KR100271014B1 - A prosthetic device comprising elastin or elastin-based biomaterial and the producing process thereof - Google Patents

A prosthetic device comprising elastin or elastin-based biomaterial and the producing process thereof Download PDF

Info

Publication number
KR100271014B1
KR100271014B1 KR1019997008869A KR19997008869A KR100271014B1 KR 100271014 B1 KR100271014 B1 KR 100271014B1 KR 1019997008869 A KR1019997008869 A KR 1019997008869A KR 19997008869 A KR19997008869 A KR 19997008869A KR 100271014 B1 KR100271014 B1 KR 100271014B1
Authority
KR
South Korea
Prior art keywords
elastin
support component
biocompatible material
layer
based biomaterial
Prior art date
Application number
KR1019997008869A
Other languages
Korean (ko)
Inventor
그레고리켄톤더블유.
그룬켐마이어존
Original Assignee
플래쳐 존
시스터즈 오브 프로비던스 인 오리건
그레고리 켄톤 더블유.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/341,881 external-priority patent/US5989244A/en
Application filed by 플래쳐 존, 시스터즈 오브 프로비던스 인 오리건, 그레고리 켄톤 더블유. filed Critical 플래쳐 존
Application granted granted Critical
Publication of KR100271014B1 publication Critical patent/KR100271014B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/0063Implantable repair or support meshes, e.g. hernia meshes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • A61F2/915Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes with bands having a meander structure, adjacent bands being connected to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/02Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising animal or vegetable substances, e.g. cork, bamboo, starch
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/072Encapsulated stents, e.g. wire or whole stent embedded in lining
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/075Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0073Quadric-shaped
    • A61F2230/0078Quadric-shaped hyperboloidal

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

본 발명은 엘라스틴 또는 엘라스틴-기초 생체 적합 물질을 이용하는 인공 보철물 장치 및 그의 제조 방법에 관한 것이다.The present invention relates to an artificial prosthetic device using a elastin or elastin-based biocompatible material and a method of making the same.

Description

엘라스틴 또는 엘라스틴-기초 생체 적합 물질을 이용한 인공 보철물 장치 및 그의 제조 방법{A PROSTHETIC DEVICE COMPRISING ELASTIN OR ELASTIN-BASED BIOMATERIAL AND THE PRODUCING PROCESS THEREOF}A prosthetic device using a elastin or an elastin-based biomaterial and a method for manufacturing the same.A PROSTHETIC DEVICE COMPRISING ELASTIN OR ELASTIN-BASED BIOMATERIAL AND THE PRODUCING PROCESS THEREOF

본 발명은 엘라스틴 또는 엘라스틴-기초 생체 적합 물질, 및 조직 재생과 대체에 이를 이용하는 방법에 관한 것이다. 본 발명은 추가로 기존 조직에 엘라스틴 또는 엘라스틴-기초 생체 적합 물질을 고정시키는 방법에 관한 것이다.The present invention relates to elastin or elastin-based biocompatible materials and methods of using them for tissue regeneration and replacement. The invention further relates to a method of immobilizing elastin or elastin-based biomaterials in existing tissues.

엘라스틴은 포유 동물의 어디에나 있는 세포외 세포간질 단백질이다. 엘라스틴은 예를 들면, 강도, 탄성 및 유연성이 있는 피부, 혈관, 및 폐 조직에서 발견된다. 첨언하면, 정상 동맥의 내탄성막(IEL)과 외탄성막(EEL)에 널리 분포되어 있는 엘라스틴은, 평활근 세포가 동맥 내막으로 이동하는 것을 방지할 수도 있다. 가용된 펩티드 형태의 엘라스틴은 소판 유도 인자들(platelet-derived factors)에 대해 평활근 세포의 이동을 억제하는 것을 나타내왔다(Ooyama et al, Arterio- sclerosis 7:593 (1987)). 엘라스틴 중복 헥사펩티드들은 소의 대동맥 내피 세포에 대해 친화력이 있고(Long et al, J. Cell. Physiol. 140:512 (1989)), 엘라스틴 노나펩티드들은 섬유아세포에 대해 친화력이 있는 것으로 보여 왔다(미국 특허 제 4,976,734 호). 본 발명은 엘라스틴의 이와 같은 물리적 및 생화학적 특성을 이용한 것이다. 풍선 혈관형성술에 의해 개방된 아테롬성동맥경화성 협착증의 30∼40%는 내세포(medial cell)의 내식(ingrowth)에 의해 재협착된다. 동맥 내막으로의 평활근 내식은, 탄성막의 찢김이나 상실을 야기시키는 풍선 혈관형성술, 혈관 문합, 또는 그외 혈관 외상으로부터의 심각한 확장 상처에서와 같이 동맥의 IEL이 찢기거나, 뜯기거나 상실된 동맥 부위에서 전반적인 것으로 나타난다. 동맥 혈관벽의 재생이 상처 후에 일어나는 동안에는, 엘라스틴 구조 IEL과 EEL이 인식되지 않는다. 이러한 성분들이 주로 구조적 및 조절적 역할을 하기 때문에, 이들의 파괴는 근육 세포의 이동을 수반한다.Elastin is an extracellular cytoplasmic protein found everywhere in mammals. Elastin is found, for example, in skin, blood vessels, and lung tissue that is of strength, elasticity and flexibility. Incidentally, elastin widely distributed in the inner elastic membrane (IEL) and the outer elastic membrane (EEL) of the normal artery can prevent the smooth muscle cells from moving to the inner artery. Elastin in the form of soluble peptides has been shown to inhibit smooth muscle cell migration to platelet-derived factors (Ooyama et al, Arterio- sclerosis 7: 593 (1987)). Elastin overlapping hexapeptides have been shown to have affinity for bovine aortic endothelial cells (Long et al, J. Cell. Physiol. 140: 512 (1989)), and elastin nonapeptides have shown affinity for fibroblasts (US patent). 4,976,734). The present invention takes advantage of these physical and biochemical properties of elastin. 30-40% of atherosclerotic stenosis opened by balloon angioplasty is re-stenosis by the ingrowth of medial cells. Smooth muscle corrosion to the endocardium is general at the site of the artery where the IEL is torn, torn or lost, such as balloon angioplasty, vascular anastomosis, or other severe dilated wounds from vascular trauma that cause tearing or loss of the elastic membrane. appear. While regeneration of the arterial vessel wall occurs after the wound, the elastin structures IEL and EEL are not recognized. Because these components mainly play a structural and regulatory role, their destruction involves the movement of muscle cells.

종국에, 동맥류 파열을 초래하는 혈관벽의 약화 및, 최소한으로 국부적인 엘라스틴 이상에 의한 그 외의 사상(event)을 수반하는 질병도 있다.Eventually, there are also diseases involving weakening of the blood vessel walls leading to aneurysm rupture and other events caused by minimal local elastin abnormalities.

혈관의 스텐트와 같은 인공 보철 장치가 성공적으로 사용되어 손상에 이은 근육 세포의 내식으로 야기되는 혈관벽의 재폐색증 또는 재협착증의 문제를 해결해왔다. 하지만, 이들을 사용하는 것이 곧잘 혈전증을 유발시킨다. 또한, 인공 보철 장치들은 잠재하고 있는 아테롬성동맥경화증을 악화시킬 수 있다. 그럼에도 불구하고 인공 보철물이 흔히 사용되고 있다.Artificial prosthetic devices, such as stents in blood vessels, have been successfully used to solve the problem of vascular occlusion or restenosis caused by corrosion of muscle cells following damage. However, their use soon leads to thrombosis. In addition, prosthetic devices can exacerbate latent atherosclerosis. Nevertheless, prosthetics are commonly used.

비교적 최근까지, 조직에 인공 보철 물질(또는 조직에 조직)을 확보시키는 데 유용한 주요 방법으로는 봉합술 또는 꺽쇠의 사용이 포함되어 왔다. 피브린 아교, 트롬빈으로 폴리머화된 피브린 폴리머도 조직 봉합제와 지혈제로 사용되어 왔다(주로 유럽에서).Until relatively recently, the main method useful for securing artificial prosthetic material (or tissue in tissue) has included the use of sutures or cramps. Fibrin polymers polymerized with fibrin glue, thrombin have also been used as tissue sealants and hemostatic agents (mainly in Europe).

피브린, 콜라겐 및 그 외 단백질의 열융합에 의해 발생된다고 여겨지는, 동맥 자상 조직의 접합에 레이저 에너지가 효과적인 것으로 나타나왔다. 감광성 염료의 이용은 표적 부위에 레이저 에너지의 선별적 전달을 증진시키고 보다 낮은 출력의 레이저 시스템을 가능하게 하는데, 양자의 인자들 모두는 바람직하지 못한 열손상의 범위를 줄이게 된다.Laser energy has been shown to be effective in the bonding of arterial autologous tissues, which are believed to be caused by thermal fusion of fibrin, collagen and other proteins. The use of photosensitive dyes enhances the selective delivery of laser energy to the target site and enables lower power laser systems, both of which reduce the extent of undesirable thermal damage.

본 발명은 레이저 접합 기술의 장점과 엘라스틴-기초 생성물의 장점을 결합시켜, 조직 재생 및 대체에 대한 독특한 방법을 제공하는 것이다. 본 발명은 선행 기술로부터 기지된 인공 보철물에 관한 문제점이 실질적으로 해결된, 실용성이 있는 조직 인공 보철물(특히, 혈관 인공 보철물)을 제조하는 것이다.The present invention combines the advantages of laser bonding technology with the advantages of elastin-based products to provide a unique method for tissue regeneration and replacement. The present invention is to produce a practical tissue artificial prosthesis (particularly a vascular prosthesis) in which the problem with the artificial prosthesis known from the prior art is substantially solved.

일반적으로, 본 발명의 목적은 조직의 재생 또는 대체에 유효한 방법을 제공하는 것이다.In general, it is an object of the present invention to provide a method effective for the regeneration or replacement of tissue.

특정적으로는, 예컨대 혈관 스텐트와 같은 스텐트용이나, 동맥, 정맥 또는 수뇨관 대체물을 예로 들 수 있는 맥관 대체물용으로 알맞은 엘라스틴 또는 엘라스틴-기초 생체 적합 물질을 제공하는 것이 본 발명의 목적이 된다. 이 생체 적합 물질은 스텐트나, 맥관의 외피 또는 내층으로서도 사용할 수 있다.In particular, it is an object of the present invention to provide an elastin or elastin-based biocompatible material suitable for stents such as, for example, vascular stents, or for vasculature replacements such as arterial, venous or ureteric replacements. This biocompatible material can also be used as a stent or the outer shell or inner layer of the vessel.

본 발명의 추가 목적은 관강벽 재생용의 엘라스틴 또는 엘라스틴-기초 이식 조직을 제공하는 것이다.It is a further object of the present invention to provide elastin or elastin-based transplant tissue for lumen regeneration.

조직의 대체 또는 재생, 예컨대 내부 포낭의 재생 또는 대체, 또는 장이나 식도, 결장의 재생 또는 대체, 피부의 재생 또는 대체의 용도에 알맞은 엘라스틴 또는 엘라스틴-기초 물질을 제공하는 것이 본 발명의 또다른 목적이 된다.It is another object of the present invention to provide an elastin or elastin-based material suitable for the replacement or regeneration of tissue, such as regeneration or replacement of internal cysts, or regeneration or replacement of the intestine or esophagus, colon, regeneration or replacement of the skin. Becomes

엘라스틴 또는 엘라스틴 기초 생체 적합 물질을 기존 조직에 봉합술이나 꺽쇠를 사용하지 않고 확보시키는 방법을 제공하는 것도 또한 본 발명의 목적이 된다.It is also an object of the present invention to provide a method for securing an elastin or elastin based biocompatible material to existing tissue without the use of sutures or cramps.

본 발명은 신체 조직 부위를 지지 또는 재생, 대체하는 방법에 관한 것이다. 이 방법은 엘라스틴 또는 엘라스틴-기초 생체 적합 물질을 그 조직 섹션 부위에 배치시키고, 이 생체 적합 물질을 이 섹션 부위의 주위 조직이나 주위 섹션과 접합시키는 것으로 이루어진 것이다. 이 접합은 생체 적합 물질과 섹션 부위의 주위 조직 또는 주위 섹션이, 상기 접합이 유효하게 되는 점에서 에너지 흡수 물질과 접하게 됨으로써 효과적이게 된다. 그 후에, 이 섹션 부위의 주위 조직이나 주위 섹션과 접합시키기에 충분하고 상기 에너지 흡수 물질에 의해 흡수 가능한 에너지량으로 이 생체 적합 물질을 노출시킨다.The present invention relates to a method of supporting, regenerating or replacing a body tissue part. The method consists of placing an elastin or elastin-based biocompatible material at the tissue section site and conjugating the biocompatible material with the surrounding tissue or peripheral section at this section site. This conjugation is effective by bringing the biocompatible material and the surrounding tissue or peripheral section of the section site into contact with the energy absorbing material in that the conjugation becomes effective. Thereafter, the biocompatible material is exposed to an amount of energy sufficient to bond with the surrounding tissue or surrounding section of this section site and absorbable by the energy absorbing material.

보다 상세하게는, 각각 제 1 또는 제 2 외표면을 갖는 엘라스틴 또는 엘라스틴-기초 생체 적합 물질 층 및 조직 기질과, 이 외표면의 적어도 하나에 적용되는 에너지 흡수 물질로 구성되고, 이 에너지 흡수 물질이 생체 적합 물질에 침투하는 본 발명에 의한 방법을 이용하여 조직-융합성 엘라스틴 또는 엘라스틴-기초 생체 적합 물질이 제공될 수 있다.More specifically, it consists of an elastin or elastin-based biomaterial layer and a tissue substrate, each having a first or second outer surface, and an energy absorbing material applied to at least one of the outer surfaces, the energy absorbing material being Tissue-compatible elastin or elastin-based biocompatible materials may be provided using the method according to the invention to penetrate biocompatible materials.

이 에너지 흡수 물질은 소정의 광 파장 범위내에서 에너지를 흡수한다. 소정의 파장 범위로 광에너지가 조사될 경우에, 그 빛의 강도가 조직 기질과 엘라스틴 또는 엘라스틴-기초 생체 적합 물질의 제 1 또는 제 2 외표면 중의 하나를 서로 융합시키기에 충분할 수 있도록, 에너지 흡수 물질이 선택된다. 바람직하게는, 엘라스틴 또는 엘라스틴-기초 생체 적합 물질의 제 1 또는 제 2 외표면이 주표면이 된다. 주사되는 광에너지가 엘라스틴 또는 엘라스틴-기초 생체 적합 물질 또는 조직 기질을 먼저 투과한 후에, 에너지 흡수 물질과 접하게 됨으로써, 이 에너지 흡수 물질은 간접 조사되는 것이 전형적인 것이다.This energy absorbing material absorbs energy within a predetermined light wavelength range. When light energy is irradiated in a predetermined wavelength range, the energy absorption is such that the intensity of the light may be sufficient to fuse the tissue substrate and one of the first or second outer surfaces of the elastin or elastin-based biocompatible material to each other. The substance is selected. Preferably, the first or second outer surface of the elastin or elastin-based biocompatible material is the major surface. It is typical for the energy absorbing material to be indirectly irradiated by the light energy being injected first penetrating the elastin or elastin-based biomaterial or tissue substrate and then contacting the energy absorbing material.

본 발명에 의한 바람직한 공정에서는, 이 에너지 흡수 물질이 생체 적합성이 높은 발색단을 함유하고, 보다 바람직하게는 에너지 흡수 염료를 함유한다. 본 발명의 한 가지 유형에서는, 엘라스틴 또는 엘라스틴-기초 생체 적합 물질과 조직 기질이 서로 융합될 때, 이 에너지 흡수 물질은 실질적으로 사라지게 된다. 본 발명의 다른 유형에서는, 이 에너지 흡수 물질은 엘라스틴 또는 엘라스틴-기초 생체 적합 물질의 제 1 또는 제 2 외표면 염색용 물질로 이루어진다.In a preferred process according to the present invention, this energy absorbing substance contains a biocompatible chromophore, more preferably an energy absorbing dye. In one type of the invention, when the elastin or elastin-based biocompatible material and tissue substrate are fused together, this energy absorbing material is substantially lost. In another type of the invention, this energy absorbing material consists of a material for first or second outer surface staining of elastin or elastin-based biocompatible material.

에너지 흡수 물질은 또한 이 에너지 흡수 물질로 분리 엘라스틴층을 도핑한 후에 이 도핑된 분리 엘라스틴층을 엘라스틴 또는 엘라스틴-기초 엘라스틴에 융합시켜, 생체 적합 물질의 외표면 중의 하나에 적용시킬 수도 있다. 어떠한 경우에서든지, 이 에너지 흡수 층은 외표면의 적어도 하나에 실질적으로 균일하게 적용되는것이 바람직하며, 이 에너지 흡수 물질이 엘라스틴 또는 엘라스틴-기초 생체 적합 물질 외표면 전체를 실질적으로 덮는 방식이 전형적인 것이다.The energy absorbing material may also be fused to the elastin or elastin-based elastin and then applied to one of the outer surfaces of the biocompatible material after doping the separating elastin layer with the energy absorbing material. In any case, the energy absorbing layer is preferably applied substantially uniformly to at least one of the outer surfaces, which is typical of the manner in which the energy absorbing material substantially covers the entire outer surface of the elastin or elastin-based biocompatible material.

엘라스틴 또는 엘라스틴-기초 생체 적합 물질과 조직 기질을 융합시키는 것에 대한, 본 발명에 의한 방법의 주안점이 되는 몇 가지 성질에는, 에너지 흡수 물질이 광에너지로 조사되는 동안의 파장, 에너지 레벨, 흡수 및 빛의 세기 등의 크기와, 에너지 흡수 물질의 농도가 포함된다. 이 조직 기질과 엘라스틴 또는 엘라스틴-기초 생체 적합 물질의 제 1 또는 제 2 외표면 중의 하나를 서로 융합시킬 수 있을만한 시간으로 광에너지가 조사되는 동안의 온도는 약 40∼140 ℃, 좀더 바람직하게는 약 50∼100 ℃ 정도가 될 수 있도록 조정 배열한다. 또한, 이와 같은 바람직한 본 발명의 방법에서, 에너지 흡수 물질의 평균 두께는 약 0.5∼300 미크론 정도가 된다.Several properties that are the focus of the method according to the invention for fusing elastin or elastin-based biomaterials and tissue substrates include wavelengths, energy levels, absorption, and light while the energy absorbing material is irradiated with light energy. The magnitude of the intensity and the like, and the concentration of the energy absorbing material. The temperature during which the light energy is irradiated at such a time that the tissue substrate and one of the first or second outer surfaces of the elastin or elastin-based biocompatible material can be fused to each other is about 40 to 140 ° C., more preferably Adjust the arrangement so that it can be about 50 to 100 ° C. In addition, in this preferred method of the invention, the average thickness of the energy absorbing material is on the order of about 0.5 to 300 microns.

추가적인 본 발명의 목적 및 장점은 다음에 기술된 내용으로부터 명확해질 것이다.Further objects and advantages of the invention will be apparent from the following description.

도 1은 생체 적합 물질과 노출된 천연 조직에 레이저 에너지를 적용시키는 것을 도시한 것이다.1 illustrates the application of laser energy to a biocompatible material and exposed natural tissue.

도 2는 엘라스틴 생체 적합 물질의 동맥 배치를 도시한 것이다.2 shows arterial placement of elastin biocompatible materials.

도 3은 장 패치로서의 생체 적합 물질의 용도를 도시한 것이다.3 illustrates the use of biocompatible materials as enteric patches.

도 4는 엘라스틴-기초 생체 적합 물질(엘라스틴, 피브리노겐 및 트롬빈을 이용하여 라바우드(Rabaud) 등에 의한 방법으로 제조함)의 전자 현미경 스캐닝을 도시한 것이다.FIG. 4 shows electron microscopic scanning of elastin-based biocompatible materials (prepared by Rabaud et al. Using elastin, fibrinogen and thrombin).

도 5는 펄스 다이오드 레이저를 사용하여 돼지의 대동맥에 융합시킨 엘라스틴-기초 생체 적합 물질의 광학 현미경 사진으로서, E는 엘라스틴 생체 적합 물질이며, A는 대동맥이다.5 is an optical micrograph of an elastin-based biocompatible material fused to aorta of a pig using a pulsed diode laser, where E is the elastin biomaterial and A is the aorta.

도 6은 돼지의 경동맥에 접합시킨 동맥 분해물로부터 유도된 엘라스틴-기초 생체 적합 물질의 광학 현미경 사진으로서, E는 엘라스틴 생체 적합 물질이며, A는 대동맥이다.FIG. 6 is an optical micrograph of elastin-based biomaterials derived from arterial lysates conjugated to the carotid arteries of pigs, where E is the elastin biomaterial and A is the aorta.

본 발명은 엘라스틴-기초 생체 적합 물질, 및 이러한 생체 적합 물질을 레이저 에너지를 이용하여 조직에 접합시키는 방법에 관한 것이다. 본 발명에서 사용하기에 알맞은 엘라스틴-기초 생체 적합 물질은, 예를 들면, 라바우드 등에 의해 개시된 것(미국 특허 제 5,223,420 호)으로서, 엘라스틴(예컨대, 소의 목덜미 인대로부터의), 피브리노겐 및 트롬빈으로부터 준비할 수 있다(Aprahamian 등의, J. Biomed. Mat. Res. 21:965 (1987); Rabaud 등의, Thromb. Res. 43:205 (1986); Martin의, Biomaterials 9:519 (1988) 또한 참고). 이러한 생체 적합 물질들은 어떤 유형의 조직 재생에서 유리하게 작용할 수도 있는 트롬보겐적 성질과 관련이 있을 수 있다. 또한, 본 발명에서 사용하기에 적합한 엘라스틴-기초 생체 적합 물질은, 라바우드와 그의 동료들에 의해 개시된 바에 의해, 엘라스틴과 유형 III 콜라겐으로부터도 제조할 수 있다(Lefebvrre 등의, Biomaterials 13(1): 28∼33 (1992)). 이와 같은 조제품들은 트롬보겐 성질이 없어서, 혈관 스텐트 등으로 사용 가능하다. 본 발명에 사용되기에 알맞은 엘라스틴-기초 생체 적합 물질의 추가 유형으로는, 우리(Urry) 등에 의해 개시된 바(예컨대, 미국 특허 제 4,132,746 호와 4,500,700 호 참고)와 같이 제조된 것이 있다(미국 특허 제 4,187,852 호, 4,589,882 호, 4,693,718 호, 4,783,523 호, 4,870,055 호, 5,064,430 호 및 5,336,256 호도 또한 참고). 엘라스틴 함유 조직(예컨대, 동맥)의 분해 작용에 의한 엘라스틴 세포간질도 사용 가능하다. 이 분해 작용은 세포, 단백질 및 지방의 제거를 야기시키지만, 엘라스틴 세포간질은 그대로 유지된다. 사용된 생체 적합 물질은 특정적인 적용에 속하게 될 것이다.The present invention relates to elastin-based biomaterials and methods of conjugating such biomaterials to tissues using laser energy. Elastin-based biocompatible materials suitable for use in the present invention are, for example, those disclosed by Lavaud et al. (US Pat. No. 5,223,420), which are prepared from elastin (eg, from the nasal ligament of a bovine), fibrinogen and thrombin. See also Aprahamian et al., J. Biomed. Mat. Res. 21: 965 (1987); Rabaud et al., Thromb. Res. 43: 205 (1986); Martin, Biomaterials 9: 519 (1988). ). Such biocompatible materials may be associated with thrombogenic properties that may favorably act in any type of tissue regeneration. In addition, elastin-based biocompatible materials suitable for use in the present invention can also be prepared from elastin and type III collagen, as disclosed by Labaud and colleagues (Lefebvrre et al., Biomaterials 13 (1)). : 28-33 (1992). These preparations do not have thrombogen properties, so they can be used as vascular stents. Further types of elastin-based biocompatible materials suitable for use in the present invention are those prepared as disclosed by Urry et al. (See, eg, US Pat. Nos. 4,132,746 and 4,500,700) (US Pat. See also 4,187,852, 4,589,882, 4,693,718, 4,783,523, 4,870,055, 5,064,430 and 5,336,256. Elastin interstitial can also be used by the degradation of elastin-containing tissues (eg, arteries). This degradation leads to the removal of cells, proteins and fats, but elastin interstitial remains intact. The biocompatible material used will fall under certain applications.

가용성 엘라스틴으로부터 제조된 본 발명의 엘라스틴-기초 생체 적합 물질(라바우드 등의 상기한 바를 참고)은 어떤 특정 목적 용도에 알맞은 크기와 모양으로 주형할 수도 있다. 주형 생체 적합 물질은 다음과 같이 제조할 수 있다. 엘라스틴(예컨대, 가용성 엘라스틴; MW 12~32,000 daltons)을 씻어 완충제에 불린다. 피브리노겐 또는 한성 글로불린(예컨대, Pool 등의, New Engl. J. Med. 273 (1975)에 개시된 바에 의해 제조함)을 불린 엘라스틴에 첨가한 후에, 프로테아제 억제 인자(아프로티닌 등)가 함유되거나 함유되지 않은 티오우레아와 콜라겐을 첨가한다. 트롬빈을 교반시키면서 첨가하고 생성 혼합물을 즉시 적절한 주형에 쏟아 붓는다. 그 후에, 이 주형을 피브린/엘라스틴 물질의 폴리머화가 진행될 수 있을 동안으로, 편리하게는 15 분에서 1 시간 사이로 숙성시키고, 바람직하게는 30 분 정도를 숙성시킨다(예컨대, 37 ℃에서). 이 반응은 37 ℃ 미만의 온도에서 수행할 수도 있지만, 77 ℃에서 보다 신속하게 반응이 진행된다. 하지만, 이 반응을 40 ℃ 이상으로 가열하면, 트롬빈의 변성이 초래될 수 있다. 교반하면서 하는 혼합물의 냉각은 혼합에 보다 많은 시간이 걸리게 한다. 폴리머화가 발현되는 데는 완충제에 칼슘과 마그네슘을 함유하는 것, 및 변성되지 않은 트롬빈을 사용하는 것이 중요하다.The elastin-based biocompatible materials of the present invention made from soluble elastin (see above, such as Laboud) may be molded into sizes and shapes suitable for any particular purpose application. Template biocompatible materials can be prepared as follows. Elastin (eg soluble elastin; MW 12-32,000 daltons) is washed and called buffer. After addition of fibrinogen or Hans globulin (e.g., as disclosed in New Engl. J. Med. 273 (1975) to Pool et al.) To soaked elastin, a protease inhibitory factor (such as aprotinin) may or may not be contained. Add thiourea and collagen. Thrombin is added with stirring and the resulting mixture is immediately poured into a suitable mold. Thereafter, the template is aged for 15 minutes to 1 hour, and preferably for 30 minutes (for example, at 37 ° C.), while the polymerization of the fibrin / elastin material can proceed. This reaction may be carried out at a temperature below 37 ° C., but the reaction proceeds more rapidly at 77 ° C. However, heating this reaction above 40 ° C. can lead to denaturation of thrombin. Cooling the mixture while stirring takes more time to mix. It is important to use calcium and magnesium in the buffer and to use unmodified thrombin for the polymerization to be expressed.

주형에서의 폴리머화 이후에, 생성된 생체 적합 물질은 감마 방사선이나 글루타르알데히드와 같은 제제(바람직하게는, 글루타르알데히드, 포름산 및 피크르산의 용액)를 사용하여 추가로 가교시킬 수 있다. 방사선을 이용할 경우, 이 샘플들은 코발트-60의 광선원으로 감마선 처리되는 것이 편리하다. 그 조사량은, 예를 들자면 10∼100 MRAD의 범위 정도가 되고, 25 MRAD 정도가 바람직하다. 감마선의 조사량이 물질의 강도에 영향을 미친다고 알려져 있다(Aparahamian의, J. Biomed. Mat. Res. 21:965 (1987)).After polymerization in the template, the resulting biocompatible material can be further crosslinked using an agent such as gamma radiation or glutaraldehyde (preferably a solution of glutaraldehyde, formic acid and picric acid). When using radiation, these samples are conveniently gamma-irradiated with a cobalt-60 light source. The irradiation dose is, for example, in the range of 10 to 100 MRAD, and preferably about 25 MRAD. It is known that the amount of gamma radiation affects the strength of the material (Aparahamian, J. Biomed. Mat. Res. 21: 965 (1987)).

생체 적합 물질의 박판은 적절한 주형을 사용하여 두께를 조정하여 제조할 수 있다. 생체 적합 물질의 박판은, 예를 들면, 200 미크론에서 5 mm까지의 두께 범위로 제조할 수 있다. 일반적으로 그 강도가 충분히 유지되는 한, 박판은 레이저 에너지가 투과할 수 있도록 최대한 얇게 제조된다. 실시예의 방법에 있어서, 장 패치로서의 용도에 알맞은 박판은 200 미크론에서 5 mm 정도의 두께 범위가 될 수 있다. 낭으로서의 용도의 패치와 같이 보다 큰 강도가 요구되는 패치는 전형적으로 한층더 두껍다. 동맥의 스텐트 또는 패치는 보다 얇게 제조될 수 있다(예컨대, 100∼1000 ㎛).Thin sheets of biocompatible material can be prepared by adjusting the thickness using an appropriate mold. Sheets of biocompatible materials can be produced, for example, in a thickness range from 200 microns to 5 mm. In general, as long as the strength is sufficiently maintained, the thin plates are made as thin as possible so that laser energy can be transmitted. In the method of the embodiment, the thin plate suitable for use as an enteric patch may range in thickness from 200 microns to 5 mm. Patches that require greater strength, such as patches for use as sacs, are typically thicker. Stents or patches of arteries can be made thinner (eg, 100-1000 μm).

또한, 가용성 엘라스틴이나 불용성 엘라스틴 조각들로부터 제조된 생체 적합 물질은 관상 조각으로도 주형할 수 있는데, 예를 들자면, 관상의 주형에 이 물질을 주입하여 주형하는 것이 가능하다. 내관과 외관 사이에 존재하는 엘라스틴 용액을 가교시키는 것은, 주형에서 이 생체 적합 물질을 끌어내기 전, 또는 이 관들을 제거한 그 후에 이루어질 수 있다. 다양한 내경과 외경, 및 다양한 길이의 관상 조각들은, 내관과 외관의 직경을 변화시키는 이러한 접근 방법을 이용하여 제조할 수 있다. 내관과 외관의 직경을 변화시킴으로써, 이와 같은 유형의 주형은 사실상 어떤 크기로든 제조할 수 있다. 작은 관은 관상 동맥 스텐트로 사용할 수 있다. 직경 1∼5 인치의 큰 관을 제조하여, 소장 또는 결장의 문합술 용도의 모진 부분의 접합용 패치로서 사용한다. 다양한 주형 기술과 물질들을 사용할 수 있으며, 전술한 바는 단지 그 일례일 뿐이다.In addition, biocompatible materials made from soluble elastin or insoluble elastin pieces may also be molded into tubular pieces, for example by injecting the material into a tubular mold. Crosslinking the elastin solution present between the inner tube and the outer tube can be accomplished before drawing the biocompatible material out of the mold or after removing the tubes. Tubular pieces of various inner and outer diameters, and of varying lengths, can be made using this approach to varying the diameter of the inner tube and the outer tube. By varying the diameter of the inner tube and the exterior, this type of mold can be produced in virtually any size. Small tubes can be used as coronary stents. A large tube of 1 to 5 inches in diameter is produced and used as a patch for joining the parent portion for anastomosis of the small intestine or colon. Various mold techniques and materials may be used, and the foregoing is just one example.

상기한 바와 같이, 본 발명에 사용하기에 알맞은 생체 적합 물질은 엘라스틴 세포간질을 함유하는 분해물로부터 제조될 수도 있다. 출발 물질로서 사용하기에 알맞은 조직으로는 동맥(예컨대, 돼지 등의 관상 동맥 또는 대퇴 동맥), 탯줄, 장, 수뇨관 등이 포함된다. 이 세포간질 물질은 생물 적합성을 증가시킬 수 있도록 이식되는 동물과 같은 동물류로부터 유도되는 것이 바람직하다. 세포외의 엘라스틴 세포간질을 그대로 남길 수만 있다면, 이 천연 세포간질로부터 세포질 물질, 단백질 및 지방을 제거하는(분해물과 분리시키는) 그 어떤 방법이 이용될 수 있다. 그 방법에는, 산성, 염기성, 정화(detergent), 효소, 열 또는 부식성의 방법들, 및 유기 용매를 사용하는 것의 조합 방법이 포함된다. 이는 수산화나트륨, 포름산, 트립신, 구아니딘, 에탄올, 디에틸에테르, 아세톤, t-부탄올 등의 용액들에서의 숙성 및 초음파 분해를 포함한다. 전형적으로, 이 분해물은 높은 온도에서 보다 신속하게 진행된다. 숙성의 최적 온도와 시간은 출발 물질과 사용된 분해 제제에 의해 좌우되고, 점진적으로 결정될 수도 있다.As noted above, biocompatible materials suitable for use in the present invention may be prepared from lysates containing elastin cytoplasm. Tissues suitable for use as starting materials include arteries (eg, coronary or femoral arteries such as pigs), umbilical cords, intestines, ureters, and the like. This interstitial material is preferably derived from an animal such as an animal to be transplanted to increase biocompatibility. As long as the extracellular elastin epilepsy can be left intact, any method can be used to remove (separate from the digest) cytoplasmic material, protein and fat from this natural cytoplasm. Such methods include acidic, basic, detergent, enzymatic, thermal or caustic methods, and combinations of using organic solvents. This includes aging and sonication in solutions of sodium hydroxide, formic acid, trypsin, guanidine, ethanol, diethyl ether, acetone, t-butanol and the like. Typically, this degradation product proceeds faster at higher temperatures. The optimum temperature and time of aging depends on the starting material and the degradation agent used and may be determined gradually.

본 발명 기술 분야에서 숙련자라면, 관형 조각이 관상의 출발 물질의 분해물로부터 얻어지긴 하지만, 이 조각들을 잘라 벌려 이식 조직으로서의 용도에 알맞은 박판을 얻을 수 있는 모양이 될 수 있다는 것을 알 수 있을 것이다. 또는, 이러한 조각들을 잘라 벌린 후에, 출발 조직과는 다른 직경을 갖는 관상 조각으로서 개조시킬 수 있다. 하지만, 관형의 생성물이 필요한 경우에는, 후속 조작(길이 조정 이외의 것)을 피할 수 있도록 적절한 직경을 갖는, 분해 작용후의 관형 조각을 얻을 수 있도록 출발 물질을 선택하는 것이 바람직하다.Those skilled in the art will appreciate that although the tubular piece is obtained from the degradation of the tubular starting material, the pieces can be cut open to obtain a shape suitable for use as a transplanted tissue. Alternatively, these pieces can be cut open and then converted into tubular pieces having a different diameter than the starting tissue. However, if a tubular product is required, it is desirable to select the starting material to obtain a tubular piece after the decomposition action with an appropriate diameter so that subsequent manipulations (other than length adjustments) can be avoided.

본 발명의 생체 적합 물질이 엘라스틴 분말로부터 생성되었거나 조직 분해물로부터 생성되었든지, 이 생체 적합 물질은 정상적으로 기존 조직에 확보시키게 된다. 본 발명 기술 분야의 공지 기술을 포함하여, 부착을 유효하게 하는 다양한 기술 방법을 사용할 수 있다. 하지만, 이 생체 적합 물질을, 조직 접합 에너지원과 이로부터 방출되는 에너지를 흡수하는 물질을 이용하여 확보시키는 것이 바람직하다. 이 에너지원이 레이저와 같은 전자기적 에너지원이고, 이 흡수제로는 이 레이저 에너지에 해당되는 흡수 피크를 갖는 염료가 유리하게 된다. 접합되는 엘라스틴 생체 적합 물질과 조직은 이러한 파장에서 훨씬 적은 빛의 흡수를 가지며, 그 효과는 이 염료층 부근 범위로 한정된다. 바람직한 에너지원은 주파장이 약 808 nm를 갖는 레이저 다이오드이고, 바람직한 염료는 인도시아닌그린(ICG)인데, 최대 흡광도 값은 795∼805 nm이다(WO 91/1,4073 참고). 그 외의 레이저/염료 조합을 사용할 수도 있다. 기존 조직에 접해 확보시킬 생체 적합 물질의 해당 부분에 이 염료를 적용시키는 것이 바람직하다. 이 염료는 엘라스틴 생체 적합 물질을 접합 또는 확보시킬 구조 조직의 표면에 적용시킬 수도 있다. 이 염료는 생체 적합 물질에 직접 적용되거나, 이 생체 적합 물질의 표면을 이 생체 적합 물질에 대한 염료의 흡수를 조정하는 조성물로 먼저 처리 또는 코팅(예컨대, 애벌칠)하여, 이 염료가 불연속층 또는 코팅물로서 유지되도록 할 수 있다. 또는, 표면에 확보시켜 물질에 달라붙어 떨어지는 것을 방지할 수 있도록, 이 염료는 엘라스틴 생체 적합 물질을 기초로 할 수도 있다. 이 염료는 용액의 형태로 적용시킬 수 있거나, 박판이나 필름으로서 적용될 수 있는 배지, 바람직하게는 균일한 두께와 염료 농도를 갖는 배지에 이 염료를 용해시키거나 현탁액화시킬 수 있다.Whether the biocompatible material of the present invention is produced from elastin powder or from tissue lysate, the biocompatible material is normally retained in existing tissues. Various technical methods can be used to effect adhesion, including known techniques in the art. However, it is desirable to secure this biocompatible material using a tissue junction energy source and a material that absorbs energy released therefrom. This energy source is an electromagnetic energy source such as a laser, and as this absorbent, a dye having an absorption peak corresponding to this laser energy is advantageous. The elastin biomaterials and tissues to be bonded have much less light absorption at these wavelengths, and the effect is limited to the range near this dye layer. A preferred energy source is a laser diode having a dominant wavelength of about 808 nm, and a preferred dye is indocyannine green (ICG), with a maximum absorbance value of 795-805 nm (see WO 91 / 1,4073). Other laser / dye combinations may also be used. It is desirable to apply this dye to the corresponding portions of the biocompatible material to be secured in contact with existing tissue. The dye may also be applied to the surface of the structural tissue to which the elastin biocompatible material is to be bonded or secured. The dye is applied directly to the biocompatible material, or the surface of the biocompatible material is first treated or coated (eg, primed) with a composition that modulates the absorption of the dye to the biocompatible material so that the dye is discontinuous or coated It can be kept as water. Alternatively, the dye may be based on an elastin biocompatible material so as to be secured to the surface to prevent it from sticking to the material. The dye may be applied in the form of a solution, or the dye may be dissolved or suspended in a medium that can be applied as a thin plate or film, preferably a medium having a uniform thickness and dye concentration.

결합 제제를 이용하는 조직 접합 기술 방법들이 사용될 수 있으며, 이와 같은 기술 방법들은 공지되어 있다(WO 91/04073). 가열에 의한 열적 변성이 되는 어떠한 단백질성 물질이라도 결합제로서 사용할 수 있다(예를 들면, 알부민, 피브로넥틴, 본 윌레브랜드 인자(von Willebrand factor), 비트로넥틴과 같은 혈청 단백질, 또는 단백질이나 펩티드). 트롬빈 폴리머화된 피브리노겐으로 이루어진 결합제가 바람직한데, 이와 같은 물질들은 바람직하지 못한 혈전증이나, 혈관 관강내에서와 같은 곳에서의 응고 현상을 야기시키지 않아야 한다. 생체 적합 물질과 조직 사이의 접합 강도를 보다 크게 부여할 수 있는 성능에 따라 결합제를 선택한다. 결합제는 비독성이어야만 하고 일반적으로 생체 적합성이 높아야 한다.Tissue conjugation techniques using binding agents can be used, such techniques being known (WO 91/04073). Any proteinaceous substance that becomes thermally denatured by heating can be used as a binder (eg, albumin, fibronectin, von Willebrand factor, serum proteins such as Vitronectin, or proteins or peptides). A binder consisting of thrombin polymerized fibrinogen is preferred, which should not cause undesired thrombosis or coagulation, such as in the vascular lumen. The binder is selected according to its ability to give greater bond strength between the biocompatible material and the tissue. The binder should be nontoxic and generally biocompatible.

본 발명에서는, 조직을 노출시켜(예컨대, 수술 방법 중에서), 레이저로부터 레이저 에너지를 표적 부위(예컨대, 염료)에 직접 적용시킬 수 있다. 몇몇의 경우, 즉 외과적으로 개방시켜 노출시킬 수 없는 혈관내 카테테르(catheter)-기초 치료 방법에 있어서는, 레이저 에너지는 광학 섬유를 거쳐 결합 부위에 직접 적용된다. ICG가 염료로서 사용될 경우, 800 nm 부근의 표적 매개 파장이 사용될 수 있다. 이와 같은 파장은 다수의 조직, 특히 혈관 조직에 의해 잘 흡수되지 않기에, 이러한 조직에 대해 효과가 거의 없을 것이며, 열적 효과는 이 염료층으로만 한정될 것이다. 에너지 흡수 염료에 대해서와 같이, 본 발명에 의한 생체 적합 물질도 마찬가지로 이와 같은 주파수대에서 광학 흡수가 있다. 따라서, 이 레이저 에너지는 생체 적합 물질 또는 천연 조직을 투과하여, 도 1에 도시한 바와 같이 염료층에 흡수될 수 있다. 외과의가 생체 적합 물질 보강물 또는 대체물이 적용될 표면이나 혈관을 노출 시키기만 한다면, 이 생체 적합 물질의 염료 함유 표면을 그 부위에 천연 조직과 접하게 배치하고, 레이저 빔을 적용시킴으로써 레이저 에너지를 원하는 위치에 전달시킨다. 이 염료(예컨대, ICG)의 흡수층은 이상적으로는 동시에 또는 그 이전에 결정하여, 접합용으로 알맞은 적정 조사량이 전달될 수 있다. 조직과 생체 적합 물질의 적절한 접근을 보장할 수 있도록 압력을 가할 수 있다. 다이오드 레이저 광원과 함께, 다이오드 레이저 자체 또는 콘덴서 또는 광학 섬유 기초 광학 전달 시스템이 균일한 광 전달을 보장할 수 있도록 물질을 마주하여 배치될 수 있다.In the present invention, the tissue can be exposed (eg in a surgical method) to apply laser energy directly from the laser to the target site (eg a dye). In some cases, ie, in an intravascular catheter-based treatment method that cannot be surgically opened and exposed, laser energy is applied directly to the binding site via the optical fiber. When ICG is used as a dye, a target mediated wavelength around 800 nm can be used. Since such wavelengths are not well absorbed by many tissues, in particular vascular tissues, they will have little effect on these tissues and the thermal effect will be limited to this dye layer only. As with the energy absorbing dyes, the biocompatible materials according to the invention likewise have optical absorption in this frequency band. Thus, this laser energy can penetrate the biocompatible material or natural tissue and be absorbed into the dye layer as shown in FIG. As long as the surgeon exposes the surface or vessel to which the biomaterial reinforcement or replacement is to be applied, the dye-containing surface of the biomaterial is placed in contact with the natural tissue at that site and the laser beam is applied to the desired location. Pass it. The absorbing layer of this dye (e.g. ICG) is ideally determined at the same time or before, so that a suitable dosage suitable for bonding can be delivered. Pressure may be applied to ensure proper access of tissues and biocompatible materials. In conjunction with the diode laser light source, the diode laser itself or a condenser or optical fiber based optical delivery system may be placed facing the material to ensure uniform light transmission.

예를 들어, 개방 외과 동맥 내막 절제 등의 이후에 새로운 엘라스틴 내층이나 새로운-내재 탄성층이 필요한 경우에, 이 동맥에서 분류(atheroma) 또는 그 외의 손상을 외과적으로 제거하고는, 생체 적합 물질을 염료 측면 아래로 배치시킨다(도 2 참조).이 생체 적합 물질은 박판 패치 또는 관상 조각으로 배치가 가능하다. 이 관상 조각들을 배치하는 동안에 관강을 지지하며 낮은 온도의 열로 융합되거나 다양한 방법으로 용해 또는 제거되는 물질로 충진되어 있을 수도 있고, 아니면 빈 채로 있을 수도 있다. 필요에 따라, 소량의 외과 봉합선(예컨대, 지지 봉합선)을 혈관의 모서리를 서로 덧붙이는 데나 혈관을 봉합하는 데 사용할 수 있다. 이 생체 적합 물질이 적소에 배치되면, 이 생체 적합 물질의 측정 흡광도를 기준으로 소정의 적정 레이저 에너지를, 혈관벽을 통해서나 이 생체 적합 물질을 통해서 흡수 염료에 적용시킨다. 또는, 생체 적합 물질이나 혈관벽, 또는 양 쪽 모두에 수술과 동시에 이 염료를 적용한 후에, 레이저 에너지를 전달 적용시킬 수 있다. 이와 같은 일례에서, 생체 적합 물질이나 혈관벽, 또는 양 쪽 모두에 외과 수술을 실시하면서 흡광도를 결정한 후에, 레이저 에너지를 전달시키거나, 열적 효과 또는 접합의 적절함을 평가하는 피드백 장치와 함께 전달시킨다(도 4는 돼지의 대동맥에 융합시킨 엘라스틴-기초 생체 적합 물질의 SEM 사진임).For example, if a new elastin lining or a new-intrinsic elastic layer is needed following open surgical arterial endotomy, surgically removing the aatheroma or other damage from the artery and removing the biocompatible material The dye is placed under the side of the dye (see Figure 2). The biocompatible material can be placed in a thin patch or tubular piece. During placement of these tubular pieces, they may be filled with a material that supports the lumen and is fused with low temperature heat, dissolved or removed in various ways, or may be left empty. If desired, small amounts of surgical sutures (eg, support sutures) may be used to attach the edges of the vessels to each other or to suture the vessels. When the biomaterial is placed in place, a predetermined appropriate laser energy is applied to the absorbing dye through the blood vessel wall or through the biomaterial, based on the measured absorbance of the biomaterial. Alternatively, the dye may be applied to the biocompatible material, the vessel wall, or both simultaneously with surgery, followed by delivery of laser energy. In one such example, the absorbance is determined by performing a surgical operation on the biomaterial or vessel wall, or both, followed by delivery of laser energy, or with a feedback device evaluating the thermal effect or suitability of the junction ( 4 is a SEM photograph of an elastin-based biocompatible material fused to aorta in pigs).

상기한 바에 덧붙여, 본 발명에 의한 생체 적합 물질은, 종래 기술 방법으로 곧잘 완쾌시키지 못했던, 특히 환자가 영양상 등의 문제를 가지고 있을 때, 또는 총상을 많이 입었거나 그 외의 복부 손상을 입었을 경우에서와 같이 환자가 쇼크에 빠졌을 때, 장이나 결장 재생용 패치 물질로서 사용이 가능하다(도 3 참조). 이와 같은 패치를 사용하면, 예컨대, 장의 내용물을 밀봉시켜 복막염의 가능성을 감소시킬 수 있다. 또한, 이 패치는 찢어진 상처 등이 발생할 경우에, 간 등의 고체 기관에 사용할 수도 있다. 마찬가지로, 본 발명에 의한 생체 적합 물질은 비뇨기 계통, 즉 신장 계통의 배에서부터 요도까지의 부분들의 재생 또는 대체에 사용가능하다. 이 패치는 또한, 동맥 격막 손상과 같은 심실에서의 손상을 봉합하기 위해서, 및 기관지 또는 직장누 등에도 사용할 수 있다. 이 생체 적합 물질은 동맥류용 뇌혈관 패치로서도 사용할 수 있다. 이 생체 적합 물질은 적정 레이저 용해에 의해 제자리에 봉합 가능하다. 직접적인 노출이 불가능하거나 바람직하지 못할 경우에는, 다양한 카테테르 또는 내시경 시스템을 채용하여, 레이저 에너지를 표적 부위에 적용시킬 수 있다.In addition to the above, the biocompatible material according to the present invention is not well-resolved by the prior art methods, especially when the patient has a nutritional problem or the like, or when a lot of gunshot wounds or other abdominal damage occurs. When the patient is in shock, as can be used as a patch material for bowel or colon regeneration (see Fig. 3). Using such a patch, for example, the contents of the intestine can be sealed to reduce the likelihood of peritonitis. The patch can also be used for solid organs such as the liver when a torn wound or the like occurs. Likewise, the biocompatible material according to the invention can be used for the regeneration or replacement of parts of the urinary system, ie from the embryo to the urethra of the kidney system. This patch can also be used to seal damage in the ventricles, such as arterial septum damage, and to bronchial or rectal fistulas and the like. This biocompatible material can also be used as a cerebrovascular patch for an aneurysm. This biocompatible material can be sealed in place by proper laser dissolution. Where direct exposure is not possible or undesirable, various catheter or endoscopy systems may be employed to apply laser energy to the target site.

본 발명에 관한 엘라스틴-기초 생체 적합 물질은 다양한, 그 외의 임상 및 외과 장치로 사용되어 조직 재생 이식 조직을 효과적이게 할 수 있다. 혈관내 스텐트의 형태로 생체 적합 물질을 전달하기 위해서, 이 생체 적합 물질은 수축 풍선 카테테르에 먼저 장착시킬 수 있다. 이 풍선 카테테르는 일반 기술 방법을 이용하여 원하는 동맥 또는 정맥으로 이동시킬 수 있다. 그 후에, 이 풍선을 팽창시켜 혈관벽에 대해 이 스텐트(생체 적합 물질)를 압착시킨 후에, 풍선을 통해 레이저 광선이 전달하여 이 스텐트를 제자리에 봉합시킬 수 있다(이 생체 적합 물질의 외부에 염료가 존재할 수 있음). 그 후에, 이 풍선을 수축시켜 제거하면, 그 자리에는 스텐트만 남게 된다. 보호용 커버(플라스틱 등의)를 사용하여, 혈관까지 운반하는 동안에 스텐트를 보호한 후에, 이 스텐트를 원하는 위치에 배치하고 회수할 수 있다. 본 발명에 의한 생체 적합 물질은 금속 또는 합성 골격이나 스텐트의 생체 적합성이 높은 커버로서의 용도로도 사용할 수 있다. 이와 같은 경우에서는, 레이저 접합 없이 단순한 물리적 배치가 사용될 수 있다. 하지만, 예컨대, 복부 대동맥의 동맥류에 대한 지지체 배치에서와 같이, 물리적 접합이 부적절하게 나타나는 등의 특정 필요에 따라, 레이저 접합을 이용할 수도 있다.Elastin-based biocompatible materials in accordance with the present invention can be used in a variety of other clinical and surgical devices to make tissue regenerated graft tissue effective. In order to deliver the biocompatible material in the form of an endovascular stent, the biocompatible material may first be mounted on a contraction balloon catheter. This balloon catheter can be moved to the desired artery or vein using conventional techniques. Thereafter, the balloon is inflated to compress the stent (biocompatible material) against the vessel wall, and then a laser beam can be delivered through the balloon to seal the stent in place (a dye may be applied to the exterior of the biocompatible material). May exist). After that, the balloon is deflated and removed, leaving only the stent in place. Using a protective cover (such as plastic) to protect the stent during transport to the vessel, the stent can be placed and retrieved at the desired location. The biocompatible material according to the present invention can also be used for use as a highly biocompatible cover of metals or synthetic skeletons or stents. In such cases, a simple physical arrangement can be used without laser bonding. However, laser bonding may be used, depending on the particular needs of, for example, improper physical bonding, such as in the support arrangement for an aneurysm of the abdominal aorta.

또는, 카테테르-기초 혈관 스텐트 배치 방법으로 풍선 전달 장치와 함께 또는 그 장치 없이, 임시적인 기계적 스텐트를 이용한다.Alternatively, a temporary mechanical stent is used with or without a balloon delivery device in a catheter-based vascular stent placement method.

다른 카테테르-기초 혈관 스텐트 배치 방법으로는, 열변성 금속(니티놀과 같은 금속 또는 기타 유사한 유형의 금속)의 골격 또는 스텐트 또는 코팅재를 채용하여, 스텐트 생체 적합 물질 아래에 카테테르 튜브에 혼용시키는 것이 있다. 이 스텐트를 원하는 위치에 이동 배치시켜, 혈관벽에 대해 이 스텐트를 덧붙이는 것처럼 이 스텐트 변성 금속을 활성화시킬 수 있다. 그 후에, 레이저 광선을 적절한 섬유 기초 시스템을 통해 전달시켜, 또한 카테테르 조립 장치에 적용시킨다.Another method of catheter-based vascular stent placement is to employ a skeleton or stent or coating of a heat-denatured metal (metal such as nitinol or other similar type of metal) and mix it with the catheter tube underneath the stent biocompatible material. have. The stent can be moved to a desired position to activate the stent denatured metal as if the stent is attached to the vessel wall. Thereafter, the laser beam is delivered through a suitable fiber based system and also applied to the catheter assembly device.

