KR100261352B1 - Feed additive composition and preparation method thereof - Google Patents

Feed additive composition and preparation method thereof Download PDF

Info

Publication number
KR100261352B1
KR100261352B1 KR1019970067052A KR19970067052A KR100261352B1 KR 100261352 B1 KR100261352 B1 KR 100261352B1 KR 1019970067052 A KR1019970067052 A KR 1019970067052A KR 19970067052 A KR19970067052 A KR 19970067052A KR 100261352 B1 KR100261352 B1 KR 100261352B1
Authority
KR
South Korea
Prior art keywords
ocher
yucca
extract
feed
far
Prior art date
Application number
KR1019970067052A
Other languages
Korean (ko)
Other versions
KR19990048387A (en
Inventor
박덕섭
Original Assignee
정보연
주식회사우성사료
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정보연, 주식회사우성사료 filed Critical 정보연
Priority to KR1019970067052A priority Critical patent/KR100261352B1/en
Publication of KR19990048387A publication Critical patent/KR19990048387A/en
Application granted granted Critical
Publication of KR100261352B1 publication Critical patent/KR100261352B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • A23K10/18Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions of live microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/20Inorganic substances, e.g. oligoelements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/225Lactobacillus
    • C12R2001/23Lactobacillus acidophilus

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Animal Husbandry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Organic Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Virology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Fodder In General (AREA)

Abstract

PURPOSE: Provided is a feed additive composition comprising yellow soil, Lactobacillus acidophillus and Yucca schidigera, which can reduce ammonia gas, sulfureted hydrogen gas, nitrogen and phosphorus contained in livestock excretions, increase unsaturated fatty acid and protein in the meat and improve feed consumption rate of the livestock. CONSTITUTION: The composition is prepared by dehydrating yellow soils at 105deg.C for 2hr, pulverizing the dried yellow soils and adding acid-resistant Lactobacillus acidophillus and extract of Yucca schidigera to the pulverized yellow soils. The resulting composition is then added to kinds of feed of pig, chicken, layer and fish.

Description

청정 사료 첨가제 조성물 및 그 제조방법{Feed additive composition and preparation method thereof}Feed additive composition and preparation method thereof

본 발명은 청정 사료 첨가제 조성물 및 그 제조방법에 관한 것이다. 더욱 상세하게는, 본 발명은 원적외선 방사율이 높은 재료인 점토 광물, 생균제 및 유카 추출물을 단독 또는 2가지 이상 혼합하여서 되는 신규한 청정 사료 첨가제 조성물 및 그 제조방법에 관한 것이다.The present invention relates to a clean feed additive composition and a method of manufacturing the same. More specifically, the present invention relates to a novel clean feed additive composition and a method for producing the same, which are prepared by mixing alone or two or more clay minerals, probiotics and yucca extracts, which are materials having high far-infrared emissivity.

지구상의 환경오염의 심각성은 그 정도가 날로 심각해지고 있어, 최근에는 세계적인 공통 관심사로 대두되고 있다. 이러한 환경오염은 대기오염, 토양오염 및 수질오염 등으로 대별할 수가 있는데 이를 원인별로 구분해보면 석유화학 제품의 연소시에 발생되는 매연을 비롯하여 음식물 쓰레기, 가축분뇨 및 기타 산업폐기물 등으로 크게 나눌 수가 있을 것이다. 그러나 그중에서도 가축분뇨는 환경오염의 주범으로 낙인 찍혀 축산인들에게 경제적 및 정신적인 고통을 안겨주고 있다. 그러므로 가축 분뇨중의 질소 및 인 함량 감소와 함께 악취제거에 대한 연구가 지난 수년동안 상당히 활발하게 진행되어 왔다. 그럼에도 불구하고, 축산 분뇨에 의한 환경문제는 지금도 끊임없이 제기되고 있으나, 아직 원적외선 광물질을 이용한 방법은 한번도 시도된 바가 없다.The seriousness of environmental pollution on the planet is becoming more and more serious, and in recent years, it has become a global concern. Such environmental pollution can be classified into air pollution, soil pollution, and water pollution. In terms of the causes, it can be classified into soot generated during combustion of petrochemical products, food waste, livestock manure, and other industrial wastes. will be. However, among them, livestock manure is stigmatized as environmental pollution, causing economic and mental pain for livestock farmers. Therefore, research on deodorization with the reduction of nitrogen and phosphorus content in livestock manure has been quite active in the last few years. Nevertheless, environmental problems due to livestock manure have been continually raised, but methods using far-infrared minerals have not been attempted yet.

