KR100262852B1 - A positive active material lixmymn-2-yo4 and its manufacturing method - Google Patents

A positive active material lixmymn-2-yo4 and its manufacturing method Download PDF

Info

Publication number
KR100262852B1
KR100262852B1 KR1019970067614A KR19970067614A KR100262852B1 KR 100262852 B1 KR100262852 B1 KR 100262852B1 KR 1019970067614 A KR1019970067614 A KR 1019970067614A KR 19970067614 A KR19970067614 A KR 19970067614A KR 100262852 B1 KR100262852 B1 KR 100262852B1
Authority
KR
South Korea
Prior art keywords
nitrate
active material
acetate
metal
lithium
Prior art date
Application number
KR1019970067614A
Other languages
Korean (ko)
Other versions
KR19990048820A (en
Inventor
선양국
오승모
장동훈
홍진규
이종화
Original Assignee
유현식
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유현식, 제일모직주식회사 filed Critical 유현식
Priority to KR1019970067614A priority Critical patent/KR100262852B1/en
Publication of KR19990048820A publication Critical patent/KR19990048820A/en
Application granted granted Critical
Publication of KR100262852B1 publication Critical patent/KR100262852B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: A lixMyMn-2-YO4 as the anode active material of the lithium ion battery is provided to obtain regular powdered phase by using citric acid as the chelating agent and lithium nitrate and/or acetate, manganese nitrate and/or acetate or other metal nitrate salts as metal precursor. CONSTITUTION: The anode active material of the lithium ion battery having the formula LixMyMn-2-YO4 (wherein M is Al, Co, Li or Ni and x is 0.9-1.0 and 0<y<0.2) is produced by mixing citric acid as the chelating agent and lithium nitrate and/or acetate, manganese nitrate and/or acetate or other metal nitrate salts such as Al, Co, Li or Ni as metal precursor; dehydrating the mixture at 50 deg.C. within the rotary evaporator; drying it by means of vacuum dryer at 70 deg.C. to produce amorphous gel precursor; and calcining the resultant material within the electric bath at 500-900 deg.C. for 5-24 hours. The electric bath has the temperature elevating and/or decreasing rate of 1-5 deg.C/minute.

Description

리튬 이차전지용 양극화물질인LixMyMn2-yO4분말 및 제조방법 .LithMyMn2-yO4 Powder and Preparation Method for Anode Material for Lithium Secondary Battery.

제1도는 본 발명에 따른 LixMyMn2-yO4분말 제조 공정도이다1 is a process chart for preparing Li x M y Mn 2-y O 4 powder according to the present invention.

제2도는 겔 전구체로부터 세라믹스로의 변화 과정을 나타낸 TG 곡선(승온속도 5℃/min)을 나타낸 그림이다.FIG. 2 is a graph showing a TG curve (raising rate of 5 ° C./min) showing the process of conversion from gel precursor to ceramics.

제3도는 본 발명에 의한 스피넬 구조를 갖는 (a)LiCo0.05Mn1.95O4.(b)Li1.05Co0.1Mn1.9O4및 Li0.95Co0.2Mn1.8O4의 X-선 회절분석결과를 나타낸그림이다.Figure 3 shows the results of X-ray diffraction analysis of (a) LiCo 0.05 Mn 1.95 O 4. (B) Li 1.05 Co 0.1 Mn 1.9 O 4 and Li 0.95 Co 0.2 Mn 1.8 O 4 having a spinel structure according to the present invention Picture.

제4도는 본 발명에 의한 스피넬 구조를 갖는 LixM0.05Mn1.9504(x=0.9~1.1) (a) M=A1,(b)M=Li, (c)M=Ni 및 (d) M=Mn 의 X-선 회절분석 결과를 나타낸 그림이다.4 shows Li x M 0.05 Mn 1.95 0 4 having a spinel structure according to the present invention (x = 0.9 to 1.1) (a) M = A1, (b) M = Li, (c) M = Ni and (d) The figure shows the result of X-ray diffraction analysis of M = Mn.

제5도는 (a)LiCo0.05Mn1.95O4.(b)Li1.05Co0.1Mn1.9O4및 Li0.95Co0.2Mn1.8O4를 양극(cathode)으로 이용한 리튬 이차전지의 충방전에 따른 용량 변화를 나타낸 그림이다.5 shows (a) LiCo 0.05 Mn 1.95 O 4. (B) Li 1.05 Co 0.1 Mn 1.9 O 4 and Li 0.95 Co 0.2 Mn 1.8 O 4 as a cathode to change the capacity of the rechargeable lithium battery The figure shows.

제6도는 LixM0.05Mn1.9504(x=0.9~1.1) (a) M=A1,(b)M=Li 및 (c)M=Ni을 양극(cathode)으로 이용한 리튬 이차전지의 충방전에 따른 방전용량 변화를 나타낸 그림이다.6 shows Li x M 0.05 Mn 1.95 0 4 (x = 0.9 ~ 1.1) (a) Lithium secondary battery charging using M = A1, (b) M = Li and (c) M = Ni as a cathode The figure shows the change of discharge capacity according to discharge.

제7도는 (a) LixMn204(x=0.9∼1.1) 와 (b) LixNiO.05Mnl.9504를 양극(cathode)으로 한 리튬 이차 전지의 정전류 충방전 곡선을 나타낸 그림이다.Seventh turn (a) Li x Mn 2 0 4 (x = 0.9~1.1) and (b) Li x Ni Mn O.05 l.95 constant current charge and discharge curves of a lithium secondary battery, the positive electrode 04 to the (cathode) The figure shows.

[발명의 분야][Field of Invention]

본 발명은 리튬 이차전지용 양극활물질로 사용되고 스피넬 구조를 갖는 LixMyMn2-yO4(여기서 M은 Al, Co, Li 또는 Ni이고, x는 0.9∼1.1이며, 0〈y〈0.2이다) 및 이 양극활불질의 제조방법에 관한 것이다. 보다 구체적으로 본 발명은 리튬 이온 전지 및 리튬 폴리머 전지용 양극활물질인 LixMyMn2-yO4분말을 구연산 법을 이용하여 제조하고, 전기화학적 특성을 탄소 전지 또는 Li/유기전해질/LixMyMn2-yO4전지를 이용하여 조사한 양극활물질에 관한 것이다.The present invention is used as a positive electrode active material for lithium secondary batteries and has a spinel structure Li x MyMn 2-y O 4 (where M is Al, Co, Li or Ni, x is 0.9 to 1.1, 0 <y <0.2) and It relates to a method for producing the positive electrode active insol. More specifically, the present invention prepares Li x MyMn 2-y O 4 powder, which is a cathode active material for lithium ion batteries and lithium polymer batteries, using citric acid method, and the electrochemical properties of carbon cells or Li / organic electrolyte / Li x MyMn 2. A positive electrode active material investigated using a -y O 4 cell.

[발명의 배경 및 종래기술]Background of the Invention and Prior Art

리튬 이차 전지는 카본 또는 Li 금속/전해액(유기전해질 또는 고분자전해질)/산화물 양극으로 구성되는데 양극재료로 LixCo02, LixNi02, LixMn204등이 개발 연구되고 있다. 현재 상업화된 양극재료는 LixCoO2인데 전지의 제조단가중 이 양극재료의 가격이 약 1/3에 달하므로 값싼 양극재료의 개발이 요구된다. 망간은 매장량이 많아 가격이 코발트에 비해 1/20 정도밖에 안되므로 양극 재료로 망간산화물을 개발하고자 하는 연구가 활발히 진행되었다. 이 중 스피넬 구조를 갖는 LixMn204는 제조단가가 저렴하다는 장점 이외에 전지의 작동 전압이 높으며, 다른 산화물 보다 열적안정성이 우수하며 인체에 무해하고 공해의 유발정도가 적은 장점을 지니고 있다. 그러나 LixMn204는 충방전을 거듭함에 따라 지속적인 용량 감소의 문제를 지니고 있어 이의 해결책이 모색되어 왔다. 이러한 문제는 진지가 충·방전됨에 따라 양극재료의 결정구조가 파괴되거나 상변이가 유발되고 망간이온이 전해액으로 용해되기 때문인 것으로 추축되고 있다. 본 발명에서 상기 종래의 문제점을 해결하기 위하여 연구한 결과 스피넬 격자를 이루고 있는 Mn이온의 일부(20% 이내)Lithium secondary batteries are composed of carbon or Li metal / electrolyte (organic electrolyte or polymer electrolyte) / oxide positive electrode. Li x Co0 2 , Li x Ni0 2 , Li x Mn 2 0 4, etc. are being researched and developed. Currently, the commercialized anode material is Li x CoO 2, and since the price of the cathode material is about one third of the manufacturing cost of the battery, the development of cheap anode material is required. Since manganese has a lot of reserves, the price is only 1/20 of that of cobalt, so researches to develop manganese oxide as an anode material have been actively conducted. Among them, Li x Mn 2 O 4 having a spinel structure has the advantages of low manufacturing cost, high operating voltage of the battery, excellent thermal stability than other oxides, harmless to the human body, and low pollution. However, Li x Mn 2 O 4 has a problem of continuous capacity reduction with repeated charging and discharging, and a solution for this has been sought. This problem is attributed to the fact that as the charge and discharge of the earthquake, the crystal structure of the positive electrode material is destroyed or a phase change is caused, and manganese ions are dissolved into the electrolyte. In order to solve the above problems in the present invention, a part of Mn ions forming a spinel lattice (within 20%)

를 Al, Co, Li 또는 Ni의 다른 금속 이온으로 치환하므로써 결정구조의 파괴와 용해를 억제할 수 있어 양극의 수명을 크게 늘릴 수 있음을 발견하여 이루어 진 것 이다.By substituting for other metal ions of Al, Co, Li, or Ni, it was found that the destruction and dissolution of the crystal structure can be suppressed and the life of the anode can be greatly increased.

LixMyMn2-yO4의 가장 일반적인 제법으로는 고상반응법인데 이 방법은 각 구성원소의 탄산염, 산화물과 수산화물을 원료로 하여 이들 분말을 혼합, 소성하는 과정을 수차례 거쳐서 제조하는데 이 방법은 균일한 상을 가진 분말 합성이 어렵고 분말입자의 크기를 일정하게 제어하기가 곤란하며 높은 온도에서 오랜시간동안 제조해야 하며 치환의 효과를 얻기 위해서 많은 양의 금속이온을 이용하므로 이로 인한 초기 방전용량의 저하라는 단점이 있다. 이에 비해서 액상반응법의 일종인 구연산법은 균일한 상을 가지는 분말 합성이 용이하고 비교적 낮은 소성온도 및 짧은 시간에 제조가 가능하며 조성비의 제어가 용이하며 비교적 적은 양의 금속이온 치환으로도 그 효과를 얻을 수 있다는 장점이 있다.The most common method for producing Li x M y Mn 2-y O 4 is a solid phase reaction. This method is made by mixing and firing these powders several times using carbonates, oxides and hydroxides of each element. This method is difficult to synthesize the powder with uniform phase, difficult to control the size of powder particles uniformly, it has to be manufactured for a long time at high temperature, and it is necessary to use a large amount of metal ions to obtain the effect of substitution. There is a disadvantage that the discharge capacity is lowered. On the other hand, citric acid method, which is a kind of liquid phase reaction method, is easy to synthesize powder having a uniform phase, can be manufactured at a relatively low firing temperature and a short time, and can easily control the composition ratio. There is an advantage that can be obtained.

[발명의 목적][Purpose of invention]

본 발명의 목적은 킬레이트제(chelating agent)로 구연산(citric acid)을 사용하고, 금속 전구체로 리튬 질산염 및/또는 초산염, 망간 질산염 및/또는 초산염, 및 다른 금속(Al, Co, Li 또는 Ni)의 질산염을 사용하여 균일한 상을 갖는 LixMyMn2-yO4분말을 제공하기 위한 것이다.An object of the present invention is to use citric acid as a chelating agent, lithium nitrate and / or acetate, manganese nitrate and / or acetate, and other metals (Al, Co, Li or Ni) as metal precursors. Nitrate to provide a Li x M y Mn 2-y O 4 powder having a uniform phase.

본 발명의 다른 목적은 구연산법을 이용하여 적은 양의 금속 이온 치환으로도 용량 감소를 억제할 수 있는 LixMyMn2-yO4(M=Al, Co, Li, Ni, x=0.9∼1.1, y〈0.2) 분말을 제공하기 위한 것이다.Another object of the present invention is the Li x M y Mn 2-y O 4 (M = Al, Co, Li, Ni, x = 0.9 which can suppress the capacity reduction even with a small amount of metal ion replacement using the citric acid method) It is for providing -1.1, y <0.2) powder.

본 발명의 또 다른 목적은 액상 반응법의 일종인 구연산법을 이용함으로써 비교적 낮은 소성온도 및 짧은 시간내에 제조가 가능하고 금속이온의 조성비의 제어가 용이한 LixMyMn2-yO4분말을 제공하기 위한 것이다.Another object of the present invention is the Li x M y Mn 2-y O 4 powder which can be manufactured in a relatively low firing temperature and a short time by using citric acid method, which is a kind of liquid phase reaction, and can easily control the composition ratio of metal ions. It is to provide.

본 발명의 또 다른 목적은 비교적 적은 양의 금속이온 치환으로도 초기방전용량을 저하시키지 않는 LixMyMn2-yO4분말을 제공하기 위한 것이다.It is yet another object of the present invention to provide a Li x M y Mn 2-y O 4 powder which does not lower the initial discharge even with relatively small amounts of metal ion substitution.

[발명의 요약][Summary of invention]

본 발명의 리튬 이차전지용 양극활물질은 킬레이트제(chelating agent)로 구연산(citric acid)을 사용하고, 금속 전구체로 리튬 질산염 및/또는 초산염, 망간 질산염 및/또는 초산염, 및· 다른 금속(Al, Co, Li 또는 Ni)의 질산염을 사용하여 제조된 것으로, 하기 구조식으로 표시된다:The cathode active material for a lithium secondary battery of the present invention uses citric acid as a chelating agent, and lithium nitrate and / or acetate, manganese nitrate and / or acetate as a metal precursor, and other metals (Al, Co). Prepared using nitrates of Li or Ni), represented by the following structural formula:

LixMyMn2-yO4 Li x M y Mn 2-y O 4

상기 식에서 M은 Al, Co, Li 또는 Ni이고, x는 0.9∼1.1이며, 0〈y〈0.2이다.In the above formula, M is Al, Co, Li or Ni, x is 0.9 to 1.1, and 0 &lt; y &lt; 0.2.

본 발명의 리튬 이차전지용 양극활물질은 킬레이트제로서의 구연산과 금속전구체로서의 리튬 질산염 및/또는 초산염, 망간 질산염 및/또는 초산염, 및 다른 금속의 질산염을 혼합하고; 상기 혼합용액을 회전식 증발기(rotary evaporator)에서 50℃의 온도로 탈수시키고; 진공 건조기에서 70℃의 온도로 탈수시켜 비결정 겔(gel) 전구체를 제조하고; 그리고 상기 겔 전구체를 전기조에서 500∼900℃의 온도로 5∼24 시간 동안 하소(calcination) 시키는 단계에 의하여 제조된다.The positive electrode active material for a lithium secondary battery of the present invention mixes citric acid as a chelating agent and lithium nitrate and / or acetate as a metal precursor, manganese nitrate and / or acetate, and nitrates of other metals; Dehydrating the mixed solution at a temperature of 50 ° C. in a rotary evaporator; Dehydration at a temperature of 70 ° C. in a vacuum dryer to prepare an amorphous gel precursor; And the gel precursor is prepared by calcination (calcination) for 5 to 24 hours at a temperature of 500 ~ 900 ℃ in an electric bath.

이하 본 발명의 상세한 내용을 하기에 설명한다.Hereinafter, the details of the present invention will be described below.

[발명의 구체예에 대한 상세한 설명]Detailed Description of the Invention

본 발명의 리튬 이차전지용 양극활물질은 킬레이트제(chelating agent)로 구연산(citric acid)을 사용하고, 금속 전구체로 리튬 질산염 및/또는 초산염, 망간 질산염 및/또는 초산염, 및 다른 금속(Al, Co, Li 또는 Ni)의 질산염을 사용하여 제조된 것으로, 하기 구조식으로 표시된다:The cathode active material for a lithium secondary battery of the present invention uses citric acid as a chelating agent, and lithium nitrate and / or acetate, manganese nitrate and / or acetate as a metal precursor, and other metals (Al, Co, Prepared using a nitrate of Li or Ni), represented by the following structural formula:

LixMyMn2-yO4 Li x M y Mn 2-y O 4

상기식에서 M은 Al, Co, Li 또는 Ni이고, x는 0.9∼1.1이며, 0〈y〈0.2이다.In the formula, M is Al, Co, Li or Ni, x is 0.9 to 1.1, 0 <y <0.2.

본 발명에서 사용되는 리튬(Li)의 출발물질로는 LiN03와 Li(CH3C02)가 있고, 망간(Mn)의 출발물질로는 Mn(NO3)2와 Mn(CH3C02)2가 있다. 다른 금속의 질산염으로는 Al2(NO3)3· xH20가 있다.Starting materials of lithium (Li) used in the present invention are LiN0 3 and Li (CH 3 C0 2 ), the starting materials of manganese (Mn) Mn (NO 3 ) 2 and Mn (CH 3 C0 2 ) There are two . Other metal nitrates include Al 2 (NO 3 ) 3 · xH 2 0.

상기 각각의 출발물질은 칭량한 후 증류수에 녹이고 구연산을 첨가하여 혼합한다. 모든 성분이 완전히 용해된 것을 확인한 후, 회전식 진공건조기에서 물을 서서히 제거해 졸(sol)을 얻은 다음 진공오븐에서 더 건조시켜 겔(gel)화 시킨다. 이를 500∼900℃의 온도범위에서 5∼24시간 열처리하면 분말상태의 LixMyMn2-yO4(M=Al, Co, Li, Ni,x=0.9∼1.1, 0〈y〈0.2)를 얻을 수 있다. 이때 전기로의 승온 및 감온속도는 1∼5℃/min으로 하였다.Each starting material is weighed and then dissolved in distilled water and mixed with citric acid. After confirming that all components are completely dissolved, water is slowly removed from a rotary vacuum dryer to obtain a sol, and then dried in a vacuum oven to gel. When heat-treated for 5 to 24 hours in the temperature range of 500 to 900 ℃ Li x M y Mn 2-y O 4 (M = Al, Co, Li, Ni, x = 0.9 to 1.1, 0 <y <0.2 ) Can be obtained. At this time, the temperature increase and temperature reduction rate of the electric furnace were 1 to 5 ° C / min.

본 발명의 양극활물질을 양극으로 하고, 카본(MCMB 또는 흑연) 또는 리튬(Li) 금속을 음극으로 하여 전해질과 함께 전지를 구성한다. 여기서 사용된 전해질로는 IM LiC104/polycarbonate + dimethylether (1:1), 1M LiPF6/ethylene carbonate + diethylcarbonate (1:1 및 2:1), 1M LiPF6/ethylene carbonate + dimethyl carbonate (2:1), 및 1M LiBF4/ethylene carbonate + diethyl Carbonate (1:1)가 있다. 양극 판은 LixMyNn2-yO4(M=Al, CO, Li, Ni, x=0.9∼1.1, 0〈V〈0.2) : Ketjen black : PTFE (73:20:7)를 무게비로 칭량하여 분산시킨 후 집전체에 결합시켜 제작하였다.The battery is constituted with an electrolyte using the positive electrode active material of the present invention as the positive electrode and carbon (MCMB or graphite) or lithium (Li) metal as the negative electrode. The electrolyte used here is IM LiC10 4 / polycarbonate + dimethylether (1: 1), 1M LiPF 6 / ethylene carbonate + diethylcarbonate (1: 1 and 2: 1), 1M LiPF 6 / ethylene carbonate + dimethyl carbonate (2: 1 ), And 1M LiBF 4 / ethylene carbonate + diethyl carbonate (1: 1). The positive plate comprises Li x M y N n 2-y O 4 (M = Al, CO, Li, Ni, x = 0.9 to 1.1, 0 <V <0.2): Ketjen black: PTFE (73: 20: 7) After weighing and dispersing, it was produced by bonding to the current collector.

본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것이며 첨부된 특허청구범위에 의하여 한정되는 보호범위를 제한하고자 하는 것은 아니다.The invention can be better understood by the following examples, which are intended for the purpose of illustration of the invention and are not intended to limit the scope of protection defined by the appended claims.

양극활물질 LixMyMN2-yO4제조Manufacture of cathode active material Li x M y MN 2-y O 4

[실시예 1]Example 1

LiN031.4g Mn(NO3)2· 6H20 11.4g 및 Co(NO3)2· 6H2O 0.3g을 증류수에 녹인 다음, 위 용액에 구연산 14g을 녹이고 잘 섞었다. 용액을 충분히 섞어준 다음 회전식 진공건조기에서 물을 증발시켜 고체상태의 생성물을 얻고, 얻어진 고체 생성물을 진공오븐에서 더 건조시켰다. 이를 전기로에서 800℃ 에서 8시간 동안 반응시켜 분말을 얻었다. 얻어진 분말을 아세톤으로 세척을 한 뒤 400mesh 채에서 걸러 불순물을 제거하였다. 생성된 분말의 화학분석 결과 조성이 LiCo0.05Mn1.9504임을 확인하였고,X-선 회절분석 결과 스피넬 구조를 제3도(a)에 나타내었다.1.4 g of LiN0 3 Mn (NO 3 ) 2 · 6H 2 0 11.4 g and 0.3 g of Co (NO 3 ) 2 · 6H 2 O were dissolved in distilled water, and 14 g of citric acid was dissolved in the solution and mixed well. The solution was mixed well and water was evaporated in a rotary vacuum dryer to obtain a solid product, and the obtained solid product was further dried in a vacuum oven. This was reacted at 800 ° C. for 8 hours in an electric furnace to obtain a powder. The obtained powder was washed with acetone and then filtered at 400 mesh to remove impurities. As a result of chemical analysis of the powder produced, it was confirmed that the composition was LiCo 0.05 Mn 1.95 0 4 , and the spinel structure of the X-ray diffraction analysis was shown in FIG.

[실시예 2]Example 2

실시예 1에서 망간 전구체로 사용된 Mn(N03)2· 6H20 11.4g 대신 Mn(CH3C02)2· 4H20 9.3g을 이용하는 것을 제외하고는 실시예 1과 동일한 과정을 거쳐 분말을 얻었고, 화학분석 및 X-선 회절분석 결과 스피넬 구조의 Lil.05Co0.1Mnl.904임을 확인하였다. Lil.05Co0.1Mnl.904의 X-선 회절분석 결과를 제3도(b)에 도시 하였다.Except for using Mn (CH 3 CO 2 ) 2 · 4H 2 0 9.3g instead of Mn (N0 3 ) 2 · 6H 2 0 11.4g used as a manganese precursor in Example 1 Powder was obtained, and the chemical analysis and X-ray diffraction analysis confirmed that the spinel structure of Li l.05 Co 0.1 Mn l.9 0 4 . X-ray diffraction analysis of Li l.05 Co 0.1 Mn l.9 0 4 is shown in FIG. 3 (b).

[실시예 3]Example 3

실시예 1에서 리튬 전구체로 사용된 LiN0314g 대신 LiCH3C02· 4H20 1.9g을 이용하는 것을 제외하고는 실시예 1과 동일한 과정을 거쳐 분말을 얻었고, 화학 분석 및 X-선 회절분석 결과 스피넬 구조의 LiO.95CoO.2Mnl.804임을 확인하였다. LiO.95CoO.2Mnl.804의 X-선 회절분석 결과를 제3도(C)에 도시하였다.A powder was obtained through the same process as in Example 1 except that 1.9 g of LiCH 3 C0 2 · 4H 2 0 was used instead of 14 g of LiN0 3 used as the lithium precursor in Example 1, and the chemical analysis and the X-ray diffraction analysis result it was confirmed that the spinel structure Li O.95 Co O.2 Mn l.8 0 4 . Li a Co O.95 O.2 X- ray diffraction analysis of Mn l.8 0 4 shown in FIG. 3 (C).

[실시예 4]Example 4

실시예 1에서 사용된 CO(NO3)2· 6H2O 0.3g 대신 Al2(NO3)3· 9H20 0.4g을 이용하는 것을 제외하고는 실시예 1과 등일한 과정을 거쳐 분말을 얻었고, 화학 분석 및 X-선 회절분석 결과 LiAl0.05Mn1.9504임을 확인하였다 LiAl0.05Mn1.9504의 X-선 회절분석 결과를 제4도(3)에 도시하였다.A powder was obtained by the same procedure as in Example 1 except that Al 2 (NO 3 ) 3 · 9H 2 0 0.4 g was used instead of 0.3 g of CO (NO 3 ) 2 · 6H 2 O used in Example 1. , are shown the chemical analysis and X- ray diffraction analysis LiAl 0.05 Mn 1.95 04 was identified as LiAl 0.05 Mn 1.95 X- ray diffraction analysis of the 04 in FIG. 4 (3).

[실시예 5]Example 5

실시예 1에서 사용된 LiN03의 양을 1.5g 이용하는 것을 제외하고는 실시예 1과 동일한 과정을 거쳐 분말을 얻었고, 화학 분석 및 X-선 회절분석 결과 Li1.05Mn1.9504임을 확인하였다. Li1.05Mn1.9504의 X-선 회절분석 결과를 제4 도(b)에 도시 하였다.A powder was obtained through the same process as in Example 1 except that 1.5g of LiN0 3 was used in Example 1, and the result of chemical analysis and X-ray diffraction analysis showed that Li 1.05 Mn 1.95 0 4 . X-ray diffraction analysis of Li 1.05 Mn 1.95 0 4 is shown in FIG. 4 (b).

[실시예 6]Example 6

실시예 1에서 사용된 Co(NO3)2· 6H2O 0.3g 대신 Ni(NO3)2· 6H20 0.3g을 이용하는 것을 제외하고는 실시예 1과 동일한 과정을 거쳐 분말을 얻었고, 화학 분석 및 X-선 회절분석 결과 LiNi0.05Mn1.9504임을 확인하였다.LiNi0.05Mn1.9504의 X-선 회절분석 결과를 제4도(c)에 도시하였다Powder was obtained through the same process as in Example 1 except that 0.3 g of Ni (NO 3 ) 2 6H 2 0 was used instead of 0.3 g of Co (NO 3 ) 2 · 6H 2 O used in Example 1. analysis and X- ray diffraction patterns showed that LiNi 0.05 Mn 1.95 0 4 was identified as .LiNi 0.05 Mn 1.95 X- ray diffraction analysis of the 04 is shown in FIG. 4 (c)

[비교실시예 1]Comparative Example 1

실시예 1에서 사용된 Mn(NO3)2· 6H2O의 양을 11,7g을 이용하는 것을 제외하고는 실시예 1과 동일한 과정을 거쳐 분말을 얻었고, 화학 분석 및 X-선 회절분석 결과 LiMn204임을 확인하였다. LiMn204의 X-선 회절분석 결과를 제4도(d)에 도시 하였다.The powder was obtained by the same procedure as in Example 1 except that 11,7 g of Mn (NO 3 ) 2 · 6H 2 O was used in Example 1, and the chemical analysis and the X-ray diffraction analysis showed that LiMn 2 0 4 It was confirmed. The X-ray diffraction analysis of LiMn 2 O 4 is shown in FIG. 4 (d).

양극활물질 LixMyMn2-yO4의 리튬 이차 전지에의 이용:Use of the positive electrode active material Li x M y Mn 2-y O 4 in a lithium secondary battery:

[실시예 7]Example 7

실시예 1로부터 얻어진 LixMyMn2-yO4(x=0.9∼1.1, 0〈y〈0.2)를 양극 재료로 사용하는 리튬 이차 전지를 구성하여 정전류(C/2)로 충방전 실험을 수행하였다. 음극으로 리튬금속을 사용하였고, ethylene carbonate와 diethyl carbonate가 부피비로 1 : 1인 용매에 1M LiBF4가 녹아있는 전해질을 사용하였다. LixCOyMn2-yO4(x=0.9∼1.1, 0〈y〈0.2)를 양극 재료로 사용했을 경우의 충방전 수행결과 사이클 수에 따른 방전 용량 변화를 제5도에 도시하였다. 제5도에서 (a)는 Co의 조성비인 y가 0.05이고, (b)는 y가 0.1이고, (c)는 y가 0.2 이다.Charge / discharge experiment with constant current (C / 2) by constructing a lithium secondary battery using Li x M y Mn 2-y O 4 (x = 0.9 to 1.1, 0 <y <0.2) obtained from Example 1 as a positive electrode material Was performed. Lithium metal was used as a negative electrode, and an electrolyte in which 1M LiBF 4 was dissolved in a solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1 was used. 5 shows the change in discharge capacity according to the number of cycles as a result of performing charging and discharging when Li x CO y Mn 2-y O 4 (x = 0.9 to 1.1, 0 <y <0.2) is used as the positive electrode material. In FIG. 5, (a) is y, which is a composition ratio of Co, 0.05, (b) is y, 0.1, and (c) is y, 0.2.

[실시예 8]Example 8

실시예 4, 5 및 6으로부터 얻어진 LixMyMn2-yO4(M=Al, Li, Ni, x=0.9∼1.1, 0〈y〈0.2)를 양극 재료로 사용하는 리튬 이차 전지를 구성하였고, 충방전 실험은 실시예 7과 같은 조건으로 수행하였다. LixMyMn2-yO4(M=ALLl, Ni, x=0.9~1.1, 0〈r〈0.2)를 양극 재료로 사용했을 경우의 충방전 수행결과 사이클 수에 따른 방전 용량변화를 제6도에 도시하였다. 제6도에서 (a)는 금속(M)이 Al이고, (b)는 Ni이며, (c)는 Li이다.Lithium secondary batteries using Li x M y Mn 2-y O 4 (M = Al, Li, Ni, x = 0.9 to 1.1, 0 <y <0.2) obtained from Examples 4, 5, and 6 as a positive electrode material The charge and discharge experiment was performed under the same conditions as in Example 7. The result of charge / discharge performance when Li x M y Mn 2-y O 4 (M = ALLl, Ni, x = 0.9 ~ 1.1, 0 <r <0.2) is used as the anode material is used to change the discharge capacity according to the number of cycles. It is shown in 6 degrees. In FIG. 6, (a) is Al, (b) is Ni, and (c) is Li.

[실시예 9]Example 9

비교실시예 1로부터 얻어진 LiMn204를 양극 재료로 사용하여 리튬 이차 전지를 구성하였고, 충방전 실험은 실시예 7과 같은 조건으로 수행하였으며 실시예 9로부터 가장 좋은 성능을 나타낸 LiNi0.05Mn1.9504와 충방전 횟수에 따라 용량에 대한 전위의 변화를 제7도에 비교하여 도시하였다.A lithium secondary battery was constructed using LiMn 2 0 4 obtained from Comparative Example 1 as a positive electrode material, and the charge and discharge experiments were performed under the same conditions as in Example 7, and LiNi 0.05 Mn 1.95 0, which showed the best performance from Example 9, was shown. The change in potential with respect to the capacity according to 4 and the number of charge and discharge cycles is shown in FIG. 7.

[실시예 10]Example 10

실시예 4에서 얻어진 LiAl0.05Mn1.9504를 양극재료로 사용하고 음극 재료로 리튬 금속 대신 카본 (MCMB-28)을 사용하여 실시예 7과 동일한 조건에서 충방전 실험을 한 결과 초기 용량은 130 mAhg-1이었고 200회 충방전시 용량은 115 mAhg-1이 었다.The initial capacity was 130 mAhg using LiAl 0.05 Mn 1.95 0 4 obtained in Example 4 as a cathode material and carbon (MCMB-28) instead of lithium metal as a cathode material. It was -1 and the capacity at 200 charge / discharge cycles was 115 mAhg -1 .

[실시예 11]Example 11

실시예 4에서 얻어진 LiAl0.05Mn1.9504를 양극재료로 사용하고 실시예7에서 사용한 전해질 대신 에틸렌 카보네이트 : 프로필렌 카보네이트가 부피비로 1 : 1인 용매 1M LiPF6가 녹아있는 전해질을 사용하여 실시예 7과 동일한 조건에서 충방전 실험을 한 결과 초기 용량은 135 mAhg-1였고, 400회 충방전시 용량은 110 mAhg-1이었다.Example 7 using LiAl 0.05 Mn 1.95 0 4 obtained in Example 4 as an anode material and an electrolyte in which 1M LiPF 6 in a solvent of ethylene carbonate: propylene carbonate in a volume ratio of 1: 1 was used instead of the electrolyte used in Example 7. and it was a result of the initial capacity is 135 mAhg a charge and discharge test 1 in the same condition, was 400 times during the charge and discharge capacity of 110 mAhg -1.

[실시예 12]Example 12

실시예 6에서 얻어진 LiAl0.05Mn1.9504를 양극재료로 사용하고 실시예 7에서 사용한 전해질 대신 에틸렌 카보네이트 : 디메틸 카보네이트가 부피비로 1 : 1인 용매에 1M LiPF6가 녹아있는 전해질을 사용하여 실시예 8과 동일한 조건에서 충방전 실험을 한 결과 초기 용량이 127 mAhg-1이었고 200회 충방전시 용량은 120 mAhg-1이었다.Example 1 Using LiAl 0.05 Mn 1.95 0 4 obtained in Example 6 as an anode material and an electrolyte in which 1M LiPF 6 was dissolved in a solvent in which ethylene carbonate: dimethyl carbonate was 1: 1 in volume ratio instead of the electrolyte used in Example 7 Charging and discharging experiments under the same conditions as 8 showed an initial capacity of 127 mAhg −1 and a capacity of 120 mAhg −1 at 200 charge / discharge cycles.

본 발명의 양극활물질은 액상 반응법의 일종인 구연산법을 이용함으로써 비교적 낮은 소성 온도 및 짧은 시간내에 제조가 가능하고 금속 이온의 조성비의 제어가 용이하며, 비교적 적은 양의 금속 이온 치환으로도 초기 방전용량을 저하시키지 않는 발명의 효과를 갖는다.The cathode active material of the present invention can be manufactured in a relatively low firing temperature and a short time by using citric acid method, which is a kind of liquid phase reaction method, and it is easy to control the composition ratio of metal ions, and the initial discharge is possible even with relatively small amount of metal ion substitution. It has the effect of the invention that does not lower the capacity.

본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily carried out by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims (5)

킬레이트제(chelating agent)로 구연산(citric acid)을 사용하고, 금속 전구체로 리튬 질산염 및/또는 초산염, 망간 질산염 및/또는 초산염, 및 다른 금속(Al, Co, Li 또는 Ni)의 질산염을 사용하여 제조되고, 하기 구조식으로 표시되는 리튬 이차 전지용 양극활물질:Citric acid is used as a chelating agent, lithium nitrate and / or acetate, manganese nitrate and / or acetate, and nitrates of other metals (Al, Co, Li or Ni) as metal precursors. A cathode active material prepared for and represented by the following structural formula: LixMyMn2-yO4 Li x M y Mn 2-y O 4 상기식에서 M은 Al, Co, Li 또는 Ni이고, x는 0.9∼1.1이며 0〈y〈0,2 임.Wherein M is Al, Co, Li or Ni, x is 0.9 to 1.1 and 0 &lt; y &lt; 제1항에 있어서, 상기 다른 금속의 질산염은 Al(NO3)3·xH20,LiN03, Co(NO3) ·XH20 및 Ni(NO3)2·xH2O로 이루어진 군으로부터 선택되는 것을 특징으로 하는 리튬 이차 전지용 양극활물질.The metal nitrate of claim 1, wherein the nitrate of the other metal is selected from the group consisting of Al (NO 3 ) 3 xH 2 0, LiN0 3 , Co (NO 3 ) XH 2 0 and Ni (NO 3 ) 2 .xH 2 O. A cathode active material for a lithium secondary battery, characterized in that selected. 킬레이트제로서의 구연산과 금속전구체로서의 리튬 질산염 및/또는 초산연, 망간 질산염 및/또는 초산염, 및 다른 금속의 질산염을 혼합하고; 상기 혼합용액을 회전식 증발기(rotary evaporator)에서 50℃의 온도로 탈수시키고; 진공 건조기에서 70℃의 온도로 탈수시켜 비결정 겔(gel) 전구체를 제조하고; 그리고 상기 겔 전구체를 전기조에서 500~900℃의 온도로 5~24 시간동안 하소(calcination) 시키는 단계에 의하여 제조되는 것을 특징으로 하는 하기 구조식으로 표시되는 리튬 이차 전지용 양극활물질의 제조방법:Mixing citric acid as a chelating agent and lithium nitrate and / or lead acetate as a metal precursor, manganese nitrate and / or acetate, and nitrates of other metals; Dehydrating the mixed solution at a temperature of 50 ° C. in a rotary evaporator; Dehydration at a temperature of 70 ° C. in a vacuum dryer to prepare an amorphous gel precursor; And the method of producing a cathode active material for a lithium secondary battery represented by the following structural formula characterized in that the gel precursor is prepared by calcination (calcination) for 5 to 24 hours at a temperature of 500 ~ 900 ℃ in an electric bath: LixMyMn2-yO4 Li x M y Mn 2-y O 4 상기식에서 M은 Al, Co, Li 또는 Ni이고, x는 0.9∼1.1이며 0〈y〈0,2 임.Wherein M is Al, Co, Li or Ni, x is 0.9 to 1.1 and 0 &lt; y &lt; 제3항에 있어서, 상기 다른 금속의 질산염은 Al2(N03)3·xH20, LiN03Co(NO3)·xH2O 및 Ni(NO3)2·xH20로 이루어진 군으로부터 선택되는 것을 특징으로 하는 리튬 이차 전지용 양극활물질의 제조방법.4. The method of claim 3, wherein the nitrate of the other metal is selected from the group consisting of Al 2 (N0 3 ) 3 .xH 2 0, LiN0 3 Co (NO 3 ) .xH 2 O and Ni (NO 3 ) 2 .xH 2 0. Method for producing a cathode active material for a lithium secondary battery, characterized in that selected. 제3항에 있어서, 상기 하소 단계에서의 전기로의 승온 및 감온 속도가 1~5℃/분인 것을 특징으로 하는 리튬 이차 전지용 양극활물질의 제조방법.The method of manufacturing a cathode active material for a lithium secondary battery according to claim 3, wherein the temperature increase and temperature reduction rate of the electric furnace in the calcination step is 1 to 5 ° C / min.
KR1019970067614A 1997-12-11 1997-12-11 A positive active material lixmymn-2-yo4 and its manufacturing method KR100262852B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970067614A KR100262852B1 (en) 1997-12-11 1997-12-11 A positive active material lixmymn-2-yo4 and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970067614A KR100262852B1 (en) 1997-12-11 1997-12-11 A positive active material lixmymn-2-yo4 and its manufacturing method

Publications (2)

Publication Number Publication Date
KR19990048820A KR19990048820A (en) 1999-07-05
KR100262852B1 true KR100262852B1 (en) 2000-08-01

Family

ID=19526989

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970067614A KR100262852B1 (en) 1997-12-11 1997-12-11 A positive active material lixmymn-2-yo4 and its manufacturing method

Country Status (1)

Country Link
KR (1) KR100262852B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157867A1 (en) * 2012-04-20 2013-10-24 주식회사 엘지화학 Lithium secondary battery having improved rate characteristics
WO2013157883A1 (en) * 2012-04-20 2013-10-24 주식회사 엘지화학 Electrolyte for lithium secondary battery and lithium secondary battery containing same
CN109883143A (en) * 2018-12-26 2019-06-14 深圳市卓能新能源股份有限公司 Lithium battery stoving process

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100307160B1 (en) * 1999-03-06 2001-09-26 김순택 A positive active material for a lithium secondary battery and a method of preparing the same
KR100364659B1 (en) * 2000-08-25 2002-12-16 유광수 CATHODE MATERIAL, Li(Mn1-δCoδ)2O4 FOR LITHIUM-ION SECONDARY BATTERY AND METHOD FOR PREPARING THE SAME
KR100389654B1 (en) * 2000-12-19 2003-06-27 삼성에스디아이 주식회사 Positive active material for lithium secondary battery and method of preparing same
KR101479559B1 (en) * 2012-05-23 2015-01-08 순천대학교 산학협력단 Cathode active materials for lithium secondary battery and lithium secondary battery comprising the same, and preparation method for the cathode active material
US11121370B2 (en) 2017-01-18 2021-09-14 Nano One Materials Corp. One-pot synthesis for lithium ion battery cathode material precursors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677087A (en) * 1995-04-26 1997-10-14 Japan Storage Battery Co., Ltd. Method for manufacturing positive electrode material for a lithium battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677087A (en) * 1995-04-26 1997-10-14 Japan Storage Battery Co., Ltd. Method for manufacturing positive electrode material for a lithium battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157867A1 (en) * 2012-04-20 2013-10-24 주식회사 엘지화학 Lithium secondary battery having improved rate characteristics
WO2013157883A1 (en) * 2012-04-20 2013-10-24 주식회사 엘지화학 Electrolyte for lithium secondary battery and lithium secondary battery containing same
US9954254B2 (en) 2012-04-20 2018-04-24 Lg Chem, Ltd. Electrolyte for lithium secondary battery and lithium secondary battery including the same
US10170796B2 (en) 2012-04-20 2019-01-01 Lg Chem, Ltd. Lithium secondary battery of improved rate capability with cathode containing nickel manganese complex oxide for high-voltage applications
CN109883143A (en) * 2018-12-26 2019-06-14 深圳市卓能新能源股份有限公司 Lithium battery stoving process

Also Published As

Publication number Publication date
KR19990048820A (en) 1999-07-05

Similar Documents

Publication Publication Date Title
KR101826453B1 (en) Lithium-rich manganese-based positive electrode material and preparation method therefor
KR101473322B1 (en) Cathode active material and cathode and lithium battery containing the material
US5951919A (en) Method of preparing cathode material for lithium ion cell
JP2020004722A (en) Nickel-based active material precursor for lithium secondary battery, method of preparing the same, nickel-based active material for lithium secondary battery formed therefrom, and lithium secondary battery including positive electrode including nickel-based active material
JP2001223008A (en) Lithium secondary battery, positive electrode active substance for it and their manufacturing method
KR100274236B1 (en) Cathode active material for lithium secondary battery and method for producing the same
KR20000061755A (en) Positive active material for lithium secondary battery and method of preparing the same
JP4106741B2 (en) Nonaqueous electrolyte secondary battery
Pişkin et al. Development and characterization of layered Li (NixMnyCo1− x− y) O2 cathode materials for lithium ion batteries
EP2615672A2 (en) Positive electrode active material for a lithium secondary battery, and method for preparing same
EP3694034B1 (en) Anode layer and all solid state battery
KR100262852B1 (en) A positive active material lixmymn-2-yo4 and its manufacturing method
KR20010002783A (en) Positive active material for lithium secondary battery and method of preparing the same
KR19980074069A (en) Method for producing LiMn₂O₄ cathode active material for lithium ion battery
JP2001185148A5 (en)
KR101439630B1 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same
CN114665086A (en) Lithium-rich manganese-based positive electrode material and preparation method thereof
CN115224259A (en) Titanium-doped lithium nickel manganese oxide positive electrode material, preparation method and application thereof, and lithium ion battery
KR100393194B1 (en) A process for preparing LixMn2O4 Powder used for cathode of lithium secondary battery
KR100588292B1 (en) The cathode active material for lithium secondary batteries and the preparation method thereof
KR101598186B1 (en) Synthesizing method of complex metal oxides for cathode active materials and electrode, lithium secondary battery, capacitor thereof
JP3429328B2 (en) Lithium secondary battery and method of manufacturing the same
KR101142517B1 (en) manufacturing method of cathode active material and lithium battery thereby
JP2000128540A (en) Manganese oxide, its production, lithium manganese multiple oxide produced with the same and production of the same multiple oxide
KR100237311B1 (en) Method of manufacturing cathode active mass and made thereby

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20130321

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20140502

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20150508

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20160504

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20170525

Year of fee payment: 18

EXPY Expiration of term