이 엘라스틴-기초 생체 적합 물질은 병에 걸리거나 손상된 혈관, 또는 식도, 파라카르듐(paracardium), 폐의 플루라(plura) 등과 같은 비혈관계 조직 부분의 대체에 사용할 수도 있다. 이 생체 적합 물질은 또한, 예컨대, 화상 또는 기타 상처 치료에 있어서, 피부층을 대체하는 데 사용할 수도 있다. 그 자체로, 이 생체 적합 물질은 상피 세포 재성장용 골격으로서 작용하는 영구 드레싱 역할을 한다. 이 생체 적합 물질은 항생 물질, 응고제, 또는 전신 계통의 의약 수준을 최소화하며 높은 국부 농도를 제공하는 다양한 치료 용도의 바람직한 기타 의약들을 포함할 수 있다. 이 엘라스틴 생체 적합 물질은 조직면에 염료와 함께 배치시킨 후에, 적절한 파장의 레이저 에너지로 융합시킬 수 있다.This elastin-based biocompatible material can also be used to replace diseased or damaged blood vessels or non-vascular tissue parts such as esophagus, paracardium, lung plura, and the like. This biocompatible material can also be used to replace the skin layer, for example in the treatment of burns or other wounds. In itself, this biocompatible material serves as a permanent dressing that acts as a backbone for epithelial cell regrowth. This biocompatible material may include antibiotics, coagulants, or other drugs desirable for a variety of therapeutic uses that provide high local concentrations while minimizing drug levels in the systemic system. This elastin biocompatible material can be placed with the dye on the tissue surface and then fused with laser energy of the appropriate wavelength.

관상 신체 구조의 재생에 부언하여, 본 발명에 의한 생체 적합 물질은 기관 복구에 사용할 수도 있다. 예를 들면, 이 생체 적합 물질은 수포 복구용으로 알맞은 주머니로서 주형되거나 다른 방법으로 형상될 수 있다. 본 발명의 생체 적합 물질은 식도 대체용으로 알맞게 주형되거나 그 외 방법으로 형상될 수도 있다. 또한, 입에서부터 위까지의 음식물의 통과를 조절하기 위해 임시의 벽 지지체가 필요할 경우, 금속이나 합성의 망상 조직을 이식 조직과 결합시킬 수도 있을 것이다. 이것은 식도 협착증에 사용 가능하고, 부식성 식도염을 산의 역류로부터 재생시키기 위해, 보다 바람직하게는, 식도암 수술 또는 화학적 치료 동안이나 그 이후에 손상된 식도 단편을 재정비하기 위해 사용할 수 있을 것이다.In addition to the regeneration of the coronal body structure, the biocompatible material according to the invention can also be used for organ repair. For example, this biocompatible material can be molded or otherwise shaped as a pouch suitable for bleb repair. The biocompatible material of the present invention may be suitably molded or otherwise shaped for esophageal replacement. In addition, if temporary wall supports are needed to regulate the passage of food from the mouth to the stomach, metal or synthetic reticulated tissue may be combined with the transplanted tissue. It may be used for esophageal stenosis and may be used to regenerate corrosive esophagitis from acid reflux, more preferably to reconstruct damaged esophageal fragments during or after esophageal cancer surgery or chemical treatment.

어떤 적용 경우에 있어서는, 본 발명에 의한 생체 적합 물질을 강한 물리적 성질을 갖는 지지 물질과 배합하여 사용하는 것이 바람직할 수도 있다. 이러한 적용 방법에 있어서, 예컨대, 여기에 기재한 주형 기술 방법을 이용하여 지지 물질(상기 스텐트 내용을 참고)에 이 생체 적합 물질을 코팅시킬 수 있다. 알맞은 지지 물질은 직조 폴리에틸렌 테레프탈레이트(데이크론), 테프론, 폴리올레핀 공중합체, 폴리우레탄 폴리비닐 알콜 또는 그 외의 폴리머와 같은 고분자들이 포함된다. 추가로, 피브린과 엘라스틴과 같은 천연 폴리머와, 폴리우레탄, 폴리아크릴산 또는 폴리비닐 알콜과 같은 비천연 폴리머와의 사이에서 혼성화된 폴리머가 사용될 수 있다(참고 Giusti 등의, Trend in Polymer Science 1:261 (1993)). 이와 같은 복합 물질은 폴리머의 물리적 특성과 엘라스틴-기초 물질의 원하는 높은 생체 적합성을 이용하는 것이다. 엘라스틴 생체 적합 물질이 코팅된 합성 화합물(또는 금속물)로 제조되거나, 이 생체 적합 물질/합성 화학 혼성물로 제조될 수 있는, 그 외의 인공 보철물의 실시예로는 심장 밸브 고리와 식도 지지체가 포함된다.In some applications, it may be desirable to use the biocompatible materials according to the invention in combination with supporting materials having strong physical properties. In this application method, the biomaterial can be coated on a support material (see above stent contents), for example, using the molding technique method described herein. Suitable support materials include polymers such as woven polyethylene terephthalate (deckron), teflon, polyolefin copolymers, polyurethane polyvinyl alcohol or other polymers. In addition, polymers hybridized between natural polymers such as fibrin and elastin and non-natural polymers such as polyurethane, polyacrylic acid or polyvinyl alcohol can be used (Ref. Giusti et al., Trend in Polymer Science 1: 261). (1993)). Such composite materials take advantage of the physical properties of the polymer and the desired high biocompatibility of the elastin-based materials. Examples of other artificial prostheses, which may be made of a synthetic compound (or metal) coated with an elastin biocompatible material, or made from this biocompatible material / synthetic chemical hybrid, include heart valve rings and esophageal supports. do.

본 발명에 의한 엘라스틴-기초 인공 보철물은, 인체의 특정 부위에 이 보철물을 통해 약물이 전달될 수 있도록, 약물을 포함시킬 수 있다. 예를 들면, 헤파린과 같은 혈액의 응고를 방지하기 위한 약물, 또는 히루딘과 같은 항혈소판 제제, 평활근의 내식 방지용 의약, 또는 내피 재성장을 자극하는 의약을 함유할 수 있도록, 혈관 지지체를 제조할 수 있다. 혈관 확장제를 포함시킬 수도 있다. 이 엘라스틴 기초 생체 적합 물질로 제조된 인공 보철물을 식도암의 수술 또는 화학 치료 동안이나 그 이후, 살아있는 손상된 식도 단편의 세포들로 코팅시킬 수 있다.The elastin-based prosthesis according to the present invention may include a drug so that the drug can be delivered through the prosthesis to a specific part of the human body. For example, a vascular scaffold can be prepared to contain a drug to prevent blood coagulation, such as heparin, or an antiplatelet agent such as hirudin, a drug for preventing corrosion of smooth muscle, or a drug that stimulates endothelial regrowth. have. Vasodilators may also be included. Artificial prostheses made of this elastin-based biocompatible material can be coated with cells of living damaged esophageal fragments during or after surgery or chemotherapy of esophageal cancer.

이 엘라스틴 기초 생체 적합 물질로 제조된 인공 보철물은 또한, 살아 있는 세포들, 바람직하게는 이 보철 장치를 받게 되는 사람으로부터의 세포들로 코팅시킬 수도 있다. 내피 세포, 바람직하게는 자가 조직(예컨대, 지방 흡입술 동안에 배양된)을 이식하기 전에 엘라스틴 생체 보철물에 심을 수 있다(예컨대, 혈관 스텐트 표시용). 또는, 이 엘라스틴 생체 적합 물질은 피부 대체용 또는 재생용 배지로서 사용되어, 배양된 피부 세포를 이식하기 전에 이 생체 적합 물질에 배치시킬 수 있다. 이와 같이, 피부 세포들을 엘라스틴 생체 적합 물질을 코팅시키는 데 사용할 수 있다.Artificial prostheses made of this elastin based biocompatible material may also be coated with living cells, preferably cells from the person who will receive this prosthetic device. Endothelial cells, preferably autologous tissues (eg, cultured during liposuction) may be planted in elastin bioprostheses (eg for vascular stent marking). Alternatively, this elastin biomaterial can be used as a skin replacement or regeneration medium and placed in the biomaterial prior to implantation of cultured skin cells. As such, skin cells can be used to coat an elastin biomaterial.

본 발명의 어떤 점들은, 결코 한정적이지 않는 다음의 실시예에서 보다 상세하게 기술된다.Certain aspects of the invention are described in more detail in the following examples which are by no means limiting.

실시예 1Example 1

가용성 펩티드로부터 엘라스틴-기초 생체 적합 물질 박판의 제조 방법Process for the preparation of elastin-based biomaterial laminates from soluble peptides

생체 적합 물질 제조에 사용된 물질들: Materials used to make biocompatible materials :

인산염 완충제: 본 실시예에 사용된 인산염 완충제는 인산나트륨 1 mM, 염화나트륨 150 mM, 염화칼슘 2 mM, 염화마그네슘 1 mM을 함유하는 것이고, pH는 7.4가 되었다.Phosphate Buffer: The phosphate buffer used in this example contains 1 mM sodium phosphate, 150 mM sodium chloride, 2 mM calcium chloride, 1 mM magnesium chloride, and the pH was 7.4.

가용성 엘라스틴 펩티드: 소 목덜미 인대 엘라스틴 분말을 Sigma, St. Louis, Missouri로부터 구입하였다. 다음과 같은 방법을 사용하여, 가용성 엘라스틴 펩티드를 얻었다. 엘라스틴 분말 2.7 g을 80% 에탄올의 1 M KOH 용액 35 mL에 현탁액으로 만들었다. 이 현탁액을 50 ℃에서 2.5 시간 동안 교반시켰다. 그 후에, 탈이온화수 10 mL를 첨가하고, 이 용액을 12 M의 진한 HCl를 사용해 pH 7.4로 중화시켰다. 이 용액을 4 ℃로 12 시간 동안 냉각시켰다. 맑은 용액을 가만히 따라내, 염 결정과 분리시키고, 이 상등액을 200 rpm으로 15 분 동안 원심분리시켰다. 그 후에, 10,000 MW 차단 투석관을 이용하여, 두 시간 간격 두 번과 15 hr 간격 한 번으로 수돗물을 세 번 변화시켜 이 용액을 투석시켰다. 두 시간 간격으로 다섯 번, 15 hr 간격으로 한 번씩 해서 탈이온화수를 여섯 번 변화시키며, 이 투석을 계속하였다. 생성된 투석물(dialyzate)을 동결건조시켜 -20 ℃로 보관하였다. 수율은 40%이였다.Soluble Elastin Peptide: Bovine Nape Ligament Elastin Powder from Sigma, St. It was purchased from Louis, Missouri. Using the following method, soluble elastin peptides were obtained. 2.7 g of elastin powder was made into a suspension in 35 mL of a 1 M KOH solution of 80% ethanol. This suspension was stirred at 50 ° C. for 2.5 h. Thereafter, 10 mL of deionized water was added and the solution was neutralized to pH 7.4 with 12 M concentrated HCl. This solution was cooled to 4 ° C for 12 h. The clear solution was decanted, separated from the salt crystals, and the supernatant was centrifuged at 200 rpm for 15 minutes. The solution was then dialyzed using a 10,000 MW blocking dialysis tube, changing tap water three times, twice at two hour intervals and once at 15 hr intervals. The dialysis was continued, changing deionized water six times, five times at two hour intervals and one at 15 hr intervals. The resulting dialyzate was lyophilized and stored at -20 ° C. The yield was 40%.

한성 글로불린 제조 방법: 풀 앤 쉐논법(method of Pool and Shannon)을 변형시켜 한성 글로불린을 제조하였다(New Engl. J. Med. 273 (1965)). 한성 글로불린은 피브리노겐(40 mg/mL)과 피브로넥틴(10 mg/mL)이 주가 된다(피브리노겐과 피브리노넥틴의 농도는 다양함). 간단하게, 아데닌, 구연산염 및 포도당 항응고제가 함유된 표준 500 mL의 채혈 주머니로 돼지로부터 혈액을 모았다. 이 혈액을 50 mL의 플라스틱 원심 분리관 12 개로 옮겨 담고, 1500 rpm으로 15 분 동안 원심분리시켰다. 혈장을 가만히 따라내, 적혈구 층과 분리시켜, -70 ℃에서 12 시간 동안 냉동시켰다. 그 후에, 이 혈장을 4 ℃로 해동시켰다. 한성 글로불린은 이 혈장을 1500 rpm으로 4 ℃에서 15 분안 원심분리시켜 얻었다. 이 상등액을 가만히 따라내고 파스퇴르 피펫으로 침전물을 제거하여 한성 글로불린을 채집하였다. 각각의 관들은 또한 NaCl 0.9%와 구연산 나트륨 0.66%를 함유하는 구연산나트륨 용액 3 mL로 헹궈 냈다. 이 한성 글로불린을 모아서 -70 ℃로 냉동시키고 동결건조시켜, 사용하기 전까지 -20 ℃로 보관하였다.Hansung globulin preparation method: Hansung globulin was prepared by modifying the method of Pool and Shannon (New Engl. J. Med. 273 (1965)). Hansung globulin is mainly composed of fibrinogen (40 mg / mL) and fibronectin (10 mg / mL) (the concentration of fibrinogen and fibrinectin varies). Briefly, blood was collected from pigs with a standard 500 mL collection bag containing adenine, citrate and glucose anticoagulant. This blood was transferred to 12 50 mL plastic centrifuge tubes and centrifuged at 1500 rpm for 15 minutes. The plasma was decanted, separated from the erythrocyte layer and frozen at −70 ° C. for 12 hours. Thereafter, the plasma was thawed to 4 ° C. Hansung globulin was obtained by centrifuging the plasma at 1500 rpm for 15 minutes at 4 ℃. The supernatant was then decanted and the Hans globulin was collected by removing the precipitate with a Pasteur pipette. Each tube was also rinsed with 3 mL of sodium citrate solution containing 0.9% NaCl and 0.66% sodium citrate. The Han globulin was collected, frozen at -70 ° C and lyophilized and stored at -20 ° C until use.

티오우레아: 시약급 티오우레아를 Sigma, St. Louis, Missouri로부터 구입하였다. 0.5 mg/mL 용액을 사용하였다.Thiourea: Reagent grade thiourea is prepared by Sigma, St. It was purchased from Louis, Missouri. 0.5 mg / mL solution was used.

유형 I 콜라겐: 산성 가용성 유형 I의 콜라겐을 시그마(Sigma)로부터 구입하였다. 본스테인(Bornstein)법의 변형에 의해, 래트 꼬리건으로부터가 바람직하였다. 콜라겐 2 mg을 인산염 완충제 0.6 mL에, 콜라겐이 용해될 때까지 10 분 동안 60 ℃까지로 가열시켰다. 그 후에, 37 ℃로 냉각시켜 사용하였다.Type I Collagen: Acid soluble type I collagen was purchased from Sigma. By modification of the Bonstein method, rat tail tendons were preferred. 2 mg of collagen was heated in 0.6 mL of phosphate buffer to 60 ° C. for 10 minutes until the collagen dissolved. Thereafter, the mixture was cooled to 37 ° C and used.

트롬빈: 소 혈장의 트롬빈을 시그마로부터 동결건조된 형태로 구입하였다. 물 1 mL로 액상화하는 경우에, 이 용액은 NIH 106 단위/mL를 함유하였다.Thrombin: Thrombin in bovine plasma was purchased from sigma in lyophilized form. When liquefied with 1 mL of water, this solution contained 106 units / mL of NIH.

아프로티닌: 소의 폐로부터의 아프로티닌을 시그마에서 구입하였다. 15∼30 트립신 억제 단위(TIU)/mL를 함유하였다.Aprotinin: Aprotinin from bovine lung was purchased from Sigma. 15-30 trypsin inhibitory units (TIU) / mL were contained.

제조 방법: 유리판 ~40 mm × 25 mm의 한 쪽 면에 석영 섬유 620 ㎛를 아교로 붙이고 고무끈을 이용하여 첫 번째 유리판에 두 번째 판을 접착시켜 주형 여섯 개를 제조하였다. 이렇게 제조된 각각의 주형은 약 0.5 mL 용량이 된다. Preparation Method : Six molds were prepared by attaching 620 μm of quartz fiber to one side of a glass plate of ˜40 mm × 25 mm and attaching a second plate to the first glass plate using a rubber strip. Each template so prepared is about 0.5 mL in volume.

생체 적합 물질은 다음과 같은 조성으로 연이어 첨가하고 혼합하여 제조하였다: 37 ℃에서, 인산염 완충제(PB) 2 mL에 가용성 캅파(kappa)-엘라스틴 또는 캅파-엘라스틴 분말 200 mg,Biocompatible materials were prepared by successively adding and mixing in the following compositions: at 37 ° C., 200 mg of soluble kappa-elastin or cappa-elastin powder in 2 mL of phosphate buffer (PB),

PB 1 mL에 한성 글로불린 160 mg (37 ℃),160 mg (37 ° C) Hansung globulin in 1 mL PB,

PB 0.6 mL에 콜라겐 2 mg (60 ℃, 37 ℃),2 mg of collagen (60 ° C, 37 ° C), in 0.6 mL of PB

티오우레아 200 μL (0.5 mg/mL),200 μL of thiourea (0.5 mg / mL),

아프로티닌 200 μL (5 단위).200 μL of aprotinin (5 units).

상기 용액에서 0.6 mL를 취하여 시험관에 넣고 트롬빈 용액 50 μL를 첨가하였다(~6 단위). 이렇게 해서 얻어진 용액을 즉시 주형에 옮겼다. 생성된 박판 몇 개를 글루타르알데히드로 2 분 동안 가교시켰다.0.6 mL of the solution was taken into a test tube and 50 μL of thrombin solution was added (˜6 units). The solution thus obtained was immediately transferred to the mold. Several of the resulting thin plates were crosslinked for 2 minutes with glutaraldehyde.

결과: Result :

상기한 바와 같이 제조된 박판은 불투명하고 약간 황색빛을 띤 것이었다. 글루타르알데히드-정착 박판은 비정착 박판에 비해 신축성이 적고 보다 쉽게 찢어졌다. 글루타르알데히드 정착 박판은 전자 현미경으로 검경하였다. 이 박판들은 100X × 100X에서 부드러운 결합 표면이 있음을 볼 수 있었다.The thin plates produced as described above were opaque and slightly yellowish. Glutaraldehyde-fixed thin plates are less stretchable and more easily torn than unfixed thin plates. Glutaraldehyde-fixed thin plates were examined under an electron microscope. These sheets were found to have a smooth bonding surface at 100 ×× 100X.

실시예 2Example 2

엘라스틴-기초 생체 적합 물질의 박판과 조직의 접합Lamination of elastin-based biomaterials and conjugation of tissues

접합 이전 공정: 외막을 주의깊게 정리하고 멸균된 0.9% NaCl 용액으로 세척한 후에 1 cm2사각형으로 절제한, 신선한 돼지 대동맥에 ICG 용액 1 mg/mL를 적용하였다. 이 ICG 용액 1 mg/mL를 대동맥의 관강면에 약 3 분 동안 적용한 후에 씻어냈다. ICG는 시그마에서 구입하였으며 염료 90%와 요오드화나트륨 10%를 함유하였다. 용액 7.25 × 10-6M로 780 nm에서 측정한 흡수 계수는 175,000 M-1cm-1이 되는 것으로 밝혀졌다. ICG가 혈청 단백질과 결합할 경우, 흡수 최대치는 805 nm로 이동한다(Landsman 등의, J. Appl. Physiol. 40 (1976)). ICG로 도핑된 피브로넥틴 10 mg/mL과 피브리노겐 약 40 mg/mL를 함유하는 소량의 한성 글로불린도 적용하고 생체 적합 물질을 그 위에 놓았다. 이 두 물질들을 0.9%의 식염수 용액에 담궜다. Pre-conjugation process : 1 mg / mL of ICG solution was applied to fresh porcine aorta, carefully cleaned of the outer membrane, washed with sterile 0.9% NaCl solution, and excised into 1 cm 2 squares. 1 mg / mL of this ICG solution was applied to the lumen of the aorta for about 3 minutes and then washed off. ICG was purchased from Sigma and contained 90% dye and 10% sodium iodide. The absorption coefficient measured at 780 nm with 7.25 × 10 −6 M solution was found to be 175,000 M −1 cm −1 . When ICG binds to serum proteins, the absorption maximum shifts to 805 nm (Landsman et al., J. Appl. Physiol. 40 (1976)). Small amounts of globulin containing 10 mg / mL fibronectin and about 40 mg / mL fibrinogen doped with ICG were also applied and the biocompatible material was placed thereon. These two materials were immersed in 0.9% saline solution.

접합 공정: 실시예 1에서 상기한 바와 같이 제조된 생체 적합 물질 박판을 pH 7.4의 인산염 완충제에서 평형을 유지시키고, 알루미늄 갈륨 비소화물 다이오드 레이저 어레이를 이용하여 ICG 염색된 돼지의 대동맥과 접합시켰다. 최대 출력치는 808±1.5 nm이였다. 이 레이저는 폴리에틸렌 클래딩 물질(polyethylene cladding material)과 석영 섬유 1 ㎛에 짝지워져 있었다. 이 레이저 에너지는 초점 렌즈와 평행이 되어 있고 석영 섬유에 짝지워져 있다. 이 섬유의 말단부 끝에서 스팟의 크기는 이 섬유의 접경 단부와 초점 렌즈 사이의 거리를 조정하여 1∼4 mm로 변화시킬 수 있다. 연속으로 작동되는, CW 레이저와 이 섬유의 말단부 끝에서 측정된 출력이 1.5 W이였다. 이 석영 섬유를 상기 대동맥, 생체 적합 물질, 글래스 슬라이드에 직접적으로 배치하였다. 접합 전에, 이 레이저의 스팟 크기를 측정하였다. 1.32 W가 아닌 0.85 W로 조사함으로써 식염수에서 접합이 일어났다. 20 초 정도라면 충분한 접합이 일어나고 40 초 정도에서는 갈색의 색변화로 생체 적합 물질의 탄화 현상이 초래되었다. Conjugation Process : The biocompatible material thin plates prepared as described above in Example 1 were equilibrated in phosphate buffer at pH 7.4 and conjugated with ICG stained porcine aorta using an aluminum gallium arsenide diode laser array. Maximum output value was 808 ± 1.5 nm. The laser was paired with polyethylene cladding material and 1 μm of quartz fiber. This laser energy is parallel to the focal lens and coupled to the quartz fiber. The size of the spot at the distal end of the fiber can be varied from 1 to 4 mm by adjusting the distance between the border end of the fiber and the focal lens. The power measured at the CW laser and the distal end of this fiber, operating continuously, was 1.5 W. This quartz fiber was placed directly on the aorta, biomaterial, glass slide. Prior to bonding, the spot size of this laser was measured. Conjugation occurred in saline by irradiation at 0.85 W instead of 1.32 W. In 20 seconds, sufficient bonding occurred, and in 40 seconds, brown color change resulted in carbonization of the biocompatible material.

실시예 3Example 3

동맥 분해물에서부터의 엘라스틴-기초 생체 적합 물질의 제조 방법Method for preparing elastin-based biomaterials from arterial digests

길이 4 cm의 새 돼지 경동맥을 깨끗이 절개하여, 꼬박 하룻밤 동안의 0.9% 식염수로 두 번 씻어주었다. 그 후에, 혈관들을 0.5 M의 NaOH에 넣고 120 분 동안 초음파 처리하였다(1987 년의 알. 크리스만에 의한 방법의 변형법, Crissman, Robert S. 'Comparison of Two Digestive Techniques for Preparaton of Vascular Elastic Networks for SEM Observation', Journal of Electron Microscopy Techniques 6: 335∼348 (1987)). 그 후에 분해된 혈관들을 증류수로 씻어내고 약 225 ℉로 30 분 동안 오토클레이브시켰다. 분해된 혈관들은 반투명하게, 진주빛의 백색으로 나타나고 물을 제거할 때 쇠락하여 콜라겐과, 기타 구조적인 보조 단백질이 없는 것이 나타난다.A new pork carotid artery of 4 cm in length was cleanly incised and washed twice with 0.9% saline overnight. The vessels were then placed in 0.5 M NaOH and sonicated for 120 minutes (Al. Crisman, 1987, Crissman, Robert S. 'Comparison of Two Digestive Techniques for Preparaton of Vascular Elastic Networks for SEM Observation ', Journal of Electron Microscopy Techniques 6: 335-348 (1987)). The digested vessels were then washed with distilled water and autoclaved at about 225 ° F. for 30 minutes. The degraded blood vessels appear translucent, pearly white and decay when water is removed, showing no collagen and other structural auxiliary proteins.

돼지 대동맥에 동맥 분해물의 접합은 다음과 같은 방법을 통해 이루어진다. 새 돼지 대동맥을 ICG 5 mg/mL로 5 분 동안 코팅시켰다. 과량의 ICG 용액은 지워냈다. NaOH-초음파처리된 분해 경동맥 엘라스틴 조각의 1 cm × 1 cm의 단면을 새로 염색된 대동맥에 얹어 놓았다. 펄스 알루미늄 갈륨 비소화물 다이오드 레이저 어레이(Star Medical Techno. Logies)가 이 조각들을 접합하는 데 사용되었다. 790∼810 광에서 5 밀리초 펄스를 2 J로 방사시켜 4 mm × 4 mm의 단일 광선을 생성시키는 콘덴서로, 유리 커버 글래스로 덮여 있는 엘라스틴 분해물에 놓여 있는 조직에 적용하였다. 좋은 접합은 10 회의 펄스까지로 달성되었다. 돼지 대동맥에 접합된 엘라스틴 분해물의 광학 현미경 사진은 도 6에 나타내었다.Conjugation of the arterial lysate to the porcine aorta is achieved by The new porcine aorta was coated with ICG 5 mg / mL for 5 minutes. Excess ICG solution was erased. A cross section of 1 cm × 1 cm of NaOH-ultrased dissected carotid elastin pieces was placed on the newly stained aorta. A pulsed aluminum gallium arsenide diode laser array (Star Medical Techno.Logies) was used to bond the pieces. A condenser that emits a 5 millisecond pulse at 2 J at 790-810 light to produce a 4 mm x 4 mm single beam, applied to tissues placed on elastin digests covered with glass cover glass. Good bonding was achieved with up to 10 pulses. An optical micrograph of the elastin lysate conjugated to the porcine aorta is shown in FIG. 6.

실시예 4Example 4

엘라스틴-기초 생체 적합 물질의 제조 방법 & 돼지 대동맥에 융합 방법Method for preparing elastin-based biomaterial & method for fusion to porcine aorta

물질: 소 목덜미 엘라스틴 분말(Sigma St. Louis MO)을 40 ㎛ 스크린으로 옮겨 인산염 완충제로 불렸다. 그 후에 엘라스틴 조각을 인산염 완충제에서 피브리노겐(시그마) 67 mg, 산 가용성 유형 I의 콜라겐(시그마) 2 mg, 티오우레아 2.8 mg, Ca2+2 mM, Mg2+1mM 및 트롬빈 75 단위와 반응시키고 주형에 주입하여 77 ℃로 가열하였다. 두께 1 mm의 이 생체 적합 물질 박판과 관을 제거하고, 추후 사용을 위해 33%의 에탄올에 보관하였다.Material: Bovine nape elastin powder (Sigma St. Louis MO) was transferred to a 40 μm screen called phosphate buffer. The elastin flakes are then reacted in phosphate buffer with 67 mg of fibrinogen (sigma), 2 mg of collagen (sigma) of acid soluble type I, 2.8 mg thiourea, 2 mM Ca 2+, 1 mM Mg 2+ and 75 units of thrombin and It was injected into and heated to 77 ℃. This biomaterial thin plate and tube 1 mm thick were removed and stored in 33% ethanol for later use.

인도시아닌그린 염료를 탈이온화수에 용해시켜 1% 용액을 제공하고, 새 돼지 대동맥의 관강면에 적용하였다. 이 염료를 5 분 동안 제 위치에 놓고난 후에, 여분의 염료를 지워냈다. 이 엘라스틴 생체 적합 물질을 ICG 염색된 대동맥에 놓고 유리 커버글래스로 덮었다. 갈륨 비소화물 다이오드 레이저 방사 광 어레이의 출력이 800 nm에서 5 msec 펄스로 모아지는 콘덴서로 레이저 에너지를 적용하였다. 6 mm2의 스팟을 2.89 J로 1∼10 회 펄스 동안 조사하여 적절하게 접합시킨다. 그 후에, 현미경 검경 연구용으로 샘플들을 절개하고 포르말린으로 정착시켰다. 도 5는 이와 같은 엘라스틴 염료로 염색된 접합물의 광학 현미경 사진이다. 돼지 대동맥과 엘라스틴 생체 적합 물질의 접합의 우수성은 생체 적합 물질 또는 대동맥에 열에 의한 손상이나 그 외의 상처가 발견되지 않았다는 것으로 주목되어진다.Indocyanine green dye was dissolved in deionized water to provide a 1% solution and applied to the lumen of the new swine aorta. After leaving this dye in place for 5 minutes, excess dye was removed. This elastin biomaterial was placed in ICG stained aorta and covered with glass coverglass. The laser energy was applied to a condenser in which the output of the gallium arsenide diode laser emission light array was collected in 5 msec pulses at 800 nm. A spot of 6 mm 2 is irradiated at 2.89 J for 1 to 10 pulses for proper bonding. Thereafter, samples were dissected and fixed in formalin for microscopy study. 5 is an optical micrograph of the conjugate stained with such elastin dye. The superiority of the conjugation of porcine aorta with elastin biomaterial is noted that no heat damage or other wounds were found in the biomaterial or aorta.

실시예 5Example 5

엘라스틴-기초 생체 적합 물질의 제조 방법 & 돼지 대동맥에 융합 방법Method for preparing elastin-based biomaterial & method for fusion to porcine aorta

물질: 소 목덜미 인대 엘라스틴, 돼지 혈장으로부터의 피브리노겐, 및 래트 꼬리건의 산 가용성 유형 I 콜라겐을 시그마 케미칼 코포레이션(St. Louis, MS.)에서 구입하였다. 엘라스틴은 1 M KOH/80% 에탄올에 50 ℃로 2.5 hr 동안 용해시켰다(Hornebreck). 풀 앤 쉐논법에 따라 돼지 혈장으로부터 한랭형 침전물을 얻었다. 신선한 돼지 대동맥을 카를톤 패키징 코포레이션(Carlton Packaging Co.: Carlton, Ore)으로부터 구입하여, 사용을 위해 해동시키기 전까지는 -20 ℃에 보관하였다.Substances: Bovine nasal ligament elastin, fibrinogen from porcine plasma, and acid soluble type I collagen of rat tail tendon were purchased from Sigma Chemical Corporation (St. Louis, MS.). Elastin was dissolved in 1 M KOH / 80% ethanol at 50 ° C. for 2.5 hr (Hornebreck). Cold precipitates were obtained from pig plasma according to the Pool and Shannon method. Fresh porcine aorta was purchased from Carlton Packaging Co. (Carlton, Ore) and stored at −20 ° C. until thawed for use.

엘라스틴-피브린 생체 적합 물질을 라바우드에 의해 개선 진보된 방법과 유사하게 제조하였다. 완충제 2 mL에 용해된 가용성 엘라스틴 200 mg, 완충제 1 mL에 용해된 동결 건조 한랭형 침전물 160 mg, 완충제 0.6 mL에 용해된 유형 I의 콜라겐 2 mg, 및 티오우레아 용액 0.2 mL(0.5 mg/mL H2O)을 연속적으로 첨가하고 전체적으로 혼합시켜 용해 엘라스틴과 한랭형 침전물로 제조된 패치를 제조하였다. 트롬빈 6 단위들을 이 혼합물 일부 0.5 mL에 첨가하여, 1 mL 주사기에서 전체적으로 혼합시킨 후에 4 cm2유리 주형에 주입하였다. 이 주형들을 37 ℃에서 30 분 동안 숙성시키고, ofg-방사선(코발트 광원) 25 mrad를 적용하였다. 이 생체 적합 물질은 33% EtOH에서 4 ℃로 보관하였다. 사용하기 전에 이 생체 적합 물질을 식염수로 수차례 씻어 주었다.Elastin-fibrin biocompatible materials were prepared by Labaud in analogy to advanced methods. 200 mg soluble elastin dissolved in 2 mL buffer, 160 mg freeze-dried cold precipitate dissolved in 1 mL buffer, 2 mg type I collagen dissolved in 0.6 mL buffer, and 0.2 mL (0.5 mg / mL H) solution of thiourea 2 O) was added continuously and mixed thoroughly to prepare a patch made of dissolved elastin and a cold precipitate. Six units of thrombin were added to 0.5 mL of a portion of this mixture, mixed thoroughly in a 1 mL syringe and then injected into a 4 cm 2 glass template. These molds were aged at 37 ° C. for 30 minutes and 25 g of ofg-radiation (cobalt light source) was applied. This biomaterial was stored at 4 ° C. in 33% EtOH. This biomaterial was washed several times with saline before use.

불용성 엘라스틴과 피브리노겐으로도 패치를 제조하였다. 시그마에서 구입한 동결 건조된 엘라스틴을 사용하기 전에 미국제 제 4000 mesh 호 체(Tyler)를 통해 걸러냈다. 걸러진 엘라스틴 28.0 mg을 과량의 인산염 완충제에 하룻밤 동안 불려 팽창시키고 씻어냈다. 이 혼합물을 원심분리시켜(1000 rpm, 10 분 동안) 과량의 완충제를 제거하였다. 이 팽창된 엘라스틴을 인산염 완충제 2 mL에 현탁액으로 제조하였다. 완충제 1 mL에 용해된 동결건조 피브리노겐 67 mg, 완충제 0.6 mL에 용해된 유형 I의 콜라겐 2 mg, 및 티오우레아 용액 0.2 mL(0.5 mg/mL H2O)를 이 현탁액에 연속적으로 첨가하였다. 최종적으로, 트롬빈 33 단위를 첨가하고, 이 혼합물을 전체적으로 교반시키고, 재빨리 3 cm × 7 cm의 주형에 쏟아 부었다. 이 주형들은 37 ℃로 30 분 동안 배양시켰다. 이 생체 적합 물질은 33%의 EtOH에서 4 ℃로 보관하였다. 이 생체 적합 물질을 사용하기 전에 수차례에 걸쳐 생리 식염수로 씻어 주었다.Patches were also made with insoluble elastin and fibrinogen. The lyophilized elastin purchased from Sigma was filtered through a US 4000 mesh hose (Tyler) prior to use. 28.0 mg of filtered elastin was soaked in excess phosphate buffer overnight to swell and rinsed. The mixture was centrifuged (1000 rpm for 10 minutes) to remove excess buffer. This expanded elastin was prepared as a suspension in 2 mL of phosphate buffer. 67 mg of lyophilized fibrinogen dissolved in 1 mL of buffer, 2 mg of collagen of type I dissolved in 0.6 mL of buffer, and 0.2 mL of thiourea solution (0.5 mg / mL H 2 O) were added sequentially to this suspension. Finally, 33 units of thrombin were added and the mixture was thoroughly stirred and poured quickly into a 3 cm x 7 cm mold. These templates were incubated at 37 ° C. for 30 minutes. This biomaterial was stored at 4 ° C. in 33% EtOH. It was washed several times with physiological saline before using this biomaterial.

이 가용성 엘라스틴 한랭형 침전 패치를 돼지의 대동맥에 808 nm의 연속파 광학 방사선(continuous wave optical radiation)을 방사하는 AlGaAs 다이오드 어레이 레이저를 이용하여 융합시켰다. 새 돼지 대동맥을 0.9%의 NaCl로 씻어내고 2 cm2부분으로 정리하였다. 1 mg/mL 또는 5 mg/mL으로 수용성 농축된 인도시아닌그린(시그마)을 파스퇴르 피펫을 통해 대동맥에 적용하고, 5 분 동안 안정된 상태로 놔둔 후에 지워버렸다. 그 후에, 이 조직은 15 분 동안 0.9% 식염수 용액에서 평형화시켜 결합되지 않은 염료를 제거하였다. 레이저 광선은 도 1에 나타낸 바와 같이 유리 커버 글래스를 통해 1 ㎛의 융합 실리카 섬유(Polymicro Technologies Phoenix, AZ.)를 거쳐 생체 적합 물질 표면에 직접 적용되었다. 레이저 광선의 변이치 6 개는 그 거리를 1∼4 mm로 변화시켰다. 이 섬유 말단부로부터 측정된 레이저의 출력은 1.5 와트였으며, 노출 기간은 5 초에서 4 초로 변화시켰다.This soluble elastin cold precipitation patch was fused using an AlGaAs diode array laser that emits 808 nm of continuous wave optical radiation into the swine aorta. The new porcine aorta was washed with 0.9% NaCl and cleared into 2 cm 2 sections. Aqueous concentrated indocyanine green (Sigma) at 1 mg / mL or 5 mg / mL was applied to the aorta via a Pasteur pipette and left to rest for 5 minutes before being erased. Thereafter, the tissue was equilibrated in 0.9% saline solution for 15 minutes to remove unbound dye. The laser beam was applied directly to the biomaterial surface through glass cover glass via 1 μm fused silica fibers (Polymicro Technologies Phoenix, AZ.) As shown in FIG. 1. Six variations of the laser beam changed the distance to 1 to 4 mm. The laser power measured from this fiber end was 1.5 watts and the exposure period varied from 5 seconds to 4 seconds.

불용성 엘라스틴-피브리노겐 패치를 790∼810 nm 펄스 광방사선을 방사하는 AlGaAs 다이오드 어레이 레이저를 사용하여 돼지 대동맥에 융합시켰다(Star Medical Technologies). 해동시킨 돼지 대동맥을 준비하고, 새 대동맥에 대해 상기한 바와 같이 수용성 ICG 용액 5 mg/mL로 염색하였다. 대동맥의 염색된 관강면에 생체 적합 물질을 적용한 후에, 레이저 방사선을 유리 커버 글래스와 마주보며 놓여 있는 구리 코팅된 콘덴서를 통해 이 생체 적합 물질에 적용하였다. 이 레이저 출력 2 J 및, 펄스 시간 5 msec로 고정시켰다.Insoluble elastin-fibrinogen patches were fused to porcine aorta using AlGaAs diode array lasers emitting 790-810 nm pulsed light radiation (Star Medical Technologies). Thawed porcine aorta was prepared and stained with 5 mg / mL of aqueous ICG solution as described above for the new aorta. After applying the biocompatible material to the stained lumen of the aorta, laser radiation was applied to the biocompatible material through a copper coated capacitor placed facing the glass cover glass. This laser output was fixed at 2 J and a pulse time of 5 msec.

실시예 6Example 6

소 목덜미 인대 엘라스틴, 돼지의 혈장으로부터의 피브리노겐, 및 래트 꼬리건의 산 가용성 유형 I 콜라겐을 시그마 케미칼 코포레이션에서 구입하였다(St. Louis, MS).Bovine nape ligament elastin, fibrinogen from plasma of pigs, and acid soluble type I collagen of rat tail tendon were purchased from Sigma Chemical Corporation (St. Louis, MS).

인도시아닌그린 1 mg을 24% 인체의 혈청 알부민 1 mL에 용해시켰다. 피브리노겐 67 mg을 인산염 완충제 1 mL에 용해시켰다(37 ℃로). 혼합하기 직전에 트롬빈의 16.6 단위를 인도시아닌그린 용액에 첨가하였다. 이 혼합물을 4 ℃로 냉각시켰다. 이 두 혼합물을 재빨리 섞어 3 cm × 7 cm 주형에 주입하거나 쏟아 붓고 37 ℃로 30 분 동안 배양시켰다.1 mg of indocyanine green was dissolved in 1 mL of 24% human serum albumin. 67 mg of fibrinogen was dissolved (at 37 ° C.) in 1 mL of phosphate buffer. Immediately before mixing, 16.6 units of thrombin were added to the indocianingreen solution. The mixture was cooled to 4 ° C. These two mixtures were quickly mixed and injected or poured into a 3 cm x 7 cm mold and incubated for 30 minutes at 37 ° C.

시그마제 동결건조된 엘라스틴을 사용하기 전에 미국제 400 mesh 호 체를 통과시켜, 40 ㎛ 이하 크기의 입자만을 사용하였다. 이 체로 걸러낸 엘라스틴 210 mg을 과량의 인산염 완충제에서 하룻밤 동안 팽창시키고 씻어냈다. 이 혼합물을 원심분리시켜(1000 rpm, 10 min), 과량의 완충제를 제거하였다. 이와 같이 팽창된 엘라스틴을 인산염 완충제 1.5 mL로 현탁액화시켰다. 이와 같은 현탁액에 완충제 0.75 mL에 용해된 동결건조 피브리노겐 67 mg, 완충제 0.45 mL에 용해된 유형 I 콜라겐 2 mg, 및 티오우레아 용액 0.15 mL(0.5 mg/mL H2O)를 연속적으로 첨가하였다. 최종적으로, 트롬빈 26 단위를 첨가하고, 이 혼합물을 전체적으로 교반시켜, 재빨리 3 cm × 7 cm의 주형에 쏟아 부었다. 이 주형들은 37 ℃에서 30 분 동안 배양시켰다. 주형을 제거할 때, 이 두 층은 분리되지 않을 것이며 이 조제품은 단일 패치를 생성시킨다.Prior to the use of sigma lyophilized elastin, a US 400 mesh hose was used, and only particles of 40 μm or less were used. 210 mg of elastin filtered through this sieve was inflated and washed overnight in excess phosphate buffer. The mixture was centrifuged (1000 rpm, 10 min) to remove excess buffer. This expanded elastin was suspended in 1.5 mL of phosphate buffer. To this suspension was successively added 67 mg lyophilized fibrinogen dissolved in 0.75 mL buffer, 2 mg type I collagen dissolved in 0.45 mL buffer, and 0.15 mL (0.5 mg / mL H 2 O) of thiourea solution. Finally, 26 units of thrombin were added and the mixture was stirred throughout and quickly poured into a 3 cm x 7 cm mold. These templates were incubated at 37 ° C. for 30 minutes. When removing the mold, these two layers will not separate and the preparation produces a single patch.

전술한 인용 문헌 모두의 전문을 참고 문헌으로 첨부하였다.The full text of all of the above cited references is hereby incorporated by reference.

본 발명의 기술 분야에서 숙련된 사람이라면 이와 같은 기재 내용을 읽고 실질적인 그 범위를 벗어나지 않고서도, 그 유형이나 상세한 부분에 있어서 다양하게 변화시킬 수 있다는 것을 알 수 있을 것이다.It will be apparent to those skilled in the art that various changes in type and detail may be made without reading the above description and departing from the true scope thereof.

Claims (23)

엘라스틴 또는 엘라스틴-기초 생체 적합 물질을 필수적으로 함유하는 층을 제공하고, 지지 성분을 제공하고, 상기 지지 성분에 상기 엘라스틴 층을 적용하여 인공 보철물 장치를 제조하는 것을 특징으로 하는, 인공 보철물 장치의 제조 방법.Producing a prosthetic device, characterized in that it provides a layer that essentially contains an elastin or elastin-based biocompatible material, provides a support component, and applies the elastin layer to the support component to produce an prosthetic device. Way. 제 1 항에 있어서, 상기 엘라스틴 또는 엘라스틴-기초 생체 적합 물질 층이 상기 지지 성분을 둘러 싸도록 상기 엘라스틴 층을 적용하는 단계를 추가로 포함하는 것을 특징으로 하는 방법.The method of claim 1, further comprising applying the elastin layer such that the elastin or elastin-based biomaterial layer surrounds the support component. 제 1 항 또는 2 항에 있어서, 상기 지지 성분이 금속으로 이루어지는 것을 특징으로 하는 방법.Method according to claim 1 or 2, characterized in that the support component is made of metal. 제 1 항 내지 3 항 중 어느 한 항에 있어서, 상기 엘라스틴 또는 엘라스틴-기초 생체 적합 물질을 상기 지지 성분의 커버링, 코팅 또는 라이닝으로서 적용하는 것을 특징으로 하는 방법.The method of claim 1, wherein the elastin or elastin-based biomaterial is applied as a covering, coating or lining of the support component. 제 1 항 내지 4 항 중 어느 한 항에 있어서, 상기 엘라스틴 또는 엘라스틴-기초 생체 적합 물질을 폴리머화 반응을 통해 제조하는 것을 특징으로 하는 방법.5. The method of claim 1, wherein the elastin or elastin-based biocompatible material is prepared via a polymerisation reaction. 제 1 항 내지 5 항 중 어느 한 항에 있어서, 상기 엘라스틴 또는 엘라스틴-기초 생체 적합 물질을 주형하여 상기 엘라스틴 또는 엘라스틴-기초 생체 적합 물질 층을 형성시키는 것을 특징으로 하는 방법.6. The method of claim 1, wherein the elastin or elastin-based biomaterial is molded to form the elastin or elastin-based biomaterial layer. 7. 제 1 항 내지 6 항 중 어느 한 항에 있어서, 상기 폴리머화된 엘라스틴 또는 엘라스틴-기초 생체 적합 물질을 감마 방사를 이용하거나 가교제를 이용함으로써 가교하는 것을 특징으로 하는 방법.The method of claim 1, wherein the polymerized elastin or elastin-based biocompatible material is crosslinked by using gamma radiation or by using a crosslinking agent. 제 1 항, 2 항, 및 4 항 내지 7 항 중 어느 한 항에 있어서, 상기 엘라스틴 또는 엘라스틴-기초 생체 적합 물질 층을 박판 또는 관상으로 제조한 후에, 상기 지지 성분을 상기 박판 또는 관상으로 커버링하는 것을 특징으로 하는 방법.8. The method according to any one of claims 1, 2 and 4 to 7, wherein after the elastin or elastin-based biomaterial layer is made into a sheet or tubular, the supporting component is covered with the sheet or tubular. Characterized in that the method. 제 8 항에 있어서, 상기 박판을 상기 지지 성분에 이식을 통해 부착시키는 단계를 포함하는 것을 특징으로 하는 방법.10. The method of claim 8, comprising implanting the thin plate onto the support component. 제 8 항에 있어서, 상기 박판을 상기 지지 성분에 물리적 접합을 통해 부착시키는 단계를 포함하는 것을 특징으로 하는 방법.10. The method of claim 8 including attaching the thin plate to the support component through physical bonding. 제 8 항에 있어서, 상기 박판을 상기 지지 성분에 레이저 접합을 통해 부착시키는 단계를 포함하는 것을 특징으로 하는 방법.10. The method of claim 8 including attaching the thin plate to the support component via laser bonding. 제 1 항 내지 11 항 중 어느 한 항에 있어서, 상기 엘라스틴 또는 엘라스틴-기초 생체 적합 물질 층에 약물을 혼용하여, 정맥내 약물 치료 또는 구강용 약물 치료의 필요성을 감소시키는 단계를 추가로 포함하는 것을 특징으로 하는 방법.12. The method of any one of claims 1 to 11, further comprising the step of incorporating a drug in the elastin or elastin-based biomaterial layer to reduce the need for intravenous drug treatment or oral drug treatment. How to feature. 제 3 항에 있어서, 상기 금속이 티타늄, 탄탈륨, 스테인레스 스틸 및 니티놀로 이루어진 군 중에서 선택되는 것을 특징으로 하는 방법.4. The method of claim 3 wherein the metal is selected from the group consisting of titanium, tantalum, stainless steel and nitinol. 제 1 항 내지 13 항 중 어느 한 항에 있어서, 상기 지지 성분이 스텐트, 혈관 또는 골격인 것을 특징으로 하는 방법.14. The method of any one of claims 1 to 13, wherein the support component is a stent, blood vessel or skeleton. 지지 성분, 및 상기 지지 성분에 적용되어 인공 보철물 장치를 제조하는 엘라스틴 또는 엘라스틴-기초 생체 적합 물질 층을 함유하는 것을 특징으로 하는 인공 보철물 장치.And a support component and a layer of elastin or elastin-based biocompatible material applied to the support component to produce the prosthetic device. 제 15 항에 있어서, 상기 엘라스틴 또는 엘라스틴-기초 생체 적합 물질 층이 상기 지지 성분을 둘러싸는 것을 특징으로 하는 인공 보철물 장치.16. The prosthesis device of claim 15 wherein the elastin or elastin-based biomaterial layer surrounds the support component. 제 15 항 또는 16 항에 있어서, 상기 지지 성분이 금속으로 이루어지는 것을 특징으로 하는 인공 보철물 장치.The prosthesis device according to claim 15 or 16, wherein the support component is made of metal. 제 15 항 내지 17 항 중 어느 한 항에 있어서, 상기 엘라스틴 또는 엘라스틴-기초 생체 적합 물질 층이 상기 지지 성분의 커버링, 코팅 또는 라이닝인 것을 특징으로 하는 인공 보철물 장치.18. The prosthesis device according to any one of claims 15 to 17, wherein the elastin or elastin-based biomaterial layer is a covering, coating or lining of the support component. 제 15 항 내지 18 항 중 어느 한 항에 있어서, 상기 엘라스틴 또는 엘라스틴-기초 생체 적합 물질을 폴리머화 반응을 통해 제조하는 것을 특징으로 하는 인공 보철물 장치.19. The prosthesis device of any of claims 15 to 18, wherein the elastin or elastin-based biocompatible material is prepared via a polymerisation reaction. 제 15 항, 16 항, 18 항 및 19 항 중 어느 한 항에 있어서, 상기 지지 성분을 커버링하는 박판 또는 관상 형태를 갖는 것을 특징으로 하는 인공 보철물 장치.20. Prosthesis device according to any one of claims 15, 16, 18 and 19, having a thin plate or tubular shape covering the support component. 제 15 항 내지 20 항 중 어느 한 항에 있어서, 상기 엘라스틴 또는 엘라스틴-기초 생체 적합 물질 층에 약물을 혼용하여, 정맥내 약물 치료 또는 구강용 약물 치료의 필요성을 감소시키는 것을 특징으로 하는 인공 보철물 장치.21. The prosthetic device of any one of claims 15 to 20, wherein a drug is mixed in the elastin or elastin-based biomaterial layer to reduce the need for intravenous drug treatment or oral drug treatment. . 제 17 항에 있어서, 상기 금속이 티타늄, 탄탈륨, 스테인레스 스틸 및 니티놀로 이루어진 군 중에서 선택되는 것을 특징으로 하는 인공 보철물 장치.18. The prosthesis device of claim 17, wherein the metal is selected from the group consisting of titanium, tantalum, stainless steel, and nitinol. 제 15 항 내지 22 항 중 어느 한 항에 있어서, 상기 지지 성분이 스텐트, 혈관 또는 골격인 것을 특징으로 하는 인공 보철물 장치.23. Prosthesis device according to any one of claims 15 to 22, wherein the support component is a stent, blood vessel or skeleton.
KR1019997008869A 1994-11-15 1995-04-04 A prosthetic device comprising elastin or elastin-based biomaterial and the producing process thereof KR100271014B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/341,881 US5989244A (en) 1994-11-15 1994-11-15 Method of use of a sheet of elastin or elastin-based material
US08/341,881 1994-11-15
KR1019970703262A KR100250409B1 (en) 1994-11-15 1995-04-04 Elastin, elastin-based biomaterials and process
PCT/US1995/004236 WO1996014807A1 (en) 1994-11-15 1995-04-04 Elastin, and elastin-based biomaterials and process

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1019970703262A Division KR100250409B1 (en) 1994-11-15 1995-04-04 Elastin, elastin-based biomaterials and process

Publications (1)

Publication Number Publication Date
KR100271014B1 true KR100271014B1 (en) 2000-10-16

Family

ID=26636639

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019997008869A KR100271014B1 (en) 1994-11-15 1995-04-04 A prosthetic device comprising elastin or elastin-based biomaterial and the producing process thereof

Country Status (1)

Country Link
KR (1) KR100271014B1 (en)

Similar Documents

Publication Publication Date Title
KR100250409B1 (en) Elastin, elastin-based biomaterials and process
US6087552A (en) Method of producing fused biomaterials and tissue
AU753100B2 (en) Method of producing elastin, elastin-based biomaterials and tropoelastin materials
US6110212A (en) Elastin and elastin-based materials
US7001328B1 (en) Method for using tropoelastin and for producing tropoelastin biomaterials
EP1113765B1 (en) Insertable stent and methods of making same
AU737125B2 (en) Method for using tropoelastin and for producing tropoelastin biomaterials
AU748911B2 (en) Method of producing biomaterials
KR100271014B1 (en) A prosthetic device comprising elastin or elastin-based biomaterial and the producing process thereof
Bai et al. Vascular Patches: Past and Future, Problems, and Solutions
AU767057B2 (en) Method of producing biomaterials
AU746813B2 (en) Prosthetic device and process of production
MXPA97003589A (en) Elastina, biomaterials based on elastin and process for your producc
CA2471757A1 (en) Elastin, and elastin-based biomaterials and process
MXPA00006485A (en) Method of producing elastin, elastin-based biomaterials and tropoelastin materials

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060804

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee