KR100296878B1 - Positive active material for lithium secondary battery and lithium secondary battery comprising the same - Google Patents

Positive active material for lithium secondary battery and lithium secondary battery comprising the same Download PDF

Info

Publication number
KR100296878B1
KR100296878B1 KR1019990021902A KR19990021902A KR100296878B1 KR 100296878 B1 KR100296878 B1 KR 100296878B1 KR 1019990021902 A KR1019990021902 A KR 1019990021902A KR 19990021902 A KR19990021902 A KR 19990021902A KR 100296878 B1 KR100296878 B1 KR 100296878B1
Authority
KR
South Korea
Prior art keywords
active material
secondary battery
lithium secondary
comparative example
lattice constant
Prior art date
Application number
KR1019990021902A
Other languages
Korean (ko)
Other versions
KR20010002212A (en
Inventor
조재필
김근배
박용철
Original Assignee
김순택
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김순택, 삼성에스디아이 주식회사 filed Critical 김순택
Priority to KR1019990021902A priority Critical patent/KR100296878B1/en
Publication of KR20010002212A publication Critical patent/KR20010002212A/en
Application granted granted Critical
Publication of KR100296878B1 publication Critical patent/KR100296878B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 리튬 이차 전지용 양극 활물질에 관한 것으로서, 이 양극 활물질은 하기 화학식 1을 갖으며, 2.815 < 격자 상수 a ≤ 2.817, 14.063 ≤ 격자 상수 c ≤ 14.065의 격자 상수 값을 갖는다.The present invention relates to a cathode active material for a lithium secondary battery, and the cathode active material has the following Chemical Formula 1, and has a lattice constant value of 2.815 <lattice constant a ≤ 2.817, 14.063 ≤ lattice constant c ≤ 14.065.

[화학식 1][Formula 1]

Li1+xCo1-yM'yO2-zFzLi 1 + x Co 1-y M ' y O 2-z Fz

(상기 식에서, -0.1 ≤ x ≤ 0.1, 0 ≤ y ≤ 0.3, 0 < z ≤ 0.3이며, M은 전이 금속 또는 알칼리 토금속 중 적어도 1종 이상의 금속이다.)(In the above formula, -0.1? X? 0.1, 0? Y? 0.3, 0 <z? 0.3, and M is at least one metal of transition metal or alkaline earth metal.)

상기 리튬 이차 전지용 양극 활물질은 격자 상수 c값에 영향을 받아, 순수 LiCoO2에 비해 고율 충방전시 사이클 수명이 약 10% 이상 향상시킬 수 있다.The positive electrode active material for a lithium secondary battery may be affected by a lattice constant c value, thereby improving cycle life at a high rate of about 10% or more when compared to pure LiCoO 2 .

Description

리튬 이차 전지용 양극 활물질 및 그를 포함하는 리튬 이차 전지{POSITIVE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME}A positive electrode active material for a lithium secondary battery and a lithium secondary battery including the same {POSITIVE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY COMPRISING THE SAME}

[산업상 이용 분야][Industrial use]

본 발명은 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지에 관한 것으로서, 더욱 상세하게는 고율 충방전시 사이클 수명이 우수한 리튬 이차 전지를 제공할 수 있는 리튬 이차 전지용 양극 활물질에 관한 것이다.The present invention relates to a positive electrode active material for lithium secondary batteries and a lithium secondary battery, and more particularly, to a positive electrode active material for lithium secondary batteries capable of providing a lithium secondary battery having excellent cycle life during high rate charge and discharge.

[종래 기술][Prior art]

현재 리튬 이차 전지는 휴대폰, 캠코더 및 노트북 컴퓨터에 적용이 급격하게 증가되고 있는 추세이다. 이들 전지들의 용량을 좌우하는 인자는 양극 활물질이며, 이 양극 활물질의 전지 화학적 특성에 의해 고율에서 장시간 사용가능한지 아니면 충방전 사이클을 지나도록 초기의 용량을 유지하는 특성이 결정된다.Currently, lithium secondary batteries are rapidly increasing in application to mobile phones, camcorders, and notebook computers. The factor which determines the capacity of these batteries is the positive electrode active material, and the battery chemistry of the positive electrode active material determines whether the battery can be used for a long time at a high rate or maintain its initial capacity to pass the charge / discharge cycle.

리튬 이차 전지에서 사용되는 양극 활물질 중에서 LiCoO2등의 코발트계 활물질은 망간계 활물질에 비해 고용량이며, 니켈계 활물질에 비해 구조적 안정성이우수하여 상업적으로 널리 사용되고 있다.Among the cathode active materials used in lithium secondary batteries, cobalt-based active materials such as LiCoO 2 have a higher capacity than manganese-based active materials, and have excellent structural stability compared to nickel-based active materials.

