KR100259461B1 - Tertiary alkanolamine absorbent containing ethylene amine promoter - Google Patents

Tertiary alkanolamine absorbent containing ethylene amine promoter Download PDF

Info

Publication number
KR100259461B1
KR100259461B1 KR1019970069408A KR19970069408A KR100259461B1 KR 100259461 B1 KR100259461 B1 KR 100259461B1 KR 1019970069408 A KR1019970069408 A KR 1019970069408A KR 19970069408 A KR19970069408 A KR 19970069408A KR 100259461 B1 KR100259461 B1 KR 100259461B1
Authority
KR
South Korea
Prior art keywords
carbon dioxide
absorption
absorbent
reaction
mdea
Prior art date
Application number
KR1019970069408A
Other languages
Korean (ko)
Other versions
KR19990050314A (en
Inventor
민병무
백일현
이종섭
남성찬
노승욱
Original Assignee
최수현
한국에너지기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최수현, 한국에너지기술연구소 filed Critical 최수현
Priority to KR1019970069408A priority Critical patent/KR100259461B1/en
Publication of KR19990050314A publication Critical patent/KR19990050314A/en
Application granted granted Critical
Publication of KR100259461B1 publication Critical patent/KR100259461B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/2041Diamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

PURPOSE: Disclosed is a CO2 absorbent by addition of a reaction-active agent for increase absorbing efficiency. By the present of reaction-active agent, the tertiary alkanolamine as an absorbent has increased performance of 18-290% of CO2 absorbing speed and 4-238% of CO2 absorbing capacity. CONSTITUTION: The tertiary alkanolamine known as CO2 absorbent and methyldiethanolamine (MDEA, molecular weight=119.17) are mixed with hexamethylenediamine (HMDA, molecular weight=116.21) solution acting as reaction-active agent to increase the CO2 absorbing performances. In addition to MDEA as the tertiary alkanolamine, others may be also used such as triethanolamine, dimethylethanolamine, diethylethanolamine, or methyldiisopropanolamine. The weight content of the tertiary alkanolamine is 5-75wt% and the 0.7-20wt% reaction-active agent should have mono amine groups (NH2-(CH2)m-NH2: where m is 6) at the both ends of the chain structure.

Description

반응활성화제 첨가에 의한 제3급 알칸올아민의 이산화탄소 흡수성능을 개선한 흡수제Absorbents for improving carbon dioxide absorption of tertiary alkanolamines by addition of reaction activators

제1도는 이산화탄소 흡수반응시간에 따른 계 내의 압력변화 곡선을 나타낸 그래프이고,1 is a graph showing the pressure change curve in the system according to the carbon dioxide absorption reaction time,

제2도는 MDEA의 개선 흡수제의 흡수 평형도이다.2 is the absorption equilibrium of the improved absorbent of MDEA.

[발명의 목적][Purpose of invention]

[발명이 속하는 기술분야 및 그 분야의 종래기술][Technical field to which the invention belongs and the prior art in that field]

본 발명은 반응활성제 첨가에 의한 제3급 알칸올아민의 이산화탄소 흡수성능을 개선한 흡수제에 관한 것으로, 특히 지구 온난화 가스중의 하나인 이산화탄소 흡수를 위한 흡수제 개발을 위하여 상용화되어 있는 이산화탄소 화학습수제에 첨가제를 혼합함으로써 흡수속도 및 흡수능을 향상시킨 흡수제에 관한 것이다.The present invention relates to an absorbent which improves the carbon dioxide absorption performance of tertiary alkanolamines by the addition of a reactive activator, and particularly to a carbon dioxide chemical moisturizer that is commercialized to develop an absorbent for carbon dioxide absorption, one of the global warming gases. The present invention relates to an absorbent having improved absorption rate and absorption capacity by mixing additives.

에너지 이용과 밀접한 관계에 있는 지구 온난화 문제는 1994년부터 유엔의 기후 변화에 대한 기본 협약이 발효되어 선진국에서는 이산화탄소를 포함한 지구 온난화 가스 배출저감계획을 제시하는 등, 온난화 가스배출에 대한 국제적인 규제가 예상되며, 향후 선진국들이 탄소세 도입을 본격화하고 이를 무역 규제와 연결시킬 경우, 우리나라 산업에 큰 타격을 줄 것으로 예상된다.The global warming problem, which is closely related to energy use, is expected to be internationally regulated for global warming gas emissions.In 1994, the United Nations Framework Convention on Climate Change came into force and developed countries have proposed global warming gas emission reduction plans including carbon dioxide. In the future, if advanced countries introduce carbon taxes in earnest and link them with trade regulations, it is expected to damage Korea's industry.

산업활동을 위축시키지 않으면서 이산화탄소의 배출량을 감소시키기 위한 여러가지 처리공정들이 연구되고 있는데, 이는 크게 이산화탄소의 분리, 회수공정과 고정화 및 자원화의 두 분야로 구분될 수 있으나, 우선적으로 검토되어야 될 기술분야는 이산화탄소의 분리, 회수 기술이다.Various treatment processes are being studied to reduce carbon dioxide emissions without diminishing industrial activity. These can be classified into two fields: carbon dioxide separation, recovery process, and immobilization and recycling. Is a separation and recovery technique of carbon dioxide.

상기 분리 회수 기술로는 흡수법, 흡착법 및 막분리법 등이 연구개발되고 있으나, 최단 시일내에 적용 가능한 분리공정은 흡수법인 것으로 알려지고 있다.As the separation recovery technique, absorption, adsorption, and membrane separation methods have been researched and developed, but the separation process applicable in the shortest time is known to be an absorption method.

흡수법에 의한 공정 배가스에서의 이산화탄소 분리, 회수공정은 1970년 후반과 1980년 초반, 이미 미국에서 상용공정을 설치, 운전한 바 있으나, 장치에 대한 부식성, 흡수제의 열화 및 흡수제 재생에 필요한 별도의 에너지원에 의한 경제성 등의 문제에 따른 개선의 여지가 많아, 이들 문제점을 최소화할 수 있는 새로운 흡수제의 개발이 필요하게 되었다.The CO2 separation and recovery process from the process flue gas by absorption method has already been installed and operated in the United States in the late 1970s and early 1980s, but the corrosion of the device, the deterioration of the absorbent, and the recovery of the absorbent are required. There is much room for improvement due to problems such as economics due to energy sources, and it is necessary to develop new absorbents that can minimize these problems.

기존 흡수제 개선 방법은 일반적으로 메틸디에탄올아민(methyldiethanolamine:이하 MDEA라 칭함)에 집중되고 있다.Existing methods of absorbent improvement are generally concentrated on methyldiethanolamine (hereinafter referred to as MDEA).

제3급 알칸올아민 이산화탄소는 황화수소와 빠르게 반응하는 반면, 이산화탄소와는 비교적 느리게 반응하기 때문에, 황화수소와 이산화탄소 모두를 함유하고 있는 가스 흐름에서 황화수소를 선택적으로 분리하는 공정에 흔히 사용되어 왔다.Since tertiary alkanolamine carbon dioxide reacts quickly with hydrogen sulfide, while reacting relatively slowly with carbon dioxide, it has been commonly used in the process of selectively separating hydrogen sulfide from gas streams containing both hydrogen sulfide and carbon dioxide.

MDEA는 증기압이 낮아 증발에 의한 용매의 손실이 거의 없을 뿐만 아니라, 열적, 화학적 변성에 강하고 부식성이 없으며, 열용량 및 이산화탄소와의 반응열에 작아 합성가스나 천연가스에서 이산화탄소의 벌크분리에도 유용하다.MDEA has low vapor pressure, almost no solvent loss due to evaporation, strong resistance to thermal and chemical denaturation, no corrosiveness, and is small in heat capacity and heat of reaction with carbon dioxide, which is useful for bulk separation of carbon dioxide from syngas or natural gas.

또한, MDEA는 이산화탄소와 직접 반응하지 않기 때문에, 단순히 압력을 감소시키는 방법에 의해서도 어느 정도의 탈거가 가능하며, 가열에 의한 탈거시에도 에너지 요구량이 모노에탄올아민(monoethanolamine:이하 MEA라 칭함)나 디에탄올아민(diethanolamine:이하 DEA라 칭함)에 비하여 대단히 작다는 장점을 가지므로, 흡수식 분리법의 단점으로 지적되고 있는 경제성 문제를 해결하는데 보다 유리하다.In addition, since MDEA does not react directly with carbon dioxide, it can be removed to some extent by simply reducing the pressure, and even when removed by heating, the energy requirement is monoethanolamine (hereinafter referred to as MEA) or D. Since it has the advantage of being very small compared to ethanolamine (hereinafter referred to as DEA), it is more advantageous to solve the economic problem that has been pointed out as a disadvantage of the absorption separation method.

그러나, 이와 같은 장점에도 불구하고, 이산화탄소와의 반응속도가 매우 느리기 때문에 많은 양의 이산화탄소를 흡수하기 위해서는 높은 이산화탄소의 분압과 다량의 흡수제를 순환하여야 하기 때문에, MEA나 DEA를 사용하는 경우에 비하여 높은 충전 높이와 큰 충전탑의 직경을 필요로 하게 된다는 단점을 가지고 있다.However, in spite of these advantages, the reaction rate with carbon dioxide is very slow. Therefore, in order to absorb a large amount of carbon dioxide, a high partial pressure of carbon dioxide and a large amount of absorbent have to be circulated, which is higher than that of MEA or DEA. It has the disadvantage of requiring the filling height and the diameter of the large filling tower.

[발명이 이루고자 하는 기술적 과제][Technical problem to be achieved]

상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 재생에너지가 작고, 부식성이 작은 MDEA의 장점을 충분히 살리면서 이산화탄소의 흡수속도가 느리다는 단점을 보완하기 위하여, MDEA를 주 흡수제로 사용하면서, 소량의 반응활성화제를 첨가함으로써 이산화탄소의 흡수속도 및 흡수능을 향상시키는 흡수제를 개발하여야 한다.An object of the present invention for solving the above problems is to use a small amount of MDEA as a main absorbent, in order to compensate for the drawback of the slow absorption rate of carbon dioxide while fully utilizing the advantages of MDEA having a small renewable energy, small corrosiveness, By adding the reaction activator of the sorbent should be developed to improve the absorption rate and absorption capacity of the carbon dioxide.

따라서 알칸올아민을 이용한 가스 세정공정에 있어서, 1) 새로운 화학구조를 갖는 아민을 사용하는 방법과 2) 첨가제의 혼합을 이용한 기존 흡수제의 개선과 3) 공정 설계변수 및 운전 방법의 최적화에 의한 흡수제의 열화 및 손실 저감 및 4) 열화된 아민의 리클레이밍 방법의 개선 등의 방법이 필요하다.Therefore, in the gas cleaning process using alkanolamine, 1) method using amine with new chemical structure and 2) improvement of existing absorbent by mixing additives, and 3) absorbent by optimizing process design parameters and operating methods Deterioration and loss reduction, and 4) improvement of the reclaiming method of the deteriorated amine.