원적외선(Far-infrared ray)이란 가시광선 파장 영역보다 길고 마이크로파보다 짧은 0.76~1.000㎛의 파장 범위를 가지는 전자파이다. 원적외선의 특성중 가장 중요한 성질은 어떤 물질에 그 물질을 구성하는 분자나 원자와 같은 진동수의 원적외선을 방사하면 물질의 원자나 분자에 흡수되어 공명현상을 일으키게 된다는 것이다. 이 운동을 공진운동(resonance movement)이라 부르며 공진 운동이 생기면 분자 내에 에너지가 발생되고, 발생된 에너지는 분자를 활성화시킨다고 알려져 있다(고와 김. 1997). 그러므로 천연 광물 및 암석이나 배합 원료가 원적외선의 방사율과 방사에너지에서 차이를 보이는 것은 원료를 구성하는 물질의 성분이 다르기 때문이며 전자에너지 수준이 결정성분 및 결정구조에 따라 차이를 보이기 때문이다. 즉 분자 운동이 각 물질마다 다르기 때문에 다른 원적외 방사 특성을 나타낸다. 또한 물리적 성질에 따라 다른 방사특성을 보이는데 이는 원료의 표면형태(surface morphology)에 크게 좌우되며, 표면의 굴곡상태가 거칠수록 원적외선 방사율이 높아지고, 원료의 공극률(porosity)이 클수록 원적외선 방사율이 높아지게 된다(고와김. 1997). 원적외선 효과는 활성화 에너지로 볼 수 있다. 원적외선을 높이 방사하는 원료가 원적외선 원료로서 적합하며, 단일 광물이나 복합 광물로 구성된 암석 및 합성원료가 원적외선 원료가 될 수 있으나 원적외선 방사율이 높은 원료를 첨가한 배합원료가 최적의 원료가 될 수 있다. 이러한 원적외선 점토광물은 중금속이나 먼지와 같은 불순물을 흡착하는 능력이 있어 주로 정수용에 이용되어 왔다(고와 김, 1997). 국내에서 활용되고 있는 많은 원적외선 원료 중에서 제외되어 아직 관심밖에 있는 것이 원적외선 점토광물질이라 할 수 있는 황토(loess)가 있다. 자연상태의 황토는 주로 규소(si) 및 알루미늄(Al)을 포함하는 층상구조를 하고 있는 각종 점토와 철(Fe) 및 기타 미량금속을 포함하는 불순물로 구성된 금속 산화물로써 북위 24~55도 사이에 위치한 우리나라 전역에 분포하고 있다. 이와같이 국내에 풍부하게 분포하고 있는 황토의 이용은 그 용도가 다양하여, 황토방, 황토 침대, 황토 찜질방등으로 상업화되어 이용되고 있는가 하면, 일부 지역에서는 황토를 이용한 수질개선 및 항생제 대체용으로 사용하고 있으나 그 효능 및 기전 작용에 대해서는 아직까지 과학적으로 입증된 바가 없다.Far-infrared ray is an electromagnetic wave having a wavelength range of 0.76 to 1.000 μm longer than the visible wavelength range and shorter than microwaves. The most important property of far-infrared rays is that radiation of far-infrared rays with the same frequency as molecules or atoms that make up a substance is absorbed by atoms or molecules of a substance, causing resonance. This movement is called a resonance movement, and when a resonance movement occurs, energy is generated in the molecule, and the generated energy is known to activate the molecule (Go and Kim. 1997). Therefore, the difference between the natural minerals, rocks and blended raw materials in the far-infrared emissivity and the radiant energy is due to the different components of the raw materials and the electronic energy level depending on the crystal composition and crystal structure. That is, because the molecular motion is different for each material, it exhibits different far-infrared radiation characteristics. In addition, it shows different radiation characteristics depending on the physical properties, which is highly dependent on the surface morphology of the raw material, and the roughness of the surface increases the far-infrared emissivity, and the larger the porosity of the raw material, the higher the far-infrared emissivity ( Kowa Kim (1997). The far infrared effect can be seen as the activation energy. Far-infrared raw materials are suitable as far-infrared raw materials, and rocks and synthetic raw materials composed of a single mineral or complex minerals may be far-infrared raw materials, but a blended raw material having a high far-infrared emissivity may be an optimal raw material. These far-infrared clay minerals have been used for water purification mainly because of their ability to adsorb impurities such as heavy metals and dust (Ko and Kim, 1997). Among the far-infrared raw materials used in Korea, there is a loess, which can be called a far-infrared clay mineral, which is still of interest. Natural yellow soil is a metal oxide composed mainly of various clays having a layered structure containing silicon (si) and aluminum (Al), and impurities including iron (Fe) and other trace metals. It is located all over Korea. As such, the use of ocher, which is widely distributed in Korea, has various uses, and it is commercialized and used as ocher room, ocher bed, ocher jjimjilbang, and in some areas, it is used for improving water quality and using antibiotics. The efficacy and mechanism of action have not yet been scientifically proven.

따라서, 본 발명은 원적외선 방사율이 높은 점토 광물인 황토에 생균제 및 유카 추출물을 단독 또는 혼합하여서 새로운 기능성을 가지는 청정 사료 첨가제 조성물 및 그 제조방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a clean feed additive composition having a new functionality and a method of preparing the same by mixing probiotics and yucca extracts alone or in a clay mineral having high far-infrared emissivity.

따라서, 본 발명은 상기와 같은 사실에 의거하여 안출한 것으로 황토, 생균제 및 유카 추출물을 단독 또는 혼용하여 가축에 식이시킨후 가축분뇨에서 발생하는 암모니아 가스, 황화수소 가스, 분중 질소 및 인의 함량을 조사하고 가축의 증체율, 산란율과 도축의 지방산 함량 및 아미노산 조성에 미치는 영향을 조사함으로써 달성하였다.Therefore, the present invention was made based on the above facts, and the contents of ammonia gas, hydrogen sulfide gas, nitrogen and phosphorus generated in livestock manure after dieting in livestock by using alone or in combination with ocher, probiotic and yucca extract. This was achieved by investigating the effects on livestock gain, laying rate and slaughter fatty acid content and amino acid composition.

이하, 본 발명의 구성과 작용을 설명한다.Hereinafter, the configuration and operation of the present invention.

이하, 본 발명의 구성과 작용을 실시예를 들어 상세히 설명한다.Hereinafter, the configuration and operation of the present invention will be described in detail by way of examples.

본 발명에 사용한 재료 황토는 황산벌(논산)에서 채취하였으며, 황토를 105℃ 온도의 건조기에서 2시간 동안 건조한 후 분쇄하여 내산성균(aciduric bacteria)인 락토바실러스 액시도필러스(Lactobacillus acidophillus)의 제제와 유카 시디게라(Yucca schidigera) 추출물 분말을 단독 또는 혼합하여 사용하였다.The material used in the present invention was taken from sulfuric acid bee (non-acid), and the soil was dried in a drier at 105 ° C. for 2 hours and then pulverized to prepare a preparation of Lactobacillus acidophillus , an aciduric bacterium. Yucca schidigera extract powder was used alone or in combination.

실험예 1. 황토와 illite의 광물질 함량과 pHExperimental Example 1. Mineral content and pH of ocher and illite

본 발명의 황토와 시중에 유통중인 원적외선 점토광물인 illite중 광물질 함량은 원자 흡광 분석기(AA-Scan 1, Thermo Jarrell Ash社)를 이용하였으며, pH는 pH meter(Beckmon Φ72)를 이용하여 조사하였다. 그 결과는 하기 표 1과 같다.Mineral content in the loess of the present invention and illite, a commercially available far-infrared clay mineral, was measured using an atomic absorption spectrometer (AA-Scan 1, Thermo Jarrell Ash, Inc.), and the pH was investigated using a pH meter (Beckmon Φ 72 ). . The results are shown in Table 1 below.

illite와 황토의 화학적 조성과 pHChemical composition and pH of illite and ocher As fed basisAs fed basis illiteillite 황토ocher DMDM 99.4399.43 88.5288.52 Fe, ppmFe, ppm 1.361.36 2.052.05 Mn, ppmMn, ppm 0.020.02 0.040.04 Cu, ppmCu, ppm Zn, ppmZn, ppm 0.260.26 1.851.85 Na, %Na,% 0.040.04 0.030.03 K, %K,% 0.070.07 0.080.08 Mg, %Mg,% 0.030.03 0.070.07 Ca, %Ca,% 0.070.07 0.010.01 Si, %Si,% 25.9625.96 27.4027.40 Cation exchange capacityCation exchange capacity 36.4136.41 7.517.51 pHpH 6.786.78 4.694.69

실험결과, illite와 황토는 공히 Si가 주성분으로 나타났으며, 양이온 치환량의 경우에는 illite가 황토보다 79.37%가 많았다. 반면에, pH는 illite는 중성인 반면에 황토의 경우에는 산성으로 나타났다.As a result, both illite and ocher showed Si as the main component, and illite was 79.37% higher than ocher in the amount of cation substitution. On the other hand, pH was neutral in illite while acidic in loess.

실험예 2. 황토와 illite의 방사율 및 방사에너지 측정Experimental Example 2. Measurement of emissivity and radiation energy of loess and illite

본 발명의 황토시료를 한국 건자재 시험 연구소에 의뢰하여 FT-IR Spectrometer를 이용한 Black body 대비 측정한 결과를 이용하였다. 그 결과는 하기 표 2와 같다.The ocher sample of the present invention was commissioned by the Korea Institute of Construction Materials and used the results of the black body comparison using the FT-IR Spectrometer. The results are shown in Table 2 below.

illite와 황토의 방사율과 방사 에너지emissivity and radiation energy of illite and ocher 원적외선 방사율(5~20㎛)Far Infrared Emissivity (5 ~ 20㎛) 원적외선 방사 에너지(W/m2·㎛, 40℃)Far Infrared Radiation Energy (W / m 2 · ㎛, 40 ℃) illiteillite 0.920.92 3.70*102 3.70 * 10 2 황토ocher 0.920.92 3.70*102 3.70 * 10 2

실험결과, 황토의 방사율은 시중 유통되고 있는 원적외선 점토 광물질중의 하나인 illite의 92%와 동일할 뿐만 아니라, 또한 방사에너지의 경우에도 동일한 결과로 나타났다.Experimental results showed that the emissivity of ocher was not only equal to 92% of illite, one of the far-infrared clay minerals in the market, but also in the case of radiant energy.

실시예 1. 돈분중 NHExample 1 NH in Pig Powder 33 및 HAnd H 22 S gas 측정S gas measurement

돈분 10kg 중 황토 1.0%, 생균제 0.1%, 유카 추출물 0.01% 단독 또는 이들의 혼합물을 사료에 첨가하여 충분히 교반한 뒤에 10일 간격으로 3회에 걸쳐서 암모니아 및 황화수소를 가스텍(株 がスチシク)을 사용하여 측정하였다.1.0 kg of ocher, 0.1% of probiotics, and 0.01% of yucca extract alone or a mixture thereof in 10 kg of pig meal were added to the feed and thoroughly stirred. Then, ammonia and hydrogen sulfide were added three times at intervals of 10 days to remove gastec о (株 チ ス チ シ). Measured using.

실험결과는 하기 표 3과 같다.Experimental results are shown in Table 3 below.

돈분내 NH3와 H2S의 수준에 대한 원적외선 점토광물, 유카추출물 그리고 생균제 혼합물의 효과Effect of Far Infrared Clay Minerals, Yucca Extract and Probiotic Mixtures on the Levels of NH 3 and H 2 S in Pig Flour 혼합물mixture NH3,ppmNH 3 , ppm H2S,ppmH 2 S, ppm 대조구Control 3.03.0 4.04.0 illiteillite 2.82.8 3.83.8 황토ocher 2.72.7 3.83.8 illite+유카추출물illite + yucca extract 2.52.5 3.83.8 황토+유카추출물Ocher + Yuka Extract 2.02.0 3.53.5 illite+유카추출물+Probioticsillite + Yucca Extract + Probiotics 2.22.2 3.33.3 황토+유카추출물+ProbioticsOcher + Yucca Extract + Probiotics 1.81.8 3.03.0 주:1Probiotics:Lactobacillus acidophillus Note: 1 Probiotics: Lactobacillus acidophillus

실험결과, 대조구와 비교하여 황토(loess) 첨가구는 NH3gas는 23.33% 감소한 반면에 H2S gas는 25% 감소하였다(P〈0.05). 또한 점토 광물질인 illite와 황토에 유카추출물을 첨가한 구가 무첨가 황토구에 비해 각각 7.41% 및 25.93%의 NH3gas를 감소시킨 반면 H2S gas는 황토에, 유카추출물 첨가구에서만 7.89% 감소시켰다(P〈0.05). 또한 illite에 유카분말과 생균제(Lactobacillus acidophillus) 첨가구는 황토에 비해 NH3gas를 18.52% 및 33.33%를 감소(P〈0.05)시킨 반면 H2S의 경우에는 13.16% 및 21.05%를 감소시켰다(P〈0.05). 이러한 결과는 원적외선 점토 광물질인 illite와 황토가 악토바실러스 액시도필러스(Lactobacillus acidophillus)의 증식을 촉진한 결과 상승효과에 기인된 것이라고 사료된다.As a result, the loess added NH 3 gas decreased 23.33% while H 2 S gas decreased 25% compared to the control (P <0.05). In addition, the illite and clay soils added with yucca extract reduced the NH 3 gas by 7.41% and 25.93%, respectively, compared to the non-added ocher, whereas H 2 S gas decreased by 7.89% only in the loess and yuka extract. (P <0.05). The addition of yucca powder and probiotic ( Lactobacillus acidophillus ) to illite reduced 18.52% and 33.33% of NH 3 gas (P <0.05) compared to loess, while reducing 13.16% and 21.05% of H 2 S (P <0.05). These results are believed to be due to synergistic effects of illite and loess which promoted the proliferation of Lactobacillus acidophillus .

실시예 2. 어분을 이용한 NHExample 2 NH Using Fish Meal 33 흡착력 측정Adsorption force measurement

어분 30g에 증류수 100ml를 가하여 6일 동안 배양시킨 뒤 발생하는 암모니아 가스 농도를 측정하기 위해 황토 1.0% 및 유카추출물 0.01% 혼합물을 첨가하여 암모니아 가스 흡착력을 가스텍(株 がスチシク)과 암모니아 검지관을 이용하여 측정하였다.Clay 1.0% and yucca extract was added to 0.01% mixture gas for ammonia gas adsorption capacity Tech ⓡ (株がスチシク ) and the ammonia detector tube for adding distilled water to 100ml to fish meal 30g to measure the ammonia gas concentration that occur after incubation for 6 days Measured using.

어분을 이용한 NH3gas 흡착력 실험 결과는 하기 표 4와 같다.NH 3 gas adsorption capacity test results using fish meal are shown in Table 4 below.

증류수로 배양된 어분내에서 NH3gas의 흡착력에 대한 원적외선 점토 광물질, 유카추출물 그리고 생균제 혼합물의 첨가 효과Effect of Addition of Far Infrared Clay Minerals, Yucca Extract and Probiotic Mixture on Adsorption of NH 3 Gas in Fish Meal Cultured with Distilled Water 혼합물mixture NH3, ppmNH 3 , ppm 대조구Control 1010 illiteillite 2.52.5 황토ocher 2.52.5 illite+유카추출물illite + yucca extract 2.02.0 황토+유카추출물Ocher + Yuka Extract 2.02.0 illite+유카추출물+Probioticsillite + Yucca Extract + Probiotics 2.02.0 황토+유카추출물+ProbioticsOcher + Yucca Extract + Probiotics 2.02.0

실험결과, 무첨가구인 대조구와 비교하여 원적외선 점토 광물질인 illite와 황토 첨가구에서는 모두 75% 감소 시킨 반면 유카추출물과 생균제의 추가 첨가구에서는 모두 80% 감소 효과가 나타났다(P〈0.05). 이상과 같이 원적외선 점토광물질은 대조구에 비해 NH3gas 흡착력이 우수하게 나타났으며, 더욱이 유카추출물을 혼합하면 NH3 gas 흡착능력이 더욱더 개선되는 것으로 나타났다. 그러나, 본 실시예에서는 생균제를 추가로 혼합한 상승효과는 나타나지 않았다.As a result, 75% reduction was achieved in illite and loess added far-infrared clay minerals compared to the control group, but 80% reduction in both added yucca extract and probiotic added (P <0.05). As described above, the far-infrared clay mineral showed better NH 3 gas adsorption capacity than the control, and the yucca mixture further improved the NH3 gas adsorption capacity. However, in this Example, no synergistic effect of further mixing of probiotics was found.

실시예 3. 계사내 NHExample 3 NH in a cage 33 , H, H 22 S gas 농도와 계분중 질소(N) 및 인(P) 측정Determination of nitrogen (N) and phosphorus (P) in S gas concentration and weight

육계사료에 유카추출물 0.01%와 황토 1.01% 첨가한 실험구 1과 황토 1.0%, 생균제 0.1% 및 유카추출물 0.01% 첨가한 실험구 2 및 무첨가대조구로 구분하여 시험구에 각각 병아리 9000수를 입추하여 1주일 간격으로 계사내 NH3및 H2S gas 농도를 가스텍(株 がスチシク)를 이용하여 측정하였으며, 계분중의 N과 P함량을 AOAC(1990)에 의해 조사하였다. 계사내 NH3및 H2S gas 농도 변화를 조사한 결과는 하기 표 5와 같다.The broiler feed was divided into experimental group 1 with 0.01% yucca extract and 1.01% ocher, and experimental group 2 with 1.0% ocher, 0.1% probiotic and 0.01% yucca extract, and no additive control. NH 3 and H 2 S gas concentrations in cages were measured at weekly intervals using Gastec® and N and P contents in the system were investigated by AOAC (1990). The NH 3 and H 2 S gas concentration change in the cage was investigated as shown in Table 5 below.

계사내 NH3및 H2S gas 수준에 대한 원적외선 점토 광물질, 유카추출물 그리고 생균제 혼합물의 첨가효과Effect of Addition of Far Infrared Clay Minerals, Yucca Extract and Probiotic Mixtures on NH 3 and H 2 S Gas Levels in Pavilion 혼합물mixture NH3, ppmNH 3 , ppm H2S, ppmH 2 S, ppm 대조구Control 4040 00 황토+유카추출물Ocher + Yuka Extract 2828 00 황토+유카추출물+ProbioticsOcher + Yucca Extract + Probiotics 2323 00

실혐결과, 계사내 NH3gas농도는 대조구와 비교하여 황토와 유카추출물 혼합물 첨가구는 30.0% 감소시킨 반면에 황토, 유카추출물 및 생균제 혼합물 첨가구는 42.5%의 개선 효과를 나타냈다. 그러나 본 실시예에서는 H2S는 모든 실험구에서 검출되지 않았다. 또한, 계분중 질소(N) 및 인(P)함량을 조사한 결과는 하기 표 6과 같다.As a result, NH 3 gas concentration in cages decreased by 30.0% in the addition of ocher and yucca extract mixture compared to the control, while the addition of ocher, yucca extract and probiotic mixture showed 42.5% improvement. However, in this example, H 2 S was not detected in all the experiments. In addition, the results of examining the nitrogen (N) and phosphorus (P) content in the system powder is shown in Table 6 below.

원적외선 점토 광물질, 유카추출물 그리고 생균제 혼합물을 포함하는 첨가제를 식이로 한 닭으로부터 비료내 질소와 인의 함량Nitrogen and phosphorus content in fertilizers from chicken diets containing additives including far-infrared clay minerals, yucca extracts and probiotic mixtures (% of DM)(% of DM) 혼합물mixture 질소nitrogen sign 대조구Control 5.05.0 1.81.8 황토+ProbioticsOcher + Probiotics 4.64.6 1.51.5 황토+유카추출물+ProbioticsOcher + Yucca Extract + Probiotics 4.34.3 1.21.2

질소의 경우 대조구와 비교하여 황토와 유카추출물 혼합물 첨가구는 8.0%, 황토, 유카추출물 및 생균제 첨가구는 14.0%를 감소시켰던 반면 인의 경우에는 각각 16.7%와 33.3%의 감소 효과를 나타냈다.In the case of nitrogen, the addition of ocher and yucca extract mixture decreased 8.0%, and the addition of ocher, yucca extract and probiotic added 14.0%, whereas phosphorus decreased 16.7% and 33.3%, respectively.

실시예 4. 돈육중 지방산 및 pH 측정Example 4 Determination of Fatty Acids and pH in Pork

본 발명의 사료 첨가제 종류별 식이를 수행한 후 돈육중 지방산은 가스크로마토그래피를 이용하여 측정하였으며, pH는 도축후 12시간에 pH meter(Beckmon Φ72)를 이용하여 측정하였다. 실험결과는 하기 표 7과 같다.After the diet of each type of feed additive of the present invention, fatty acids in pork were measured by gas chromatography, and pH was measured using a pH meter (Beckmon Φ 72 ) 12 hours after slaughter. The experimental results are shown in Table 7 below.

원적외선 점토 광물질, 유카추출물 그리고 생균제 첨가 사료 첨가제 조성물을 포함하는 식이를 한 돼지의 돈육중 지방산의 조성Composition of Fatty Acids in Pork of Dietary Pigs Containing Far Infrared Clay Minerals, Yucca Extract, and Probiotic-Added Feed Additive Composition 지방산fatty acid 대조구Control Loess+YuccaLoess + Yucca Loess+Yucca+ProbioticsLoess + Yucca + Probiotics Lauric, C12:0Lauric, C12: 0 0.110.11 0.090.09 0.080.08 Myristic, C14:0Myristic, C14: 0 1.781.78 1.501.50 1.501.50 Myristoleic, C14:1Myristoleic, C14: 1 0.560.56 0.120.12 -- Palmitic, C16:0Palmitic, C16: 0 26.5726.57 20.7520.75 21.5421.54 Palmitoleic, C16:1Palmitoleic, C16: 1 3.073.07 3.233.23 2.302.30 Steric, C18:0Steric, C18: 0 6.526.52 8.068.06 9.749.74 Oleic, C18:1Oleic, C18: 1 43.2643.26 42.1142.11 43.2343.23 Linoleic, C18:2Linoleic, C18: 2 12.0012.00 14.5414.54 15.3315.33 Linolenic, C18:3Linolenic, C18: 3 0.640.64 0.550.55 1.151.15 Arachidonic, C20:4Arachidonic, C20: 4 0.550.55 1.581.58 1.061.06 E.P.A, C20:5E.P.A, C20: 5 0.080.08 0.170.17 0.060.06 D.H.A, C22:6D.H.A, C22: 6 0.100.10 0.080.08 -- OthersOther 4.764.76 7.227.22 4.014.01 TSF ATSF A 34.9834.98 30.4030.40 32.8532.85 TUF ATUF A 60.2660.26 62.2662.26 63.1363.13 주: TSF: Total Saturated Fatic acid,TUF: Total Unsaturated Fatic acid.% of total lipidsTSF: Total Saturated Fatic acid, TUF: Total Unsaturated Fatic acid.% Of total lipids

실험결과, 대조구와 비교하여 유카추출물과 생균제 첨가구와 생균제, 유카추출물 및 생균제 첨가구에서 공히 불포화 지방산(TUFA)이 각각 3.21%와 4.55%씩 증가하였다.As a result, unsaturated fatty acid (TUFA) was increased by 3.21% and 4.55% in Yucca extract, probiotic supplement, and probiotic, Yucca extract and probiotic supplement, respectively.

실시예 5. 돈육중 아미노산 분석Example 5 Amino Acid Analysis in Pork

본 발명의 사료 첨가제를 식이한 후 돈육중 아미노산은 HPLC를 이용하여 AOAC(1990)에 의거 등심을 조사하였다. 실험결과는 하기 표 8과 같다.After dieting the feed additive of the present invention, amino acids in pork were examined by sirloin according to AOAC (1990) using HPLC. The experimental results are shown in Table 8 below.

원적외선 점토 광물질, 유카추출물 그리고 생균제 혼합물을 포함하는 사료 첨가제 조성물의 식이후 돈육중 아미노산 조성Amino Acid Composition of Pork after Diet of Feed Additives Composition Containing Far Infrared Clay Minerals, Yucca Extract and Probiotic Mixtures 아미노산amino acid 대조구Control 황토+유카추출물Ocher + Yuka Extract 황토+유카추출물+ProbioticsOcher + Yucca Extract + Probiotics Aspartic acidAspartic acid 1.661.66 2.162.16 2.122.12 ThreonineThroneine 0.810.81 1.061.06 1.051.05 SerineSerine 0.690.69 0.890.89 0.880.88 Glutamic acidGlutamic acid 2.632.63 3.503.50 3.513.51 ProlineProline 0.640.64 0.860.86 0.770.77 GlycineGlycine 0.820.82 1.081.08 0.950.95 AlanineAlanine 0.980.98 1.321.32 1.241.24 ValineValine 0.830.83 1.181.18 1.131.13 IsoleucineIsoleucine 0.840.84 1.121.12 1.081.08 LeucineLeucine 1.401.40 1.881.88 1.821.82 TyrosineTyrosine 0.590.59 0.780.78 0.770.77 PhenylalaninePhenylalanine 0.670.67 0.890.89 0.870.87 HistidineHistidine 0.870.87 1.051.05 0.920.92 LysineLysine 3.823.82 2.242.24 2.322.32 ArginineArginine 1.111.11 1.401.40 1.441.44 Crude ProteinCrude protein 21.1821.18 22.4622.46 22.0122.01

실험결과, 대조구와 비교하여 황토와 유카추출물 혼합물 첨가구와 황토, 유카추출물 및 생균제 첨가구에서 Aspartic acid, Glutamic acid, Valine 및 Leucine등이 유의적으로 증가한 반면 Lysine 함량은 2첨가구 공히 41.36%와 39.27%의 큰 폭으로 감소하였다. 한편, 단백질 함량의 경우에도 대조구 대비 황토와 유카추출물 혼합제 첨가구는 5.70%, 황토, 유카추출물 및 생균제 혼합제제 첨가구에서는 3.77% 증가하였다.As a result, aspartic acid, Glutamic acid, Valine and Leucine increased significantly in the addition of ocher and yucca extract mixture, and the addition of ocher, yucca extract and probiotic, while the Lysine content was 41.36% and 39.27, respectively. Decreased significantly by%. On the other hand, in the case of protein content, the addition of ocher and yucca extract mixture increased 5.70%, and the addition of ocher, yucca extract and probiotic mixture added 3.77% compared to the control.

실시예 6. 육계 성적에 미치는 영향 조사Example 6 Investigation of the Effects on Broiler Performance

본 발명의 사료 첨가제를 식이하여 사육한 육계의 출하시 체중, 사료 섭취량 및 사료 요구율(FCR)을 구한 결과는 하기 표 9와 같다.Table 9 shows the results of obtaining the body weight, feed intake, and feed requirement (FCR) of the broiler chickens fed by the feed additive of the present invention.

황토, 유카추출물 및 생균제 첨가구가 육계 성적에 미치는 영향Effect of Loess, Yucca Extract and Probiotics Supplementation on Broiler Performance 항목Item 대조구Control 황토+유카추출물Ocher + Yuka Extract 황토+유카추출물+ProbioticsOcher + Yucca Extract + Probiotics Market Wt., KgMarket Wt., Kg 1.781.78 1.81.8 1.831.83 Feed consumption, KgFeed consumption, Kg 3.523.52 3.493.49 3.513.51 Feed conversion rateFeed conversion rate 1.981.98 1.941.94 1.921.92

실험결과, 황토와 유카추출물 혼합제제 첨가구는 대조구와 비교하여 2.0%의 사료 요구율을 증가시킨 반면 황토, 유카추출물 및 생균제 혼합제제 첨가구의 경우에는 3.0%의 사료 요구율을 개선하였다.Experimental results showed that the addition of ocher and yucca extract mixture increased the feed requirement of 2.0% compared to the control, whereas the addition of ocher and yucca extract and probiotic mixture improved the feed requirement of 3.0%.

실시예 7. 산란 성적에 미치는 영향 조사Example 7 Investigation of Influence on Scattering Performance

본 발명의 사료 첨가제를 식이하여 사육한 산란 48주경의 닭의 Hen-day 산란율, 평균난중 및 평균 일난량을 구한 결과는 하기 표 10과 같다.Hen-day spawning rate, average egg weight and average daily amount of the chicken around 48 weeks of spawning dietary feed additives of the present invention was obtained as shown in Table 10 below.

황토, 유카분말 및 생균제 혼합제제 첨가구가 산란 성적에 미치는 영향Effect of Loess, Yucca Powder, and Probiotics Mixture on Spawning Performance 항목Item 대조구Control 황토+유카추출물Ocher + Yuka Extract 황토+유카추출물+ProbioticsOcher + Yucca Extract + Probiotics Hen-Day egg production, %Hen-Day egg production,% 83.683.6 84.284.2 84.584.5 Average egg weight, gAverage egg weight, g 61.061.0 60.960.9 61.161.1 Average egg mass/Hen/Day, gAverage egg mass / Hen / Day, g 51.051.0 51.351.3 51.651.6

실험결과, 대조구와 비교하여 각각 0.71%와 1.07%의 산란 성적 개선효과를 나타냈다. 반면에 일산란량에 있어서는 대조구에 비해 각각 0.58%와 1.16%의 개선효과가 나타났다.As a result, the scattering performance was improved by 0.71% and 1.07%, respectively. On the other hand, egg production was improved by 0.58% and 1.16%, respectively.

실시예 8. 돼지의 비육 성적에 미치는 영향Example 8. Effect on Pig Performance

본 발명의 사료 첨가제를 식이하여 사육한 돼지의 개시체중과 종료시 체중을 측정하였으며 평균 일당 증체량, 기간 총 사료섭취량 및 사료 요구율을 구하였다. 그 결과는 하기 표 11과 같다.Starting and ending body weights of pigs fed with the feed additive of the present invention were measured, and average daily gain, total feed intake and feed demand were calculated. The results are shown in Table 11 below.

황토, 유카추출물 및 생균제 혼합제제 첨가구가 돼지 비육 성적에 미치는 영향Effects of Loess, Yucca Extract and Probiotics Mixture on Pig Performance 항목Item 대조구Control 황토+유카추출물Ocher + Yuka Extract 황토+유카추출물+ProbioticsOcher + Yucca Extract + Probiotics No. of pigsNo. of pigs 2020 2020 2020 Initial body wt., kgInitial body wt., Kg 29.829.8 30.130.1 29.929.9 Final body wt., kgFinal body wt., Kg 108.3108.3 109.8109.8 111.5111.5 Average daily gain, g/dayAverage daily gain, g / day 777777 789789 808808 Feed consumption, kg/pigFeed consumption, kg / pig 224224 223223 224224 Feed conversion rateFeed conversion rate 2.852.85 2.802.80 2.752.75

실험결과, 황토와 유카추출물 혼합제제 그리고 황토, 유카 추출물 및 생균제 혼합제제 첨가구는 대조구와 비교하여 일당 증체량은 각각 1.52% 및 3.84% 개선 효과가 나타났으며, 사료 요구율의 경우에는 1.75% 및 3.51%의 개선 효과가 나타났다.Experimental results showed that ocher and yucca extract mixtures and ocher, yucca extract and probiotic mixtures showed 1.52% and 3.84% increase in daily gain, respectively, compared to the control, and 1.75% and 3.51% for feed requirements. The improvement effect was shown.

이상 설명한 실시예와 실험예에서 알 수 있는 바와 같이, 본 발명은 황토, 생균제, 유카 추출물을 단독 또는 혼합하여 가축에 식이시킴으로써 가축분뇨중 암모니아 가스, 황화수소 가스, 질소 및 인의 함량이 감소하였고, 도축중 불포화 지방산(TUFA) 및 단백질 함량이 증가하며, 가축의 사료 요구율과 산란 성적 및 일산란량을 개선하였고 일당 증체량을 개선하는 효과가 있어 환경산업상 및 축산산업상 매우 유용한 발명인 것이다.As can be seen from the above-described examples and experimental examples, the present invention reduced the content of ammonia gas, hydrogen sulfide gas, nitrogen and phosphorus in livestock manure by dieting the livestock with single or mixed loess, probiotic, and yucca extract. It is a very useful invention for the environment industry and animal husbandry because it increases the unsaturated fatty acid (TUFA) and protein content, improves feed demand, spawning performance, and egg production and improves daily weight gain.

Claims (2)

황토, 내산성균인 락토바실러스 액시도필러스(Lactobacillus acidophillus) 및 유카(Yucca schidigera)추출물을 포함하는 것을 특징으로 하는 청정 사료첨가제 조성물.A loess, acid-resistant bacteria, Lactobacillus acidophillus ( Lactobacillus acidophillus ) and Yucca ( Yucca schidigera ) A clean feed additive composition comprising a extract. 황토를 105℃에서 2시간 건조시켜 분쇄한 후, 내산성균인 락토바실러스 액시도필러스(Lactobacillus acidophillus)와 유카(Yucca schidigera)추출물을 혼합하여 제조되어짐을 특징으로 하는 청정 사료첨가제 조성물의 제조방법.After crushing and drying the loess at 105 ℃ for 2 hours, a method of producing a clean feed additive composition characterized in that the acid-resistant bacteria Lactobacillus acidophillus ( Lactobacillus acidophillus ) and Yucca ( Yucca schidigera ) extract is prepared by mixing.
KR1019970067052A 1997-12-09 1997-12-09 Feed additive composition and preparation method thereof KR100261352B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970067052A KR100261352B1 (en) 1997-12-09 1997-12-09 Feed additive composition and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970067052A KR100261352B1 (en) 1997-12-09 1997-12-09 Feed additive composition and preparation method thereof

Publications (2)

Publication Number Publication Date
KR19990048387A KR19990048387A (en) 1999-07-05
KR100261352B1 true KR100261352B1 (en) 2000-08-01

Family

ID=19526811

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970067052A KR100261352B1 (en) 1997-12-09 1997-12-09 Feed additive composition and preparation method thereof

Country Status (1)

Country Link
KR (1) KR100261352B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010099114A (en) * 2001-09-01 2001-11-09 김선욱 The nature-mineral annex fowl tasty food and that the manufacture method
EP2491795A1 (en) * 2011-02-22 2012-08-29 Süd-Chemie AG Feed additive

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240095654A (en) 2022-12-16 2024-06-26 박수민 Feed composition for fertilized egg laying hens for increasing egg laying rate containing Smilax China Linne as a main component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010099114A (en) * 2001-09-01 2001-11-09 김선욱 The nature-mineral annex fowl tasty food and that the manufacture method
EP2491795A1 (en) * 2011-02-22 2012-08-29 Süd-Chemie AG Feed additive
WO2012113838A1 (en) * 2011-02-22 2012-08-30 Süd-Chemie AG Feed additive

Also Published As

Publication number Publication date
KR19990048387A (en) 1999-07-05

Similar Documents

Publication Publication Date Title
Yaich et al. Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia
Kumaran et al. Estimation of proximate, amino acids, fatty acids and mineral composition of mullet (Mugil cephalus) of Parangipettai, Southeast Coast of India
Mahanand et al. Optimum formulation of feed for rohu, Labeo rohita (Hamilton), with biofloc as a component
Sun et al. Nutritive evaluation of earthworms as human food
LT4353B (en) Animal feed additives and feedstuff containing said additives
CA3095265A1 (en) Bacillus subtilis cjbs303 and composition comprising same
KR101807242B1 (en) A composition for removing odorous materials
KR100261352B1 (en) Feed additive composition and preparation method thereof
CN104171413A (en) Meat poultry feed containing anaerobic bacterium K.paraultunense KD-1 fermentation liquid and feather meal
KR102104279B1 (en) Animal feed additive and manufacturing method thereof
KR100341680B1 (en) Method for preparation of mineral feed additive composition containing kaolinite
RU2721800C1 (en) Method of producing biocomposite fodder additive for farm animals and poultry
KR100851313B1 (en) Feed composition for chicken
KR102006658B1 (en) Feed Additive Including Sulfur Component
KR20050083043A (en) Feed additives for livestock and the method of manufacturing it
CN112136977A (en) Pigeon feed additive for promoting ingestion and improving health and application thereof
Sarwar et al. Antibiotics and antibiotics resistance genes in poultry and animals’ manure and their effects on environment and human health
CN1792214A (en) High energy and environmental protection type fodder, and its prodn. method
Chirwa et al. Protein from preprocessed waste activated sludge as a nutritional supplement in chicken feed
RU2131677C1 (en) Fodder additive &#34;biovitos&#34;
Sulistiyanto et al. Effect of Administering Zeolite on The Physical Performances of Pellet Product Contained Chickens Hatchery Wastes
Gao et al. Evaluation of soybean stinkbug (Riptortus pedestris) powder, as a food ingredient and its nutritional composition.
Abbas et al. Proximate composition and fatty acids profiling of Seahorse originated from Simeulue, Aceh-Indonesia
Dewi et al. Nutritional and Antinutritional Properties of lindur (Bruguiera gymnorrhiza) Fruits Flour from Different Pre-Treatments
Felagha et al. Mineral, fatty and amino acids composition of three species of mollusks (Egeria radiata, Limicolaria flammea and Viviparus contectus)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130201

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20140221

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20150223

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20160125

Year of fee payment: 17

FPAY Annual fee payment

Payment date: 20170306

Year of fee payment: 18

EXPY Expiration of term