종래, LiCoO2를 양극 활물질로 사용하는 리튬 이온 전지들이 대부분 4.1V 종지 전압을 사용하였으나, 최근에는 종지 전압을 4.2V로 증가시키려는 연구도 진행되고 있으므로 상대적으로 높은 전압대에서 사용하더라도 충분한 사이클 수명이 보장되는 코발트계 양극 활물질이 요구되고 있다. 4.2V는 Li과 양극 활물질과의 전위(potential)가 4.3V와 대응하는 것이다. 왜냐하면, Li이 탄소에 완전히 충전되지 않고 보통 0.1V에서 충전이 종지되기 때문이다. 이 전압대에서 충방전시(4.3V 충전 전압-2.75V 방전 전압) 모노클리닉(monoclinic) 구조에서 헥사고날(hexagonal) 구조로 변화하는 구조의 불안정으로 인해 상대적으로 4.2V∼2.75V 충방전시보다 수명이 열화되는 문제점이 있다.Conventionally, most lithium ion batteries using LiCoO 2 as a positive electrode active material used a 4.1 V end voltage, but recently, studies to increase the end voltage to 4.2 V have been conducted. Thus, even if used in a relatively high voltage range, sufficient cycle life is obtained. There is a need for a guaranteed cobalt-based positive electrode active material. 4.2V corresponds to a potential of 4.3V between Li and the positive electrode active material. This is because Li is not fully charged in carbon and charging usually terminates at 0.1V. During charging and discharging in this voltage band (4.3V charging voltage-2.75V discharge voltage), the instability of the structure changing from monoclinic structure to hexagonal structure is relatively higher than that of 4.2V to 2.75V charging and discharging. There is a problem that the life is deteriorated.

본 발명은 상기한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 고율 충방전시 우수한 사이클 수명을 갖는 리튬 이차 전지용 양극 활물질을 제공하는 것이다.The present invention has been made to solve the above problems, and an object of the present invention is to provide a cathode active material for a lithium secondary battery having excellent cycle life during high rate charge and discharge.

본 발명의 다른 목적은 상기 양극 활물질을 사용하여 제조된 리튬 이차 전지를 제공하는 것이다.Another object of the present invention is to provide a lithium secondary battery manufactured using the positive electrode active material.

상기한 목적을 달성하기 위하여, 본 발명은 하기 화학식 1을 갖으며, 2.815 < 격자 상수 a ≤ 2.817, 14.063 ≤ 격자 상수 c ≤ 14.065의 격자 상수 값을 갖는리튬 이차 전지용 양극 활물질을 제공한다.In order to achieve the above object, the present invention provides a cathode active material for a lithium secondary battery having the formula 1, and has a lattice constant value of 2.815 <lattice constant a ≤ 2.817, 14.063 ≤ lattice constant c ≤ 14.065.

[화학식 1][Formula 1]

Li1+xCo1-yM'yO2-zFzLi 1 + x Co 1-y M ' y O 2-z Fz

(상기 식에서, -0.1 ≤ x ≤ 0.1, 0 ≤ y ≤ 0.3, 0 ≤ z ≤ 0.3이며, M은 전이 금속 또는 알칼리 토금속 적어도 1종 이상의 금속이다.)(In the above formula, -0.1 ≦ x ≦ 0.1, 0 ≦ y ≦ 0.3, 0 ≦ z ≦ 0.3, and M is a transition metal or an alkaline earth metal of at least one metal.)

본 발명은 또한, 하기 화학식 1을 갖으며, 2.815 < 격자 상수 a ≤ 2.817, 14.063 ≤ 격자 상수 c ≤ 14.065의 격자 상수 값을 갖는 리튬 이차 전지용 양극 활물질을 포함하는 양극; 리튬 이온의 탈삽입이 가능한 음극 활물질을 포함하는 음극; 및 비수용매계 전해질을 포함하는 리튬 이차 전지를 제공한다.The present invention also has a general formula (1), a positive electrode comprising a positive electrode active material for a lithium secondary battery having a lattice constant value of 2.815 <lattice constant a ≤ 2.817, 14.063 ≤ lattice constant c ≤ 14.065; A negative electrode including a negative electrode active material capable of deintercalation of lithium ions; And it provides a lithium secondary battery comprising a non-aqueous solvent electrolyte.

이하 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명자들은 LiCoO2에서 Co의 일부를 전이 금속 또는 알칼리 토금속으로 치환하고, O의 일부는 F로 치환하며, Li을 조절하고, 또한 격자 상수 값을 조절함으로써, 사이클 수명 특성이 우수한 코발트계 리튬 이차 전지용 양극 활물질을 제공할 수 있음을 발견하고, 본 발명을 완성하였다.The present inventors have replaced a part of Co with a transition metal or an alkaline earth metal in LiCoO 2 , a part of O with F, and controlled Li and also a lattice constant value, thereby cobalt-based lithium secondary having excellent cycle life characteristics. The present invention has been found to provide a battery active material.

LiCoO2에서 Co의 일부를 전이 금속 또는 알칼리 토금속으로 치환하고, O의 일부는 F로 치환하며, Li을 조절한 본 발명의 양극 활물질은 하기 화학식 1을 갖는다.In LiCoO 2 , a part of Co is substituted with a transition metal or an alkaline earth metal, a part of O is substituted with F, and the cathode active material of the present invention having Li is controlled has the following formula (1).

[화학식 1][Formula 1]

Li1+xCo1-yM'yO2-zFzLi 1 + x Co 1-y M ' y O 2-z Fz

(상기 식에서, -0.1 ≤ x ≤ 0.1, 0 ≤ y ≤ 0.3, 0 ≤ z ≤ 0.3이며, M은 전이 금속 또는 알칼리 토금속 중 적어도 1종 이상의 금속이다.)(In the above formula, -0.1 ≦ x ≦ 0.1, 0 ≦ y ≦ 0.3, 0 ≦ z ≦ 0.3, and M is at least one metal of transition metal or alkaline earth metal.)

또한, 본 발명의 양극 활물질은 2.815 < 격자 상수 a ≤ 2.817이고, 14.060 ≤ 격자 상수 c ≤ 14.065인 격자 상수 값을 갖는다. 격자 상수 a 및 c 값이 상기 범위를 벗어나는 경우에는 초기 용량 및 용량 유지율이 저하되므로 바람직하지 않다.In addition, the cathode active material of the present invention has a lattice constant value of 2.815 <lattice constant a ≤ 2.817, and 14.060 ≤ lattice constant c ≤ 14.065. When the lattice constants a and c are outside the above ranges, the initial capacity and capacity retention rate are lowered, which is not preferable.

상기한 구성을 갖는 본 발명의 양극 활물질은 고율에서 사이클 수명이 우수하다.The positive electrode active material of the present invention having the above configuration has excellent cycle life at high rate.

본 발명에 따른 양극 활물질은 코발트염, 리튬염, 불화염 및 금속염을 적정 비율로 혼합한 후, 이를 약 850∼950℃에서 산소 분위기 하에서 소성함으로써 제조될 수 있다.The cathode active material according to the present invention may be prepared by mixing cobalt salt, lithium salt, fluoride salt, and metal salt in an appropriate ratio, and then firing the same under an oxygen atmosphere at about 850 to 950 ° C.

상기 코발트염으로는 코발트 하이드록사이드, 코발트 나이트레이트 또는 코발트 카보네이트 등을 사용할 수 있고, 상기 리튬염으로는 리튬 카보네이트, 리튬 나이트레이트, 리튬 하이드록사이드 등이 사용될 수 있으며, 상기 불화염으로는 망간 플루오라이드, 리튬 플루오라이드 등이 사용될 수 있다. 또한, 상기 금속염으로는 전이 금속 또는 알카리 토금속에 속하는 금속염은 어떠한 것도 사용할 수 있으며. 상기 전이 금속의 예로는 Sc, Ti, V, Cr, Cu, Zn, Ga, Ge, Ag, Cd 등을 사용할 수 있으며, 알칼리 토금속으로는 Ca, Sr, Ba, Ra, Be, Mg을 사용할 수 있다. 상기 리튬염, 망간염, 불화염 및 코발트염이 상술한 화합물에 한정되는 것은 아니다.Cobalt hydroxide, cobalt nitrate or cobalt carbonate may be used as the cobalt salt, and lithium carbonate, lithium nitrate, lithium hydroxide may be used as the lithium salt, and manganese fluoride may be used. Fluoride, lithium fluoride and the like can be used. As the metal salt, any metal salt belonging to a transition metal or an alkaline earth metal may be used. Examples of the transition metal may include Sc, Ti, V, Cr, Cu, Zn, Ga, Ge, Ag, Cd, and the like, and alkaline earth metals may include Ca, Sr, Ba, Ra, Be, Mg. . The lithium salt, manganese salt, fluoride salt and cobalt salt are not limited to the above-mentioned compounds.

본 발명의 양극 활물질을 이용한 리튬 이차 전지는 음극으로 리튬 이온의 탈삽입(deintercalation-intercalation)이 가능한 그라파이트, 카본 등의 일반적으로 리튬 이차 전지의 음극 활물질로 사용되는 물질인 탄소재 활물질로 제조된 것을 사용할 수 있다. 전해질로는 일반적으로 리튬 이차 전지의 전해질로 사용되는 비수용액계 액체 전해질, 폴리머 전해질 등을 사용할 수 있다. 세퍼레이터로는 일반적으로 리튬 이차 전지의 세퍼레이터로 사용되는 고분자 필름을 사용할 수 있다.The lithium secondary battery using the positive electrode active material of the present invention is made of a carbon-based active material that is a material that is generally used as a negative electrode active material of lithium secondary batteries, such as graphite and carbon, which can deintercalation-intercalation of lithium ions as a negative electrode. Can be used. As the electrolyte, a non-aqueous liquid electrolyte, a polymer electrolyte, or the like, which is generally used as an electrolyte of a lithium secondary battery, can be used. As a separator, the polymer film generally used as a separator of a lithium secondary battery can be used.

이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기한 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples and comparative examples of the present invention are described. However, the following examples are only one preferred embodiment of the present invention and the present invention is not limited to the following examples.

(실시예 1)(Example 1)

Co3O4, TiO2, Mg(OH)2및 Li2CO3를 LiCo0.98Mg0.01Ti0.01O2의 몰비가 되도록 균일하게 혼합하였다. 이 혼합물을 900℃, 산소 분위기에서 24시간 동안 소성 한 후 서냉하여, 리튬 이차 전지용 양극 활물질을 제조하였다.Co 3 O 4 , TiO 2 , Mg (OH) 2 and Li 2 CO 3 were uniformly mixed so as to have a molar ratio of LiCo 0.98 Mg 0.01 Ti 0.01 O 2 . The mixture was calcined at 900 ° C. in an oxygen atmosphere for 24 hours and then cooled slowly to prepare a cathode active material for a lithium secondary battery.

상기 제조된 양극 활물질, 바인더로 폴리비닐리덴 플루오라이드, 도전제로 카본 블랙과 92 : 4 : 4의 중량%로 섞은 다음, 일정량의 N-메틸 피롤리돈을 첨가하면서 균일한 페이스트가 될 때까지 혼합하였다. 얻어진 페이스트를 닥터-블레이드(doctor-blade)기를 이용하여 300 미크론(micron)의 두께로 알루미늄 호일에 코팅한 후, 150℃에서 N-메틸 피롤리돈을 완전히 날려보낸 다음 일정한 압력으로 압축하였다.The prepared positive electrode active material, polyvinylidene fluoride as a binder, carbon black as a conductive material and mixed at a weight ratio of 92: 4: 4, and then mixed until a uniform paste is added while adding a certain amount of N-methyl pyrrolidone. It was. The paste obtained was coated on aluminum foil to a thickness of 300 microns using a doctor-blade machine, and then completely blown off N-methyl pyrrolidone at 150 ° C. and then compressed under constant pressure.

코인 타입의 리튬 전지를 만들기 위해, 상기 양극 페이스트가 코팅된 알루미늄 포일을 원형으로 자른 다음 코인 전지 캔에 웰딩(welding)하였다. 대극인 리튬 호일도 양극과 같은 크기로 자른 다음 코인 전지 캡의 Ni 호일에 압축하여 붙였다. 세퍼레이터는 셀가드 사(celgard) 제품을 사용하였으며, 전해질은 LiPF6가 용해된 에틸렌 카보네이트/디메틸 카보네이트의 혼합물을 사용하였다.To make a coin-type lithium battery, the anode paste coated aluminum foil was cut into circles and then welded to a coin cell can. The counter electrode lithium foil was also cut to the same size as the positive electrode and then pressed into Ni foil of the coin battery cap. The separator used was celgard, and the electrolyte used was a mixture of ethylene carbonate / dimethyl carbonate in which LiPF 6 was dissolved.

(실시예 2)(Example 2)

Co3O4, TiO2, Mg(OH)2및 Li2CO3를 LiCo0.9Mg0.02Ti0.02O2의 몰비가 되도록 혼합한 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.Co 3 O 4 , TiO 2 , Mg (OH) 2 and Li 2 CO 3 were carried out in the same manner as in Example 1, except that LiCo 0.9 Mg 0.02 Ti 0.02 O 2 was mixed in a molar ratio.

(실시예 3)(Example 3)

Co3O4, Al2O3및 Li2CO3를 하기 표 1의 조성이 되도록 몰비를 변경시킨 것을 제외하고는 상기 실시예 1과 동일하게 실시하였다.Co 3 O 4 , Al 2 O 3 and Li 2 CO 3 It was carried out in the same manner as in Example 1 except for changing the molar ratio to the composition of Table 1.

(비교예 1)(Comparative Example 1)

Co3O4및 Li2CO3를 LiCoO2의 몰비로 균일하게 혼합한 다음 900℃, 산소 분위기에서 24시간 동안 소성 후 서냉하여 리튬 이차 전지용 양극 활물질을 제조하였다. 이 양극 활물질을 이용하여 상기 실시예 1과 같이 코인 전지를 제조하였다.Co 3 O 4 and Li 2 CO 3 were uniformly mixed in a molar ratio of LiCoO 2 , and then calcined at 900 ° C. for 24 hours in an oxygen atmosphere, followed by slow cooling to prepare a cathode active material for a lithium secondary battery. A coin battery was manufactured in the same manner as in Example 1 using this cathode active material.

(비교예 2-6)(Comparative Example 2-6)

Co3O4, Li2CO3및 LiF를 하기 표 1의 조성이 되도록 균일하게 혼합한 것을 제외하고는 상기 비교예 1과 동일하게 실시하였다.Co 3 O 4 , Li 2 CO 3 and LiF was carried out in the same manner as in Comparative Example 1 except that the composition of Table 1 was uniformly mixed.

(비교예 7-8)(Comparative Example 7-8)

Co3O4, Mg(OH)2및 Li2CO3를 하기 표 1의 조성이 되도록 균일하게 혼합한 것을 제외하고는 상기 비교예 1과 동일하게 실시하였다.Co 3 O 4 , Mg (OH) 2 And Li 2 CO 3 It was carried out in the same manner as in Comparative Example 1 except that the composition of Table 1 was uniformly mixed.

상기 실시예 1-3, 비교예 1-8의 방법으로 제조된 활물질 조성을 하기 표 1에 나타내었다. 또한, 상기 실시예 1-3 및 비교예 1-8의 방법으로 제조된 전지의 충방전 수명 특성 결과를 측정하여 그 결과를 하기 표 1에 나타내었다. 각각의 전지를 4.3V∼3.0V 사이에서 0.1C↔0.1C(1회), 0.2C↔0.2C(2회), 0.5C↔0.5C(10회), 1C↔1C(107회)로 충방전 속도를 변화시키면서 전지의 용량을 측정하였다. 0.1C의 초기 용량에 대하여, 0.1∼1C으로 충방전 속도를 변화시키면서 120회 사이클 후의 용량 비율인 용량 유지율을 계산하여 하기 표 1에 나타내었다.The active material composition prepared by the method of Examples 1-3 and Comparative Examples 1-8 is shown in Table 1 below. In addition, the charge and discharge life characteristics of the batteries prepared by the methods of Examples 1-3 and Comparative Examples 1-8 were measured and the results are shown in Table 1 below. Each battery is charged between 0.1C↔0.1C (1 time), 0.2C↔0.2C (2 times), 0.5C↔0.5C (10 times) and 1C↔1C (107 times) between 4.3V and 3.0V. The capacity of the battery was measured while changing the discharge rate. The capacity retention ratio, which is the capacity ratio after 120 cycles, was calculated and shown in Table 1 below, while changing the charge / discharge rate from 0.1 to 1C with respect to the initial capacity of 0.1C.

아울러, 상기 실시예 1-3 및 비교예 1-8의 방법으로 제조된 전지를 1C으로 충방전시키면서, 초기 용량과 107회 사이클 후의 용량 및 그 용량 유지율을 측정하여 하기 표 1에 나타내었다. 또한, 상기 실시예 1-3 및 비교예 1-8의 방법으로 제조된 활물질의 격자 상수 a 및 c값을 하기 표 1에 나타내었다.In addition, while charging and discharging the battery prepared by the method of Examples 1-3 and Comparative Examples 1-8 at 1C, the initial capacity, the capacity after 107 cycles and the capacity retention rate were measured and shown in Table 1 below. In addition, the lattice constants a and c of the active materials prepared by the methods of Examples 1-3 and Comparative Examples 1-8 are shown in Table 1 below.

조성Furtherance 0.1C-1C[%]1) 0.1C-1C [%] 1) 1C[%]2) 1C [%] 2) a(±0.00025)a (± 0.00025) c(±0.00025)c (± 0.00025) c/ac / a 실시예 1Example 1 LiCo0.98Ti0.01Mg0.01O2 LiCo 0.98 Ti 0.01 Mg 0.01 O 2 157-128(82)157-128 (82) 147-128(87)147-128 (87) 2.8172.817 14.06014.060 4.9914.991 실시예 2Example 2 LiCo0.96Ti0.02Mg0.02O2 LiCo 0.96 Ti 0.02 Mg 0.02 O 2 156-124(79)156-124 (79) 146-124(85)146-124 (85) 2.8152.815 14.06014.060 4.9954.995 실시예 3Example 3 LiCo0.98Al0.02O2 LiCo 0.98 Al 0.02 O 2 157-126(80)157-126 (80) 148-126(85)148-126 (85) 2.8162.816 14.06314.063 4.9944.994 비교예 1Comparative Example 1 LiCoO2 LiCoO 2 159-110(69)159-110 (69) 147-110(75)147-110 (75) 2.8162.816 14.06114.061 4.9934.993 비교예 2Comparative Example 2 LiCo1.95F0.05 LiCo 1.95 F 0.05 154-111(72)154-111 (72) 145-111(72)145-111 (72) 2.8172.817 14.05414.054 4.9894.989 비교예 3Comparative Example 3 LiCo1.9F0.1 LiCo 1.9 F 0.1 139-100(72)139-100 (72) 125-100(80)125-100 (80) 2.8172.817 14.06214.062 4.9924.992 비교예 4Comparative Example 4 LiCo1.99F0.01 LiCo 1.99 F 0.01 159-111(70)159-111 (70) 149-111(75)149-111 (75) 2.8172.817 14.06514.065 4.9934.993 비교예 5Comparative Example 5 LiCo1.97F0.03 LiCo 1.97 F 0.03 154-103(67)154-103 (67) 144-104(72)144-104 (72) 2.8162.816 14.05114.051 4.994.99 비교예 6Comparative Example 6 LiCo1.85F0.15 LiCo 1.85 F 0.15 133-87(65)133-87 (65) 127-87(69)127-87 (69) 2.8182.818 14.06014.060 4.9894.989 비교예 7Comparative Example 7 LiCo1.98Mg0.02O2 LiC o1.98 Mg 0.02 O 2 157-40(25)157-40 (25) 144-74(51)144-74 (51) 2.8172.817 14.07114.071 4.9954.995 비교예 8Comparative Example 8 LiCo1.96Mg0.04O2 LiCo 1.96 Mg 0.04 O 2 155-30(20)155-30 (20) 138-30(21)138-30 (21) 2.8182.818 14.06914.069 4.9934.993

상기 표 1에서,In Table 1 above,

1) 0.1-1C는 0.1C에서의 초기 용량과 1C에서의 용량을 나타내며, ( )의 숫자는 0.1C에서 1C으로 충방전 속도를 변화시키면서, 120회 충방전 사이클을 실시한 후의 용량 유지율을 나타낸다.1) 0.1-1C represents the initial capacity at 0.1C and the capacity at 1C, and the number in parentheses represents the capacity retention rate after 120 charge / discharge cycles while varying the charge / discharge rate from 0.1C to 1C.

2) 1C 충방전시 초기 용량과 107회 충방전 사이클 뒤 용량과 그 용량 유지율을 나타낸다.2) Initial capacity at 1C charge / discharge and capacity after 107 charge / discharge cycles.

상기 표 1에 나타낸 것과 같이, 실시예 1-3의 양극 활물질을 이용한 리튬 이온 이차 전지를 0.1C(1회), 0.2C(2회), 0.5C(5회) 및 1C(107회)으로 충방전 속도를변화시키면서, 초기 충방전 용량을 측정한 결과, 실시예 1은 157mAh/g, 실시예 2는 156mAh/g 및 실시예 3은 157mAh/g였다. 또한, 비교예 1-8의 양극 활물질을 이용한 리튬 이온 이차 전지를 0.1C(1회), 0.2C(2회), 0.5C(5회) 및 1C(107회)으로 충방전 속도를 변화시키면서, 초기 충방전 용량을 측정한 결과는 비교예 1은 159mAh/g, 비교예 2는 154mAh/g, 비교예 3은 139mAh/g, 비교예 4는 159mAh/g, 비교예 5는 159mAh/g, 비교예 6은 133mAh/g, 비교예 7은 157mAh/g, 비교예 8는 155mAh/g였다. 또한, 0.1C(1회), 0.2C(2회), 0.5C(5회) 및 1C(107회)으로 충방전 속도를 변화시키면서, 총 120회 충방전 사이클을 실시한 후의 용량 유지율은 실시예 1은 82%, 실시예 2는 79% 및 실시예 3은 80%으로 나타났으며, 비교예 1은 75%, 비교예 2는 72%, 비교예 3은 72%, 비교예 4는 70%, 비교예 5는 67%, 비교예 6은 65%, 비교예 7은 25%, 비교예 8은 21%로 나타났다. 따라서, 실시예 1-3의 리튬 이온 이차 전지가 초기 충방전 용량을 비교예 1-8과 작은 경우도 있으나, 용량 유지율이 우수하다. 따라서, 실시예 1-3의 전지가 사이클 수명이 우수함을 알 수 있다.As shown in Table 1, the lithium ion secondary battery using the positive electrode active material of Example 1-3 was 0.1C (1 time), 0.2C (2 times), 0.5C (5 times) and 1C (107 times) As a result of measuring the initial charge / discharge capacity while changing the charge / discharge rate, Example 1 was 157mAh / g, Example 2 was 156mAh / g, and Example 3 was 157mAh / g. In addition, the lithium ion secondary battery using the positive electrode active material of Comparative Example 1-8 was charged and discharged at 0.1C (once), 0.2C (twice), 0.5C (5 times) and 1C (107 times) The results of measuring the initial charge / discharge capacity were 159 mAh / g in Comparative Example 1, 154 mAh / g in Comparative Example 2, 139 mAh / g in Comparative Example 3, 159 mAh / g in Comparative Example 4, 159 mAh / g in Comparative Example 5, Comparative Example 6 was 133 mAh / g, Comparative Example 7 was 157 mAh / g, and Comparative Example 8 was 155 mAh / g. In addition, the capacity retention rate after performing a total of 120 charge / discharge cycles while varying the charge / discharge rate to 0.1C (once), 0.2C (two times), 0.5C (five times) and 1C (107 times) is shown in Examples. 1 was 82%, Example 2 was 79%, and Example 3 was 80%, Comparative Example 1 was 75%, Comparative Example 2 was 72%, Comparative Example 3 was 72%, and Comparative Example 4 was 70% , Comparative Example 5 was 67%, Comparative Example 6 was 65%, Comparative Example 7 was 25%, Comparative Example 8 was 21%. Accordingly, although the initial charge and discharge capacity of the lithium ion secondary battery of Example 1-3 may be smaller than that of Comparative Example 1-8, the capacity retention rate is excellent. Therefore, it can be seen that the battery of Example 1-3 is excellent in cycle life.

또한, 1C으로 107회 충방전을 실시한 결과, 초기 충방전 용량은 실시예 1은 147mAh/g, 실시예 2는 146mAh/g 및 실시예 3은 148mAh/g였다. 또한, 비교예 1-8의 양극 활물질을 이용한 리튬 이온 이차 전지는 비교예 1은 147mAh/g, 비교예 2는 145mAh/g, 비교예 3은 125mAh/g, 비교예 4는 149mAh/g, 비교예 5는 144mAh/g, 비교예 6은 127mAh/g, 비교예 7은 144mAh/g, 비교예 8은 138mAh/g였다. 아울러, 1C으로 107회 충방전을 실시한 후 용량 유지율은 실시예 1은 87%, 실시예 2는 85% 및 실시예 3은 85%였으며, 비교예 1은 75%, 비교예 2는 72%, 비교예 3은 80%, 비교예4는 75%, 비교예 5는 72%, 비교예 6은 69%, 비교예 1은 51%, 비교예 2는 21%였다. 따라서, 실시예 1-3의 전지가 고율(1C) 충방전시 초기 충방전 용량을 비교예 1-8보다 다소 작은 경우도 있으나, 그 용량 유지율이 매우 우수함을 알 수 있다.Further, as a result of performing charge and discharge 107 times at 1 C, the initial charge and discharge capacity was 147 mAh / g in Example 1, 146 mAh / g in Example 2, and 148 mAh / g in Example 3. In addition, in the lithium ion secondary battery using the positive electrode active material of Comparative Example 1-8, Comparative Example 1 is 147mAh / g, Comparative Example 2 is 145mAh / g, Comparative Example 3 is 125mAh / g, Comparative Example 4 is 149mAh / g, comparison Example 5 was 144 mAh / g, Comparative Example 6 was 127 mAh / g, Comparative Example 7 was 144 mAh / g, and Comparative Example 8 was 138 mAh / g. In addition, after performing charge and discharge 107 times at 1C, the capacity retention rate was 87% in Example 1, 85% in Example 2 and 85% in Example 3, 75% in Comparative Example 1, 72% in Comparative Example 2, Comparative Example 3 was 80%, Comparative Example 4 was 75%, Comparative Example 5 was 72%, Comparative Example 6 was 69%, Comparative Example 1 was 51%, and Comparative Example 2 were 21%. Therefore, although the initial charge / discharge capacity of the battery of Example 1-3 during the high rate (1C) charge / discharge may be slightly smaller than that of Comparative Example 1-8, it can be seen that the capacity retention rate is very excellent.

상술한 바와 같이, 본 발명의 리튬 이차 전지용 양극 활물질은 격자 상수 c값에 영향을 받아, 순수 LiCoO2에 비해 고율 충방전시 사이클 수명이 약 10% 이상 향상시킬 수 있다.As described above, the positive electrode active material for a lithium secondary battery of the present invention is affected by the lattice constant c value, and can improve the cycle life at a high rate of charge / discharge about 10% or more compared to pure LiCoO 2 .

Claims (2)

하기 화학식 1을 갖으며, 2.815 < 격자 상수 a ≤ 2.817, 14.063 ≤ 격자 상수 c ≤ 14.065의 격자 상수 값을 갖는 리튬 이차 전지용 양극 활물질.The cathode active material having the following Chemical Formula 1 and having a lattice constant value of 2.815 <lattice constant a ≦ 2.817, 14.063 ≦ lattice constant c ≦ 14.065. [화학식 1][Formula 1] Li1+xCo1-yM'yO2-zFzLi 1 + x Co 1-y M ' y O 2-z Fz (상기 식에서, -0.1 ≤ x ≤ 0.1, 0 < y ≤ 0.3, 0 < z ≤ 0.3이며, M은 전이 금속 또는 알칼리 토금속 중 적어도 1종 이상의 금속이다.)(In the above formula, -0.1 ≦ x ≦ 0.1, 0 <y ≦ 0.3, 0 <z ≦ 0.3, and M is at least one metal of transition metal or alkaline earth metal.) 하기 화학식 1을 갖으며, 2.815 < 격자 상수 a ≤ 2.817, 14.063 ≤ 격자 상수 c ≤ 14.065의 격자 상수 값을 갖는 리튬 이차 전지용 양극 활물질을 포함하는 양극;A positive electrode having a chemical formula 1 and including a positive electrode active material for a lithium secondary battery having a lattice constant of 2.815 <lattice constant a ≦ 2.817, 14.063 ≦ lattice constant c ≦ 14.065; 리튬 이온의 탈삽입이 가능한 음극 활물질을 포함하는 음극;A negative electrode including a negative electrode active material capable of deintercalation of lithium ions; 상기 양극과 음극 사이에 위치하는 세퍼레이터; 및A separator positioned between the positive electrode and the negative electrode; And 비수용매계 전해질Non-Aqueous Solvent Electrolyte 을 포함하는 리튬 이차 전지.Lithium secondary battery comprising a. [화학식 1][Formula 1] Li1+xCo1-yM'yO2-zFzLi 1 + x Co 1-y M ' y O 2-z Fz (상기 식에서, -0.1 ≤ x ≤ 0.1, 0 < y ≤ 0.3, 0 < z ≤ 0.3이며, M은 전이 금속 또는 알칼리 토금속 중 적어도 1종 이상의 금속이다.)(In the above formula, -0.1 ≦ x ≦ 0.1, 0 <y ≦ 0.3, 0 <z ≦ 0.3, and M is at least one metal of transition metal or alkaline earth metal.)
KR1019990021902A 1999-06-12 1999-06-12 Positive active material for lithium secondary battery and lithium secondary battery comprising the same KR100296878B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990021902A KR100296878B1 (en) 1999-06-12 1999-06-12 Positive active material for lithium secondary battery and lithium secondary battery comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990021902A KR100296878B1 (en) 1999-06-12 1999-06-12 Positive active material for lithium secondary battery and lithium secondary battery comprising the same

Publications (2)

Publication Number Publication Date
KR20010002212A KR20010002212A (en) 2001-01-05
KR100296878B1 true KR100296878B1 (en) 2001-07-12

Family

ID=19591882

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990021902A KR100296878B1 (en) 1999-06-12 1999-06-12 Positive active material for lithium secondary battery and lithium secondary battery comprising the same

Country Status (1)

Country Link
KR (1) KR100296878B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101320391B1 (en) * 2011-07-18 2013-10-23 삼성에스디아이 주식회사 Positive active material for lithium secondary battery, preparing method thereof, positive electrode including the same, and lithium secondary battery employing the same
KR101724011B1 (en) 2013-03-28 2017-04-06 삼성에스디아이 주식회사 Method for producing cathode active material for lithium secondary battery and lithium secondary battery including cathode active material
KR101963571B1 (en) 2018-10-12 2019-03-29 유지씨 주식회사 Corrosion reinforcement repair link unit embedded in a concrete building and repair method of corrosion rebar using the link unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660867A (en) * 1992-04-24 1994-03-04 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH10177859A (en) * 1996-12-18 1998-06-30 Ricoh Co Ltd Electrode for non-aqueous electrolyte battery and non-aqueous secondary battery using the same
JPH10302768A (en) * 1997-04-24 1998-11-13 Fuji Photo Film Co Ltd Lithium ion nonaqueous electrolytic secondary battery
JPH10326621A (en) * 1997-03-28 1998-12-08 Fuji Photo Film Co Ltd Lithium ion non-aqueous electrolyte secondary battery
JPH11111291A (en) * 1997-10-06 1999-04-23 Mitsui Mining & Smelting Co Ltd Positive electrode material for nonaqueous secondary battery and battery using this
WO1999030378A1 (en) * 1997-12-05 1999-06-17 Minnesota Mining And Manufacturing Company Modified lithium vanadium oxide electrode materials; products and methods

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660867A (en) * 1992-04-24 1994-03-04 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH10177859A (en) * 1996-12-18 1998-06-30 Ricoh Co Ltd Electrode for non-aqueous electrolyte battery and non-aqueous secondary battery using the same
JPH10326621A (en) * 1997-03-28 1998-12-08 Fuji Photo Film Co Ltd Lithium ion non-aqueous electrolyte secondary battery
JPH10302768A (en) * 1997-04-24 1998-11-13 Fuji Photo Film Co Ltd Lithium ion nonaqueous electrolytic secondary battery
JPH11111291A (en) * 1997-10-06 1999-04-23 Mitsui Mining & Smelting Co Ltd Positive electrode material for nonaqueous secondary battery and battery using this
WO1999030378A1 (en) * 1997-12-05 1999-06-17 Minnesota Mining And Manufacturing Company Modified lithium vanadium oxide electrode materials; products and methods

Also Published As

Publication number Publication date
KR20010002212A (en) 2001-01-05

Similar Documents

Publication Publication Date Title
KR20060111393A (en) New system of lithium ion battery containing material with high irreversible capacity
US20130260249A1 (en) Lithium ion secondary battery and method for preparing the same
KR20170050677A (en) Composite positive electrode active material, preparing method thereof, and lithium secondary battery including positive electrode comprising the same
KR20180014955A (en) Lithium cobalt composite oxide for lithium secondary battery and lithium secondary battery including positive electrode comprising the same
KR100922685B1 (en) Cathode active material for lithium secondary battery
US9748555B1 (en) Ni—Mn composite oxalate powder, lithium transition metal composite oxide powder and lithium ion secondary battery
KR20180014956A (en) Lithium cobalt composite oxide for lithium secondary battery and lithium secondary battery including positive electrode comprising the same
CA2210489A1 (en) Delithiated cobalt oxide and nickel oxide phases and method of preparing same
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this
JP2001297761A (en) Positive electrode activator for nonaqueous electrolyte secondary cell
KR100296878B1 (en) Positive active material for lithium secondary battery and lithium secondary battery comprising the same
KR100436708B1 (en) Negative active material composition and lithium battery containing anode plate prepared from the same
KR100434547B1 (en) Lithium metal oxide cathode and lithium secondary battery using the same
KR100326458B1 (en) Positive active material for lithium secondary battery and lithium secondary battery by using the same
KR100300330B1 (en) A positive active material for a lithium battery
KR100570649B1 (en) Negative active material for rechargeable lithium battery and rechargeable lithium battery
JP2000188095A (en) Lithium-ion secondary battery
KR100274235B1 (en) Cathode active material for lithium ion secondary battery
KR100424638B1 (en) Method of preparing positive active material for rechargeable lithium batteries and preparing the same
JP2003109593A (en) Nonaqueous electrolyte secondary battery and manufacturing method of the same
KR100307164B1 (en) Positive active material for lithium secondary battery and lithium secondary battery comprising the same
KR100578865B1 (en) A positive active material for a lithium secondary battery and a lithium secondary battery comprising the same
KR100307159B1 (en) A positive active material for a lithium secondary battery
JPH09293510A (en) Positive electrode material for nonaqueous electrolyte secondary battery and its manufacture
KR100300332B1 (en) Positive active material for lithium secondary battery and lithium secondary by using the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130422

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20140423

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20150421

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20160419

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20170424

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20180503

Year of fee payment: 18

FPAY Annual fee payment

Payment date: 20190502

Year of fee payment: 19

EXPY Expiration of term