이들 방법중 공정 설계 변경과 리클레이밍 개선의 방법은 새로 설치된 공정에의 적용을 검토하여야 하며, 이미 설치되어 있는 흡수장치를 변경하지 않으면서 흡수 효율을 향상시키기 위해서는 새로운 흡수제의 개발 및 기존 흡수제의 문제점을 개선하여야 한다.Among these methods, the process design change and the reclaiming improvement method should be reviewed in the newly installed process. In order to improve the absorption efficiency without changing the absorber already installed, the development of a new absorbent and the The problem should be improved.

그러나, 새로운 흡수제를 개발하는 경우, 그에 따른 문제점의 도출 등 추후 진행했어야 할 문제들이 많기 때문에 최단 시일내에 실제 공정에 적용하기 위해서는 이미 도출된 기존 흡수제의 문제점을 극복하기 위한 첨가제의 혼합에 의한 흡수제의 개선방법이 가장 유리하다.However, when developing a new absorbent, there are many problems that should be proceeded later, such as derivation of the problem, so that in order to be applied to the actual process in the shortest time, the absorbent may be mixed with additives to overcome the problems of the existing absorbent. The method of improvement is most advantageous.

따라서, 본 발명은 이산화탄소의 흡수제로서 MDEA의 장점을 최대한 살리면서 단점을 보완한 새로운 흡수제를 제공하는데 있다.Accordingly, the present invention is to provide a new absorbent that supplements the disadvantages while maximizing the advantages of MDEA as an absorbent of carbon dioxide.

[발명의 구성][Configuration of Invention]

상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명의 실시예인 구성과 그 작용을 첨부도면에 연계시켜 상세히 설명하면 다음과 같다.When described in detail with reference to the accompanying drawings, the configuration and the operation of the embodiment of the present invention to achieve the object as described above and to perform the task for eliminating the conventional drawbacks.

제1도는 이산화탄소 흡수반응시간에 따른 계 내의 압력변화 곡선을 나타낸 그래프이고, 제2도는 MDEA의 개선 흡수제의 흡수 평형도이다.Figure 1 is a graph showing the pressure change curve in the system according to the carbon dioxide absorption reaction time, Figure 2 is the absorption balance of the improved absorbent of MDEA.

본 발명에서는 최근 이산화탄소의 화학흡수제로 주목받고 있는 MDEA에 반응 활성화제 중 분자량이 MDEA와 유사한 헥사메틸렌디아민(Hexamethylenediamine:이하 HMDA라 칭함)을 첨가함으로써 이산화탄소의 흡수속도 및 흡수능이 향상된 흡수제를 개발하였다(분자량:MDEA:119.17, HMDA:116.21).In the present invention, hexamethylenediamine (hereinafter referred to as HMDA) having a molecular weight similar to that of MDEA is added to MDEA, which is recently attracting attention as a chemical absorber of carbon dioxide, thereby developing an absorbent having improved absorption rate and absorption capacity of carbon dioxide ( Molecular weight: MDEA: 119.17, HMDA: 116.21).

우선 비교 물질인 MDEA와 개발된 흡수제의 이산화탄소 흡수 메커니즘 차이를 살펴보면, MDEA는 아민기 중의 H가 탄소로 완전히 치환되어 있기 때문에 이산화탄소와 직접 반응하지 못하면, 이산화탄소의 가수분해 반응에 대한 연기 촉매반응을 하는 것으로 알려져 있다.First of all, the difference of carbon dioxide absorption mechanism between MDEA and the developed absorbent is that if MDEA is not directly reacted with carbon dioxide because H in the amine group is completely substituted with carbon, it acts as a catalytic reaction for the hydrolysis reaction of carbon dioxide. It is known.

이 반응의 총괄 반응 메커니즘은The overall reaction mechanism of this reaction is

Figure kpo00001
Figure kpo00001

로 주어지며 이러한 반응 메카니즘은 물 분자에 의한 MDEA 분자의 회합이 제3급 알칸올아민의 이산화탄소 흡수반응에 대하여 대단히 중요한 역할을 하고 있음을 의미하고 있다.This reaction mechanism implies that the association of MDEA molecules by water molecules plays an important role in the carbon dioxide absorption of tertiary alkanolamines.

또한, Versteeg와 van Swaaij는 수용액 상태가 아닌 에탄올과 MDEA의 혼합 용액에 대한 이산화탄소의 흡수반응은 물리흡수 현상만이 나타난다는 실험결과를 발표하였으며, 이들의 결과에 의하면 이산화탄소 흡수제로서 제3급 알칸올아민을 사용하는 경우, 반드시 수용액 상태로 혼합하여 사용하여야 한다.In addition, Versteeg and van Swaaij published experimental results that the absorption reaction of carbon dioxide in a mixed solution of ethanol and MDEA, which is not an aqueous solution, showed only a physical absorption phenomenon. If amines are used, they must be mixed and used in aqueous solution.

반면, 반응 활성화제로 첨가된 HMDA는 NH2(CH2)6NH2의 구조를 갖는 물질로, 양끝단에 1개씩, 2개의 제1급 아민기를 가지고 있어, 기-액 계면에서 이산화탄소와 직접 반응함에 의하여 이산화탄소를 흡수하며, 이 반응에 의한 반응 생성물의 농도차에 기인한 확산에 의하여 벌크 액상으로 이동하여 MDEA와 반응한다.On the other hand, HMDA added as a reaction activator is a substance having a structure of NH 2 (CH 2 ) 6 NH 2 , and has two primary amine groups, one at each end thereof, and reacts directly with carbon dioxide at the gas-liquid interface. The carbon dioxide is absorbed by the carbon dioxide, and is transferred to the bulk liquid phase by the diffusion due to the difference in concentration of the reaction product.

이 반응 과정에서 HMDA와의 반응에 의하여 흡수되어 있던 이산화탄소가 MDEA로 전달되며, 반응 생성물로 유리 HMDA을 생성하여 생성된 유리 아민은 다시 이산화탄소와의 기-액 접촉 반응에 따라 이산화탄소를 흡수하게 된다.In this reaction, carbon dioxide absorbed by the reaction with HMDA is transferred to MDEA, and the free amine produced by generating free HMDA as a reaction product absorbs carbon dioxide upon gas-liquid contact with carbon dioxide.

HMDA가 MDEA를 활성화시키는 흡수 메커니즘은 다음의 화학반응식으로 나타낼 수 있다.The absorption mechanism by which HMDA activates MDEA can be represented by the following chemical equation.

Figure kpo00002
Figure kpo00002

이러한 흡수 메커니즘의 차이에 따라 이산화탄소 흡수반응 속도와 흡수능의 차이가 나타나는데, MDEA의 촉매반응에 의한 이산화탄소 흡수반응 속도에 비하여 HMDA의 이산화탄소 흡수반응 속도가 매우 빠르기 때문에 흡수속도의 향상이 일어나게 되며, MDEA와 이산화탄소가 1:1의 화학양론비로 반응하는데 비하여 1몰의 HMDA가 2몰의 이산화탄소와 반응하게 되므로, 흡수능 역시 증가하게 된다.According to the difference of absorption mechanism, the carbon dioxide absorption reaction rate and absorption capacity are different. As the carbon dioxide absorption reaction rate of HMDA is much faster than that of MDEA catalytic reaction, the absorption rate is improved. Carbon dioxide reacts in a stoichiometric ratio of 1: 1, so that 1 mole of HMDA reacts with 2 moles of carbon dioxide, thus increasing the absorption capacity.

다시 한번 설명하자면 이산화탄소를 분리 회수하는 이산화탄소 흡수제에 있어서, 한가지 이상의 제3급 알칸올아민과 반응활성제의 혼합수용액으로써, 이산화탄소의 흡수속도를 18∼290%, 이산화탄소의 흡수능을 4∼238% 향상시킬 수 있는 것을 특징으로 하는 반응활성화제 첨가에 의한 제3급 알칸올아민의 이산화탄소 흡수성능을 개선한 흡수제인데, 상기 제3급 알칸올아민에는 메틸디에탄올아민(methyldiethanolamine), 트리에탄올아민(triethanolamine), 디메틸에탄올아민(dimethylethanolamine), 디에틸에탄올아민(diethylethanolamine), 메틸디이소프로판올아민(methyldiisopropanolamine)과 이들의 혼합용액을 포함하는 군 중에서 선택되고, 상기 제3급 알칸올아민의 농도는 5∼75wt% 수용액으로 하며, 상기 반응활성제는 화학구조상 양 끝단에 각각 하나의 제1급 아민기를 가진 NH2-(CH2)m-NH2형의 구조를 갖는 헥사메틸렌디아민(Hexamethylenediamine)으로서, m=6이며, 반응활성화제의 농도는 0.7∼20wt%로 하고, 이산화탄소의 흡수제는 수용액 상태로, 25% 이상의 수분을 함유하고 있다.In other words, in a carbon dioxide absorbent for separating and recovering carbon dioxide, a mixed aqueous solution of one or more tertiary alkanolamines and a reactive activator may improve the absorption rate of carbon dioxide by 18 to 290% and the absorption capacity of carbon dioxide by 4 to 238%. It is an absorbent that improves the carbon dioxide absorption performance of the tertiary alkanolamine by the addition of a reaction activator, characterized in that the tertiary alkanolamine is methyldiethanolamine (triethanolamine), triethanolamine, Dimethylethanolamine, diethylethanolamine, methyldiisopropanolamine and a mixed solution thereof are selected from the group consisting of a tertiary alkanolamine concentration of 5 to 75wt% aqueous solution. The reactive activator is NH 2- (CH having one primary amine group at each end of the chemical structure 2 ) Hexamethylenediamine having a structure of m- NH 2 type, m = 6, the concentration of the reaction activator is 0.7 to 20 wt%, and the carbon dioxide absorbent is in an aqueous solution, at least 25% of water. It contains.

이하 본 발명의 실시예이다.Hereinafter is an embodiment of the present invention.

[실시예]EXAMPLE

이 장에서는 본 발명에서의 한가지 실시예를 설명한다.This chapter describes one embodiment in the present invention.

50℃의 실험온도에서, 20.5% MDEA 및 20.5% MDEA+0.7% HMDA, 20.5% MDEA+7.0% HMDA 및 20.5% MDEA+14.4% HMDA 수용액에 의한 이산화탄소 흡수 속도 및 흡수능 측정실험을 수행함으로써, HMDA의 첨가에 의한 MDEA의 이산화탄소 흡수 속도와 흡수능이 향상됨을 확인하였다.At the test temperature of 50 ° C., HMDA was measured by performing carbon dioxide absorption rate and absorption capacity experiments with 20.5% MDEA and 20.5% MDEA + 0.7% HMDA, 20.5% MDEA + 7.0% HMDA and 20.5% MDEA + 14.4% HMDA aqueous solution. It was confirmed that the carbon dioxide absorption rate and absorption capacity of MDEA were improved by the addition.

본 발명에 사용된 시약은 제3급 알칸올아민인 알드리치(Aldrich)사의 99% MDEA와, 첨가제로서 반응 활성화제 역할을 하는 알드리치(Aldrich)사의 70% HMDA 수용액으로, 이들 시약을 1차 증류수와 혼합하여 수용액 상태의 흡수액으로 사용하였다.The reagents used in the present invention are 99% MDEA of Aldrich, a tertiary alkanolamine, and 70% HMDA aqueous solution of Aldrich, which serves as a reaction activator as an additive. The mixture was used as an absorbing liquid in the form of an aqueous solution.

실험장치는 이산화탄소의 주입량을 측정하기 위한 가스 저장조와 흡수 반응시 가스의 순환을 위한 가스 저장조 및 알칸올아민에 의한 이산화탄소 흡수 반응이 일어나는 흡수 반응기로 구성되었으며, 실험온도를 유지하기 위하여 공기 항온조내에 설치하였다.The experimental apparatus consisted of a gas reservoir for measuring the amount of carbon dioxide injected, a gas reservoir for the circulation of gas during the absorption reaction, and an absorption reactor in which carbon dioxide absorption reaction occurs by alkanolamine, and installed in an air thermostat to maintain the experiment temperature. It was.

흡수실험은 전동기로 구동하는 내경 2.5cm, 행정거리 3cm의 실린더형 피스톤 펌프를 이용하여 가스를 순환시킴으로서 기-액 접촉을 통한 평형점에 빨리 도달할 수 있도록 하였다.Absorption experiment was performed by using a cylindrical piston pump with an inner diameter of 2.5cm and a stroke length of 3cm driven by an electric motor to quickly reach the equilibrium point through gas-liquid contact.

흡수 반응기 하단에는 주입되는 이산화탄소의 분산을 위하여 글래스 비드(glass bead)를 충진하였으며, 가스의 순환을 확인하기 위하여 흡수 반응기에 뷰셀(view cell)을 설치하였다.The bottom of the absorption reactor was filled with glass beads to disperse the injected carbon dioxide, and a view cell was installed in the absorption reactor to check the circulation of the gas.

가스 저장조 및 흡수 반응기는 원통형 스테인레스감으로 제작하였고, 양단부 부은 원추형의 플랜지를 이용하여 가스 이송관과 연결하였다.The gas storage tank and the absorption reactor were made of cylindrical stainless steel, and both ends were connected to the gas feed pipe using a conical flange.

계의 압력을 측정하기 위하여 흡수반응기 및 가스저장조에 0.001kgf/cm2의 정밀도를 가지는 3개의 압력변환기를 설치하였으며, 온도 측정을 위하여 흡수 반응기의 기상 및 액상온도와 저장조에 K형 열전대를 설치하였다.In order to measure the pressure of the system, three pressure transducers with a precision of 0.001kg f / cm 2 were installed in the absorption reactor and the gas storage tank, and a K-type thermocouple was installed in the gas and liquid temperature of the absorption reactor and the storage tank for temperature measurement. It was.

측정온도와 압력은 요코가와(Yokogawa)사의 30채널 하이브리드 레코더(30Channel Hybrid Recorder:Model HR2300)를 이용하여 기록하였으며, 이를 전송하여 컴퓨터에 데이터 파일로 저장토록 구성하였다.The measured temperature and pressure were recorded using Yokogawa's 30 Channel Hybrid Recorder (Model HR2300), which was transferred to the computer and stored in a data file.

가스상의 이산화탄소 농도는 가스 크로마토그래피(Model HP5890A)를 이용하여 측정하였으며, 가스상에 존재하는 흡수제의 응축을 위하여 가스시료 채취 부분에 응축기를 설치하였다.The gaseous carbon dioxide concentration was measured by gas chromatography (Model HP5890A), and a condenser was installed at the gas sample collection part to condense the absorbent present in the gas phase.

GC는 표준가스(3.06% O2, 16.02% CO2, N2balanced)를 사용하여 검정하였다.GC was assayed using standard gas (3.06% O 2 , 16.02% CO 2 , N 2 balanced).

실험을 수행하기에 앞서, 밴트(vent) 밸브를 열어준 상태에서 연속적으로 질소가스를 가스 저장조 및 흡수 반응조에 주입함으로써 내부의 공기 및 불순기체를 제거하고, 질소 대기상태를 유지하였으며, GC 분석을 통하여 장치 내부에 질소 이외의 다른 성분이 존재하지 않음을 확인하였다.Prior to conducting the experiment, the nitrogen gas was continuously injected into the gas storage tank and the absorption reaction tank while the vent valve was opened to remove the air and impurities therein, to maintain the nitrogen atmosphere, and the GC analysis was performed. It was confirmed that no components other than nitrogen exist inside the apparatus.

흡수제 주입구를 통해 준비된 혼합용액을 주입한 후, 가스 순환용펌프를 작동시키면서, 실험온도로 승온시켜 이때의 평형 압력을 측정하였다.After injecting the prepared mixed solution through the absorbent inlet, while operating the gas circulation pump, the equilibrium pressure was measured by raising the temperature to the experimental temperature.

평형온도 및 압력에 도달한 후, 이산화탄소 주입용 가스 저장조의 밸브를 열어 일정량의 이산화탄소를 주입하고, 펌프를 작동시켜 기-액 접촉을 통한 이산화탄소의 흡수반응을 개시하였다.After reaching the equilibrium temperature and pressure, the valve of the gas storage tank for carbon dioxide injection was opened to inject a certain amount of carbon dioxide, and the pump was operated to initiate the absorption of carbon dioxide through gas-liquid contact.

초기상태의 이산화탄소 분압은 이산화탄소 주입 전후의 압력으로부터 계산하였다.The initial partial pressure of carbon dioxide was calculated from the pressure before and after the carbon dioxide injection.

이산화탄소 주입 이전의 평형 압력은 질소 가스압, 수증기압과 아민 증기압의 합이며, 주입된 이산화탄소의 양은 이산화탄소 주입 전후의 이산화탄소 주입용 가스 저장조 압력변화로부터 계산할 수 있다.The equilibrium pressure before carbon dioxide injection is the sum of nitrogen gas pressure, water vapor pressure and amine vapor pressure, and the amount of carbon dioxide injected can be calculated from the pressure change of the gas reservoir for carbon dioxide injection before and after carbon dioxide injection.

반응이 진행되는 동안 흡수 반응기 및 저장조 내부의 압력은 알칸올아민 수용액에 대한 이산화탄소의 흡수에 따라 감소하게 되며, 더 이상의 압력 변화가 나타나지 않으면 흡수 평형에 도달한 것으로 판단하고, 그때의 압력을 측정하여 이산화탄소의 평형 부하 및 분압을 계산하였다.During the reaction, the pressure inside the absorption reactor and the reservoir decreases with the absorption of carbon dioxide into the alkanolamine aqueous solution. The equilibrium load and partial pressure of carbon dioxide were calculated.

혼합 흡수액의 사용에 따른 이산화탄소 흡수속도의 비교를 위하여, 동일한 초기 조건에서의 흡수평형 실험을 수행하였다.In order to compare the carbon dioxide absorption rate according to the use of the mixed absorbent liquid, absorption equilibrium experiments were performed under the same initial conditions.

흡수 속도의 비교실험은 50℃에서 수행하였으며, 초기압력 P=215kPa, 이산화탄소의 분율 y=0.536의 조건에서 14.7ℓ/min의 일정한 속도로 가스를 순환하였다.A comparative experiment of the absorption rate was performed at 50 ° C., and the gas was circulated at a constant rate of 14.7 L / min under the conditions of the initial pressure P = 215 kPa and the fraction of carbon dioxide y = 0.536.

또한, 이산화탄소 흡수능의 향상 실험은 이산화탄소를 추가로 주입하면서 각 단계에서의 흡수평형 실험을 반복 수행하였다.In addition, the experiment to improve the carbon dioxide absorption capacity was repeated the absorption equilibrium experiment in each step while additionally injecting carbon dioxide.

상술한 실시예에서 제3급 알칸올아민은 예를 들어 MDEA로 구성되는 것으로 설명되었으나, 같은 제3급 알칸올아민 트리에탄올아민(Triethanolamine:이하 TEA라 칭함)도 사용할 수 있다.Although the tertiary alkanolamine in the above-described embodiment has been described as being composed of, for example, MDEA, the same tertiary alkanolamine triethanolamine (hereinafter referred to as TEA) can also be used.

또한, 제3급 알칸올아민(MDEA)의 농도는 예를 들어 20.5%로 구성되는 것으로 설명되었으나, 5%∼75% 수용액도 사용할 수 있다.In addition, although the concentration of tertiary alkanolamine (MDEA) has been described as being composed of, for example, 20.5%, 5% to 75% aqueous solution may also be used.

[발명의 효과][Effects of the Invention]

가) 흡수반응속도의 향상A) Improvement of absorption reaction rate

이산화탄소의 분압이 매우 크거나 흡수액의 전환율이 높은 경우가 아니라면, 액상 흡수액의 벌크 농도가 크게 나타나기 때문에 액상 계면에서의 흡수액의 농도는 일정하다고 가정할 수 있으며, 따라서 이 반응은 다음과 같은 이산화탄소 분압에 대한 가역 의사 1차반응으로 나타낼 수 있다.Unless the partial pressure of carbon dioxide is very large or the conversion rate of the absorbent liquid is high, the bulk concentration of the liquid absorbent liquid may be large, so the concentration of the absorbent liquid at the liquid interface may be assumed to be constant. It can be expressed as a reversible pseudo-first order response.

Figure kpo00003
Figure kpo00003

위 식을 적분하여 정리하면 다음의 (2)식과 같이 나타낼 수 있다.Integrating the above equations can be expressed as the following (2).

Figure kpo00004
Figure kpo00004

흡수액에 의한 이산화탄소의 겉보기 속도상수의 도출을 위하여 초기압력 P=215kPa, 이산화탄소의 분율 y:0.536의 조건에서 흡수에 따른 시간에 대한 이산화탄소 농도 변화를 측정하였으며, 평형 도달시의 이산화탄소 분압과 2분 간격을 측정, 저장된 이산화탄소 분압과 (2)식으로부터 Marquardt-Leverberg 희귀분석법을 사용하여 Kapp를 최적화하였다.In order to derive the apparent rate constant of carbon dioxide by the absorbent liquid, the change of carbon dioxide concentration over time was measured at the initial pressure of P = 215 kPa and the fraction of carbon dioxide y: 0.536. The K app was optimized using the Marquardt-Leverberg rare analysis from the measured, stored carbon dioxide partial pressure and (2).

제1도에 흡수에 따른 이산화탄소의 농도(분압) 변화를 나타내었으며, 겉보기 속도상수(Kapp)를 이용한 계산값을 실선으로 표시하였다.The concentration (partial pressure) of carbon dioxide according to absorption is shown in FIG. 1, and the calculated value using the apparent velocity constant (K app ) is indicated by a solid line.

그림에서 볼 수 있듯이 HMDA 농도의 증가에 따라 이산화탄소 흡수에 의한 압력강하가 급격히 일어남을 볼 수 있었으며, 이는 HMDA농도의 증가에 따라 흡수 속도가 증가함을 의미한다.As shown in the figure, the pressure drop due to CO2 absorption increased rapidly with increasing HMDA concentration, which means that the absorption rate increases with increasing HMDA concentration.

계산된 Kapp는 HMDA농도에 따라 0.57∼1.80×103의 값을 가지고 있으며, HMDA 농도 증가에 따라 20.5% MDEA 수용액에 비하여 18∼292%의 증가율을 보이고 있었다.The calculated K app has a value of 0.57-1.80 × 10 3 depending on the HMDA concentration, and shows an increase rate of 18-292% compared to the 20.5% MDEA aqueous solution with increasing HMDA concentration.

각 흡수제에 대하여 구한 겉보기 속도상수 Kapp를 사용하여 흡수반응에 따른 이산화탄소 분압의 계산값과 실측값을 비교한 결과, 각 혼합용액에 대한 백분율 평균편차는 0.29∼8.30%를 나타내고 있었으며, 따라서 이산화탄소와 이들 흡수제의 반응속도는 가역 의사 1차 반응식을 적용할 수 있음을 확인하였다.As a result of comparing the calculated value and the measured value of the partial pressure of carbon dioxide according to the absorption reaction using the apparent rate constant K app obtained for each absorbent, the percentage average deviation of each mixture solution was 0.29 ~ 8.30%. It was confirmed that the reaction rates of these absorbents can be applied to a reversible pseudo first order equation.

나) 평형 흡수능의 향상B) improvement of equilibrium absorption capacity;

50℃, 이산화탄소 분말 80kPa 이내의 범위에서 HMDA 농도에 따른 흡수평형의 변화를 제2도에 나타내었으며, 비교를 위하여 14.4% HMDA의 이산화탄소 흡수능도 함께 도시하였다.The change in absorption equilibrium according to the HMDA concentration in the range of 50 ° C. and the carbon dioxide powder within 80 kPa is shown in FIG. 2, and the carbon dioxide absorption capacity of 14.4% HMDA is also shown for comparison.

도면을 통하여 HMDA의 농도 증가에 따라 이산화탄소의 흡수능이 증가함을 볼 수 있었으며, HMDA을 첨가한 혼합 흡수액의 이산화탄소 흡수능을 20.5% MDEA의 흡수능과 정량적으로 비교하기 위하여 다음의 (3)식과 같이 정의되는 증진인자(E)를 도입하였다.It can be seen from the figure that the absorption capacity of carbon dioxide increases with increasing concentration of HMDA, and in order to quantitatively compare the absorption capacity of carbon dioxide in the mixed absorbent liquid containing HMDA with the absorption capacity of 20.5% MDEA, Enhancer (E) was introduced.

Figure kpo00005
Figure kpo00005

증진인자는 동일한 이산화탄소 농도(분압)에서 HMDA농도가 증가함에 따라 증가하고 있으며, 연소배가스 중의 이산화탄소 농도에 해당하는 이산화탄소 분압이 10kPa인 경우의 증진인자를 계산한 결과, HMDA농도의 증가에 따라 20.5wt% MDEA 수용액에 비하여 13∼238%의 증가율을 보이고 있으며, 본 실시예의 범위중 최고 이산화탄소 농도인 이산화탄소 분압 80kPa의 경우 20.5% MDEA에 비하여 4∼108%의 흡수능이 향상되는 등, HMDA의 첨가에 의하여 MDEA의 흡수속도 및 흡수능이 향상됨을 확인할 수 있었다.Enhancement factor increases with increasing HMDA concentration at the same carbon dioxide concentration (partial pressure), and when the carbon dioxide partial pressure corresponding to the carbon dioxide concentration in combustion flue gas is 10 kPa, as a result of calculating the enhancement factor, 20.5wt according to the increase of HMDA concentration. It shows an increase rate of 13-238% compared to the% MDEA aqueous solution, and in the case of the carbon dioxide partial pressure of 80 kPa, which is the highest concentration of carbon dioxide in the range of the present embodiment, the absorption capacity is improved by 4 to 108% compared to 20.5% MDEA. It was confirmed that the absorption rate and absorption capacity of MDEA were improved.

본 발명을 통하여 개발된 흡수제를 사용함으로써 MDEA에 비하여 이산화탄소의 흡수속도 및 흡수능을 향상시켰다.By using the absorbent developed through the present invention, the absorption rate and absorption capacity of carbon dioxide were improved compared to MDEA.

따라서, 이산화탄소 흡수처리 장치를 설치함에 있어, MDEA를 사용하는 경우에 비하여 흡수탑의 직경과 높이를 줄일 수 있어 장치의 설치비를 절감할 수 있으며, 흡수제의 순환을 위한 동력비가 절감되어 흡수공정의 단점으로 지적되어 왔던 경제성 향상에 이바지할 수 있을 것이다.Therefore, in installing the carbon dioxide absorption treatment device, the diameter and height of the absorption tower can be reduced compared to the case of using MDEA, and thus the installation cost of the device can be reduced, and the power cost for the circulation of the absorbent is reduced. It can contribute to the economic improvement that has been pointed out.

본 발명은 특정한 실시예를 통해 구성과 작용효과를 설명하였으나, 이것은 예시의 목적일 뿐 본 발명은 이에 한정되는 것은 아니며 본 발명은 제시된 청구범위에 의해 정의된다.While the present invention has been described in terms of configuration and effect through specific embodiments, this is for the purpose of illustration only and the present invention is not limited thereto and the present invention is defined by the claims set forth.

Claims (1)

이산화탄소를 분리 회수하는 이산화탄소 흡수제에 있어서, 한가지 이상의 제3급 알칸올아민과 반응활성화제로 양 끝단에 하나의 제1급 아민기를 가진 NH2-(CH2)m-NH2형태의 유기화합물로 m=6인 구조를 갖는 헥사메틸렌 디아민을 첨가한 혼합수용액으로 조성하되, 상기 제3급 알칸올아민의 농도는 5∼75wt%, 반응활성화제인 헥사메틸렌 디아민의 농도는 0,7∼20wt% 조성되며, 수용액 상태로 수분을 25wt% 이상 함유한 것을 특징으로 하는 반응활성화제 첨가에 의한 제3급 알칸올아민의 이산화탄소 흡수성능을 개선한 흡수제.In the carbon dioxide absorbent for separating and recovering carbon dioxide, an organic compound of the form NH2- (CH2) m-NH2 having one primary amine group at both ends as one or more tertiary alkanolamines and a reaction activator, wherein m = 6 It is composed of a mixed aqueous solution containing hexamethylene diamine having a structure, the concentration of the tertiary alkanolamine is 5 to 75wt%, the concentration of hexamethylene diamine as a reaction activator is 0,7 to 20wt%, an aqueous solution state An absorbent that improves the carbon dioxide absorption performance of the tertiary alkanolamine by the addition of a reaction activator, characterized in that it contains more than 25wt% water.
KR1019970069408A 1997-12-17 1997-12-17 Tertiary alkanolamine absorbent containing ethylene amine promoter KR100259461B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970069408A KR100259461B1 (en) 1997-12-17 1997-12-17 Tertiary alkanolamine absorbent containing ethylene amine promoter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970069408A KR100259461B1 (en) 1997-12-17 1997-12-17 Tertiary alkanolamine absorbent containing ethylene amine promoter

Publications (2)

Publication Number Publication Date
KR19990050314A KR19990050314A (en) 1999-07-05
KR100259461B1 true KR100259461B1 (en) 2000-07-01

Family

ID=19527506

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970069408A KR100259461B1 (en) 1997-12-17 1997-12-17 Tertiary alkanolamine absorbent containing ethylene amine promoter

Country Status (1)

Country Link
KR (1) KR100259461B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200104599A (en) 2019-02-27 2020-09-04 한국에너지기술연구원 Carbon dioxide absorbent and methods for manufacturing and using the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100418627B1 (en) * 2001-10-29 2004-02-11 한국전력공사 Absorbent for Separating Carbon Dioxide from Gas Mixture
KR100470959B1 (en) * 2002-11-15 2005-03-11 한국화학연구원 Absorbent for the removal of carbon dioxide in hollow fiber membrane contactor
KR102638462B1 (en) 2021-01-27 2024-02-21 한국과학기술연구원 Highly efficient CO2 absorbent composition and method for preparing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814104A (en) * 1987-02-05 1989-03-21 Uop Tertiary alkanolamine absorbent containing an ethyleneamine promoter and its method of use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4814104A (en) * 1987-02-05 1989-03-21 Uop Tertiary alkanolamine absorbent containing an ethyleneamine promoter and its method of use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200104599A (en) 2019-02-27 2020-09-04 한국에너지기술연구원 Carbon dioxide absorbent and methods for manufacturing and using the same

Also Published As

Publication number Publication date
KR19990050314A (en) 1999-07-05

Similar Documents

Publication Publication Date Title
EP2618914B1 (en) Solvent composition for carbon dioxide recovery
US8603226B2 (en) Cyclic-amine-comprising absorption medium for removing acid gases
Zhang et al. Regeneration of 2-amino-2-methyl-1-propanol used for carbon dioxide absorption
Ze et al. Hollow fiber membrane contactor absorption of CO2 from the flue gas: review and perspective
EP1615712B1 (en) Polyamine/alkali salt blends for carbon dioxide removal from gas streams
Hu et al. Analyzing the potential benefits of trio-amine systems for enhancing the CO2 desorption processes
Vaidya et al. Absorption of CO2 into aqueous blends of alkanolamines prepared from renewable resources
AU2010264803A1 (en) Removal of acidic gases by means of an absorbent comprising a stripping aid
Saidi Mathematical modeling of CO2 absorption into novel reactive DEAB solution in hollow fiber membrane contactors; kinetic and mass transfer investigation
CN1125158A (en) Method for the removal of hydrogen sulfide present in gases
CN110052119B (en) Method for absorbing and concentrating hydrogen sulfide in industrial acid gas by organic solvent and utilizing resources
Wu et al. Kinetics analysis and regeneration performance of 1-butyl-3-methylimidazolium glycinate solutions for CO2 capture
Kasikamphaiboon et al. Simultaneous removal of CO 2 and H 2 S using MEA solution in a packed column absorber for biogas upgrading.
AU2016202116B2 (en) Acidic gas absorbing agent, method for removing acidic gas and apparatus for removing acidic gas
CN113101782B (en) Functionalized ionic liquid absorption liquid and preparation method and application thereof
KR100259461B1 (en) Tertiary alkanolamine absorbent containing ethylene amine promoter
KR101151264B1 (en) Absorbent for improving absorbent velocity and absorbent capability of hydrogen sulfate
Weiland et al. Post-combustion CO2 capture with amino-acid salts
KR20190057586A (en) Acid gas sorbent and acid gas separation method based on ionic liquid
CN104772021A (en) Method for capture of CO2 in industrial gas by polyol-ethylenediamine aqueous solution
Mehassouel et al. Kinetics study and simulation of CO2 absorption into mixed aqueous solutions of methyldiethanolamine and hexylamine
Awais Determination of the mechanism of the reaction between CO2 and alkanolamines.
KR102170273B1 (en) Carbon dioxide absorbent and methods for manufacturing and using the same
Gladis et al. Comparison of the kinetic promoter piperazine and carbonic anhydrase for CO2 absorption
US11612853B1 (en) Fully automated direct air capture carbon dioxide processing system

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060215

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee