si and (CH 3 ) 2 CHOH ZnO sol 0.5mol / l and Silver prepared from / L, Zn (C 2 H 3 O 2 ) 2 and Silver, respectively, and aqueous solution or powder mixed with TiO 2 sol, SiO 2 sol, ZnO sol and Silver by weight Method for producing a photoconductive composite ceramics, characterized in that the manufacturing in the state. 제3항에 있어서, 이를 중량대비 TiO2sol 50%, SiO2sol 4O% , ZnO sol 9%와 Silver 1% 비율로 복합 처리한 수용액 또는 분말 상태로 제조함을 특징으로 하는 광반도성 복합 세라믹스 제조방법.The optical semiconducting composite ceramics according to claim 3, wherein the photoconductive composite ceramics is prepared in the form of an aqueous solution or a powder mixed with TiO 2 sol 50%, SiO 2 sol 4O%, ZnO sol 9% and Silver 1%. Manufacturing method. 제1항 또는 제2항에 있어서, 상기 수용액 또는 분말상태를 수지류, 섬유류, 세라믹, 토르마린(전기석), 숯, 키토산, 유리, 도료, 종이 등에 코팅 또는 첨가하여 화합물을 제조함을 특징으로하는 광반도성 복합 세라믹스The method according to claim 1 or 2, wherein the aqueous solution or powder is coated or added to resins, fibers, ceramics, tourmaline (charcoal), charcoal, chitosan, glass, paint, paper, or the like to prepare a compound. Photoconductive Composite Ceramics 제3항 또는 제4항에 있어서, 상기 수용액 또는 분말상태를 수지류, 섬유류, 세라믹, 토르마린(전기석), 숯, 키토산, 유리, 도료, 종이 등에 코팅 또는 첨가하여 화합물을 제조함을 특징으로 하는 광반도성 복합 세라믹스의 제조방법The method according to claim 3 or 4, wherein the aqueous solution or powder is coated or added to resins, fibers, ceramics, tourmaline (charcoal), charcoal, chitosan, glass, paint, paper, or the like to prepare a compound. Manufacturing method of optical semiconducting composite ceramics
KR1019990009735A 1999-03-22 1999-03-22 Photo semiconductive composite ceramics and the manufacturing method KR100310039B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990009735A KR100310039B1 (en) 1999-03-22 1999-03-22 Photo semiconductive composite ceramics and the manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990009735A KR100310039B1 (en) 1999-03-22 1999-03-22 Photo semiconductive composite ceramics and the manufacturing method

Publications (2)

Publication Number Publication Date
KR20000012172A KR20000012172A (en) 2000-03-06
KR100310039B1 true KR100310039B1 (en) 2001-11-02

Family

ID=19577343

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990009735A KR100310039B1 (en) 1999-03-22 1999-03-22 Photo semiconductive composite ceramics and the manufacturing method

Country Status (1)

Country Link
KR (1) KR100310039B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010025751A (en) * 2001-01-29 2001-04-06 전형탁 Photo-semiconductive composite ceramics coating tile and The manufacturing method
KR20010103957A (en) * 2000-05-12 2001-11-24 김영준 A method of producing multiple functional anti-bacterial, deodorizing, anti-electrostatic urethane foam which emit negative ions as well as far-infrared ray, and articles produced using the same
KR20020063533A (en) * 2002-06-07 2002-08-03 오성근 Preparations and Applications of Composite of Antibiotic Silver and Tourmaline
KR20200012988A (en) * 2019-01-23 2020-02-05 류상열 Antimicrobial agent containing SiOx nanoparticles and method for producing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020088029A (en) * 2001-05-16 2002-11-25 한라공조주식회사 Heat exchanger having hydrophilic, deodorization and antibacterial coating, and method for fabricating coating of heat exchanger
KR100524391B1 (en) * 2002-11-20 2005-10-28 (주)나눅스 silver-ceramic nanocomposite material and preparation thereof
KR20040097976A (en) * 2004-10-28 2004-11-18 장택수 Goods for antimicrobial activity and deodorization using photocatalyst and nanosilver
KR100626825B1 (en) * 2004-11-12 2006-09-20 (주)엠포엠 Functional microcapsule and the preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222184A (en) * 1988-07-11 1990-01-25 Mitsubishi Kasei Corp Production of porous inorganic oxide material
KR970042405A (en) * 1995-12-29 1997-07-24 김익명 Antimicrobial Ceramics and Manufacturing Method Thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222184A (en) * 1988-07-11 1990-01-25 Mitsubishi Kasei Corp Production of porous inorganic oxide material
KR970042405A (en) * 1995-12-29 1997-07-24 김익명 Antimicrobial Ceramics and Manufacturing Method Thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010103957A (en) * 2000-05-12 2001-11-24 김영준 A method of producing multiple functional anti-bacterial, deodorizing, anti-electrostatic urethane foam which emit negative ions as well as far-infrared ray, and articles produced using the same
KR20010025751A (en) * 2001-01-29 2001-04-06 전형탁 Photo-semiconductive composite ceramics coating tile and The manufacturing method
KR20020063533A (en) * 2002-06-07 2002-08-03 오성근 Preparations and Applications of Composite of Antibiotic Silver and Tourmaline
KR20200012988A (en) * 2019-01-23 2020-02-05 류상열 Antimicrobial agent containing SiOx nanoparticles and method for producing the same
WO2020153677A3 (en) * 2019-01-23 2020-10-01 류상열 Antimicrobial agent comprising siox nanoparticles, and preparation method therefor
KR102340551B1 (en) 2019-01-23 2021-12-20 류상열 Antibacterial agent containing SiOx antibacterial nanoparticles and method for manufacturing the same

Also Published As

Publication number Publication date
KR20000012172A (en) 2000-03-06

Similar Documents

Publication Publication Date Title
Ibrahim et al. Nano-structured metal oxides: synthesis, characterization and application for multifunctional cotton fabric
Saud et al. Preparation and photocatalytic activity of fly ash incorporated TiO2 nanofibers for effective removal of organic pollutants
El Nahrawy et al. Microstructure and antimicrobial properties of bioactive cobalt co-doped copper aluminosilicate nanocrystallines
KR100687560B1 (en) Cleaning agent and cleaning method
Subhan et al. Enhanced visible light-mediated photocatalysis, antibacterial functions and fabrication of a 3-chlorophenol sensor based on ternary Ag 2 O· SrO· CaO
Erim et al. Green synthesis of TiO2/GO/chitosan by using leaf extract of Olea europaea as a highly efficient photocatalyst for the degradation of cefixime trihydrate under UV-A radiation exposure: an optimization study with D-optimal design
Younis et al. Titanium dioxide nanoparticles: Recent progress in antimicrobial applications
Landi Jr et al. Photocatalytic performance of N-doped TiO2nano-SiO2-HY nanocomposites immobilized over cotton fabrics
CN102974374B (en) Silver phosphate/P25 bi-functional composite material, preparation method and application thereof
KR100310039B1 (en) Photo semiconductive composite ceramics and the manufacturing method
CA3221650A1 (en) A high-efficient decontaminant additive comprising metal oxide nanoparticles in a metallic or semi-metallic nanoparticle matrix, useful to be added in paints, formulations or the like for protecting, coating or decorating, soft or hard, surfaces
Bai et al. Solar‐Light‐Driven Photodegradation and Antibacterial Activity of Hierarchical TiO2/ZnO/CuO Material
CN110564186B (en) Visible light photocatalytic functional topcoat containing quantum dots and preparation method thereof
Gaya Optimised photocatalytic degradation of crystal violet over 1wt% MgO-ZnO composite catalyst
Nisansala et al. Zinc Oxide Nanostructures in the Textile Industry
Darab et al. Application of phosphorescent material in activation of N: Cu: TiO2 photocatalyst as antibacterial and dye removal agent from solid surfaces used in hospitals
KR20050097042A (en) Photo semiconductive composite cermics and the manufacturing method
Sowmiya et al. Synthesis and Characterization of Zno-Cdo Nanocomposite and Its Antibacterial Activity
Sangchay et al. Photocatalytic disinfection of water containing E. coli using Fe3+ doped TiO2 thin films coated on glass fibers
KR100372756B1 (en) The Illuminator for Self-Cleaning
DE102011103504A1 (en) Photoactive textile material produced by coating a pre-treated textile material with a nanocrystalline titania sol containing a noble metal salt and a chelating agent, useful as photocatalyst to degrade organic substances in waste water
CN113004727B (en) Transparent inorganic coating and preparation method thereof
Khan Photocatalysis: laboratory to market
Goudjil et al. Successive photocatalytic degradation of methylene blue by CuO, Fe2O3, and novel nanocomposite CuO/Fe2O3 synthesized from Mentha pulegium plant extract via biosynthesis technique
Dwirekso et al. THE EFFECT OF MORPHOLOGY ON ANTIBACTERIAL PROPERTIES OF CuO-DOPED TiO2-SiO2 NANOCOMPOSITES

Legal Events

Date Code Title Description
A201 Request for examination
G15R Request for early publication
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee