KR100258593B1 - Silicon compounds for electroluminescent element - Google Patents

Silicon compounds for electroluminescent element Download PDF

Info

Publication number
KR100258593B1
KR100258593B1 KR1019980011714A KR19980011714A KR100258593B1 KR 100258593 B1 KR100258593 B1 KR 100258593B1 KR 1019980011714 A KR1019980011714 A KR 1019980011714A KR 19980011714 A KR19980011714 A KR 19980011714A KR 100258593 B1 KR100258593 B1 KR 100258593B1
Authority
KR
South Korea
Prior art keywords
copolymer
cyanophenylenevinylene
alkyl
terephthalaldehyde
prepared
Prior art date
Application number
KR1019980011714A
Other languages
Korean (ko)
Other versions
KR19990079226A (en
Inventor
김환규
김기동
박진성
Original Assignee
김환규
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김환규 filed Critical 김환규
Priority to KR1019980011714A priority Critical patent/KR100258593B1/en
Publication of KR19990079226A publication Critical patent/KR19990079226A/en
Application granted granted Critical
Publication of KR100258593B1 publication Critical patent/KR100258593B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Silicon Polymers (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE: Provided is a method for manufacturing an electroluminescent polymer which contains silicon at its main chain as well as cyano group, shows good solubility, emits green light at 480nm, and has low driving power, about 7V. CONSTITUTION: A method for manufacturing di-(p-cyanomethylphenyl)dialkyl/aryl silane of the formula (I) is comprised of the next steps of: i) reacting dialkyldichlorosilane or diaryldichlorosilane with p-bromotoluene in the presence of alkali metal or alkaline earth metal as catalyst and chloroform as solvent to manufacture di-p-tolyldialkyl/aryl silane; and ii) reacting di-p-tolyldialkyl/aryl silane with sodium cyanides in the presence of chloroform as solvent to manufacture di-(p-cyanomethylphenyl)dialkyl/aryl silane of the formula (I). In the formula (I), R and R' are the same or different, and an alkyl or aryl group. The electroluminescent polymer of the formula(II) is manufactured by polymerizing the compound of the formula (I).

Description

저구동전압에서 작동하는 실리콘계 전기 발광 고분자 화합물 및 그 제조방법Silicon-based electroluminescent polymer compound operating at low driving voltage and its manufacturing method

본 발명은 실리콘을 함유하는 전기 발광 고분자 화합물에 관한 것으로서, 일반적인 유기 용매에 잘 녹고, 청색발광을 하면서 낮은 구동전압을 가지는 고분자재료 및 이의 제조 방법에 관한 발명이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroluminescent polymer compound containing silicon. The present invention relates to a polymer material having a low driving voltage while being well dissolved in a general organic solvent and emitting blue light, and a method of manufacturing the same.

차세대 정보 통신 시스템에 있어서는 다양한 영상 정보 서비스가 요구되고 있어 평판형 표시 소자 (display device)에 사용되는 소재로 전기 발광 고분자 재료를 사용하면 무기재료에 비하여 낮은 구동 전압, 청색-적색의 넓은 발광색을 낼 수 있고, 또한 고분자 소재의 뛰어난 가공성으로 인하여 평면상의 대형 디스플레이가 가능하기 때문에, 현재 많은 연구가 진행되고 있다.In the next-generation information and communication system, various image information services are required, and when the electroluminescent polymer material is used as the material used for the flat panel display device, it has lower driving voltage and wider blue-red color than the inorganic material. In addition, because of the excellent processability of the polymer material enables a large display on a flat surface, many studies are currently being conducted.

처음의 전기 발광 (electroluminescence : EL) 소자는 GaN, Zns, SiC 등의 무기물로 만들어졌다. 무기물로 만든 EL 소자는 가공이 어렵고 소비전력이 교류 200V 이상으로 높으며, 발광에도 한계가 있어 적ㆍ녹ㆍ청색의 전색 (full color)화가 힘들다. 그러나 1987년 Eastmann Kodak사에서 π-공액 구조를 가지는 aluminaquinone (Alq3)에서 EL이 발견된 이후, 유기물에서의 EL에 대한 연구가 활발해졌다 (C. W. Tang, and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987)). 유기물질은 분자구조가 단순하고 분자설계가 쉬우며, 합성이 용이하다. 그리고, 무기물질에서는 어려운 적ㆍ녹ㆍ청색의 전색화가 가능하다. 그러나 기계적 강도가 낮고, 열에 불안정한 단점이 있다. 이를 보완하고 유기물질의 장점을 살린 유기 고분자가 이용되기 시작했다. 유기 고분자는 1990년 캠브리지 대학에서 J. H. Burroughes 등이 poly(p-phenylenevinylene) (PPV)으로 만든 소자에서 EL이 발견된 이후로 유기 고분자에 대한 연구가 활발해지기 시작했다(J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature, 347, 539 (1990)).The first electroluminescence (EL) devices were made of inorganic materials such as GaN, Zns, and SiC. EL elements made of inorganic materials are difficult to process, consume more than 200V of AC power, and are limited in light emission, making it difficult to achieve red, green, and blue full color. However, since EL was discovered in aluminaquinone (Alq 3 ) with π-conjugated structure at Eastmann Kodak in 1987, the study of EL in organic matter has been actively conducted (CW Tang, and SA VanSlyke, Appl. Phys. Lett., 51, 913 (1987)). Organic materials have simple molecular structure, easy molecular design, and easy synthesis. In addition, it is possible to harden red, green, and blue colors with inorganic materials. However, there are disadvantages of low mechanical strength and heat instability. Organic polymers that make up for this and take advantage of organic materials have begun to be used. Organic polymers have been active in the field of organic polymers since the discovery of EL in a device made of poly (p-phenylenevinylene) (PPV) by JH Burroughes et al. At the University of Cambridge in 1990 (JH Burroughes, DDC Bradley, AR Brown). , RN Marks, K. Mackay, RH Friend, PL Burn, and AB Holmes, Nature, 347, 539 (1990)).

일반적으로 PPV는 Wittig 반응 등에 의해서 합성이 가능하나, 이들 방법에 의해서 얻어진 중합체는 유기 용매에 잘 녹지 않으며, 분자량이 낮은 단점이 있다. 또한 박막형 LED 소자제작에 있어서 박막을 입히는데 어려움이 있다. 그래서 유기 용매에 잘 녹으며, 분자량도 큰 중합체를 얻는 방법으로, 수용성 전구체 (precursor)를 통해 PPV를 합성하는 방법이 널리 사용되고 있다. 수용성 전구체의 특징은 분자량의 순도를 높일 수 있고 변환되기 전에 원하는 형태로 제조할 수 있으며, 특히 다양한 두께를 갖고 밀도가 높은 필름을 스핀코팅 등의 방법으로 얻을 수 있다. 전구체를 이용한 PPV의 PL 최대 피크는 540nm로서 녹색의 빛을 발하며, 구동전압은 약 14V이다.In general, PPV can be synthesized by the Wittig reaction or the like, but the polymers obtained by these methods are poorly soluble in organic solvents, and have a low molecular weight. In addition, there is a difficulty in coating a thin film in manufacturing a thin film type LED device. Therefore, a method of synthesizing PPV through a water-soluble precursor (precursor) is widely used as a method for obtaining a polymer that is well dissolved in an organic solvent and has a high molecular weight. The characteristic of the water-soluble precursor can increase the purity of the molecular weight and can be prepared in the desired form before conversion, and in particular, a film having various thicknesses and high density can be obtained by spin coating or the like. The maximum peak PL of the PPV using the precursor is 540 nm, which emits green light, and the driving voltage is about 14V.

이외에도 용해도를 증가시키기 위하여 PPV의 페닐기에 알킬기나 알콕시기 등을 치환하기도 한다. 최근 높은 용해도로 많은 관심을 끌고 있는 물질로는 poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene)(MEH-PPV)이다(F. Wudl, S. Hoger, C. Zhang, K. Pakbaz, and A. J. Heeger, Polym. Preprint, 34, 197 (1993)). 이 MEH-PPV는 염화메틸렌, 테트로히드로퓨란, 사이클로헥사논 등의 일반적인 유기 용매에 잘 녹아 박막 형태로의 가공이 가능하다. MEH-PPV의 UV 최대 흡수 파장(λmax)은 510nm인데, 이는 페닐기에 치환된 전자 주게 dialkoxy기에 의해 PPV (λmax=420nm)보다 장파장쪽으로 이동한다. PL 스펙트럼도 PPV (540nm)에 비해 장파장으로 이동하며 약 590nm에서 최대 피크를 나타낸다. MEH-PPV의 구동전압은 약 4V이다.In addition, an alkyl group or an alkoxy group may be substituted for the phenyl group of PPV in order to increase the solubility. In recent years, the high solubility has attracted much attention as poly (2-methoxy-5- (2-ethylhexyloxy) -1,4-phenylenevinylene) (MEH-PPV) (F. Wudl, S. Hoger, C. Zhang , K. Pakbaz, and AJ Heeger, Polym. Preprint, 34, 197 (1993)). This MEH-PPV is well dissolved in common organic solvents such as methylene chloride, tetrahydrofuran and cyclohexanone and can be processed into a thin film form. The UV maximum absorption wavelength (λ max ) of MEH-PPV is 510 nm, which is shifted toward longer wavelength than PPV (λ max = 420 nm) by the electron donor dialkoxy group substituted with a phenyl group. The PL spectrum also shifts to longer wavelengths compared to PPV (540 nm) and shows a maximum peak at about 590 nm. The drive voltage of MEH-PPV is about 4V.

PPV와 MEH-PPV의 발광 효율은 각각 0.1% 와 1%로 낮은 값을 가진다. 그래서 높은 발광 효율을 가지는 고분자를 얻기 위해서 많은 노력이 이루어졌다. 1993년 A. B. Holmes 팀에서 높은 발광 효율을 가지는 고분자를 발표하였다( N. C. Greenham, S. C. Moratil, D. D. C. Bradley, R. H. Friend, and A. B. Holmes, Nature, 365, 628 (1993)). 이는 전자 친화력이 큰 치환체(CN)를 도입 즉, 낮은 energy state를 갖는 고분자를 이용하여 발광 효율을 높였다. CN과 같은 전자 끌게 기를 치환함에 따라 energy state의 전하를 유도하고, 고분자-고분자 간의 계면에서 정공과 전자가 축적된다. 이러한 현상은 발광층 내에서 두 운반자(전자와 정공)의 만남을 용이하게 할 수 있고 효율의 상승이 일어난다. 이 때의 발광 효율은 4%로서 지금까지 보고된 발광 고분자중 가장 큰 값이다. 폴리(시아노테레프탈리덴)의 EL 최대 피크는 710nm로서 빨간색의 빛을 발한다.The luminous efficiencies of PPV and MEH-PPV have low values of 0.1% and 1%, respectively. Therefore, much effort has been made to obtain a polymer having a high luminous efficiency. In 1993, the A. B. Holmes team published polymers with high luminous efficiency (N. C. Greenham, S. C. Moratil, D. D. C. Bradley, R. H. Friend, and A. B. Holmes, Nature, 365, 628 (1993)). This increased luminous efficiency by introducing a substituent (CN) having a large electron affinity, that is, using a polymer having a low energy state. The substitution of electron drag groups such as CN induces charge in the energy state, and holes and electrons accumulate at the polymer-polymer interface. This phenomenon can facilitate the meeting of two carriers (electrons and holes) in the light emitting layer, and an increase in efficiency occurs. The luminous efficiency at this time is 4%, which is the largest value among the light emitting polymers reported so far. The EL maximum peak of poly (cyanoterephthalidene) is 710 nm, emitting red light.

위에서 설명한 PPV와 PPV 유도체 고분자는 청색의 빛을 내기가 어렵다. 그래서, PPV 사슬의 공액 길이를 균일하게 조절한 CNMBC (Conjugated-Nonconjugated Multiblock Copolymer) 고분자로부터 청색 발광이 가능한데, 이는 F. E. Karasz에 의해서 처음으로 보고되었다(Z. Yang, and F. E. Karasz, Macromolecules, 26, 1188 (1993)). CNMBC는 낮은 분자량의 유기 공액 분자가 청색발광 영역에서 EL 최대치를 낼 수 있고, 작은 분자들은 고분자 기질에 블렌드할 수 있다는 지식에 바탕을 두고 있다. 균일한 공액 길이를 갖는 단단한 블록은 발광색을 결정하는 전자적 전이의 밴드 갭을 조정하는 역할을 하고, 유연한 블록은 고분자의 용해도와 박막 질을 결정하는 데 기여한다. 이 CNMBC 고분자로 된 소자는 청색 발광을 하지만, 구동전압이 높은 것이 단점이다. 한 예로 CNMBC이며, PPV의 측사슬에 실리콘을 포함하는 PDSiPV (poly(1,3-propane- dioxy-1,4-phenylene-1,2-ethenylene( 2,5-bisThe PPV and PPV derivative polymers described above are difficult to emit blue light. Thus, blue light emission from a conjugated nonconjugated multiblock copolymer (CNMBC) polymer with uniformly controlled conjugated lengths of PPV chains is possible, first reported by FE Karasz (Z. Yang, and FE Karasz, Macromolecules, 26, 1188). (1993)). CNMBC is based on the knowledge that low molecular weight organic conjugated molecules can produce EL maximums in the blue emission region and small molecules can blend into the polymer matrix. Rigid blocks with uniform conjugate length serve to adjust the band gap of the electronic transition that determines the emission color, while flexible blocks contribute to the determination of the solubility and thin film quality of the polymer. The device made of CNMBC polymer emits blue light, but has a disadvantage of high driving voltage. One example is CNMBC, which contains silicon in the side chain of PPV (poly (1,3-propane-dioxy-1,4-phenylene-1,2-ethenylene (2,5-bis)

(trimethylsilyl)-1,4-phenylene)-1,2-ethenylene-1,4-phenylene)의 광발광 최대 피크는 470nm로 청록색의 빛을 나타내며, 구동전압은 약 23V로 기존의 다른 PPV보다 높다(T. Zyung, D. H. Hwang, I. N. Kang, H. K. Shim, W. Y. Hwang, and J. J. Kim, Chem, Mater.,7, 1499, (1995)).The maximum peak of photoluminescence of (trimethylsilyl) -1,4-phenylene) -1,2-ethenylene-1,4-phenylene) is 470 nm, which shows cyan light, and the driving voltage is about 23 V, which is higher than other conventional PPV ( T. Zyung, DH Hwang, IN Kang, HK Shim, WY Hwang, and JJ Kim, Chem, Mater., 7, 1499, (1995)).

발광 효율을 높이는 방법으로 앞에서 설명했던 고분자 물질에 전자 끌게 기를 치환하는 방법과 달리, 두가지 고분자 물질을 블렌드하여 높은 발광 효율을 얻으려고 많은 연구가 이루졌다(I. N. Kang, D. H. Hwang, H. K. Shim, T. Zyung, and J. J. Kim, Macromolecules, 29, 165 (1996)). 완전 π-공액된 고분자인 MEH-PPV와 CNMBC인 PDSiPV를 블렌드한 결과, MEH-PPV 단일 물질을 사용했을 때 보다, 약 500배의 높은 발광 효율의 나타내었다.Unlike the method of substituting an electron withdrawing group in the polymer material described above as a method of increasing the luminous efficiency, many studies have been made to blend the two polymer materials to obtain a high luminous efficiency (IN Kang, DH Hwang, HK Shim, T. Zyung, and JJ Kim, Macromolecules, 29, 165 (1996)). The blend of the fully π-conjugated polymer MEH-PPV and CNMBC PDSiPV showed about 500 times higher luminous efficiency than when MEH-PPV single material was used.

위와 같이, 기존의 발표된 전기발광 고분자들은 청색발광을 하면서 낮은 구동전압을 가지기가 어렵다.As described above, the existing published electroluminescent polymers are difficult to have low driving voltage while emitting blue light.

본 발명자들은 낮은 구동전압에서 청색발광을 얻고자, 주사슬에 실리콘을, 측사슬에 시아노 그룹을 도입한 전기 발광 고분자 물질을 개발하였다.The present inventors have developed an electroluminescent polymer material in which silicon is introduced into the main chain and cyano groups are introduced into the side chain to obtain blue light emission at a low driving voltage.

따라서, 본 발명의 목적은 용해도가 우수하고, 실리콘에 의한 공액길이의 제한으로 청색 발광을 할 뿐만 아니라, 시아노 그룹에 의해 낮은 구동 전압도 가지는 전기발광 고분자 화합물 및 이의 제조방법을 제공하는 것이다.Accordingly, it is an object of the present invention to provide an electroluminescent polymer compound having excellent solubility, not only blue light emission due to limitation of conjugated length by silicon, but also having a low driving voltage by cyano group, and a method for producing the same.

상기의 발명의 목적은 하기 화학식 (1)의 디-(p-시아노메틸페닐)알킬/아릴실란 및 이의 중합체에 의해 달성된다.The object of the above invention is achieved by di- (p-cyanomethylphenyl) alkyl / arylsilane of formula (1) and polymers thereof.

(Ⅰ) (Ⅰ)

상기 식에서,Where

R 및 R'는 알킬 또는 아릴 그룹이다.R and R 'are alkyl or aryl groups.

유기 실리콘 단량체는 가공성을 향상시키고 π-공액 길이를 제한하여 청색발광 다이오드를 예측하는 방향족 또는 지방족 그룹을 포함한다. 바람직한 R 및 R' 기는 메틸, 헥실 또는 알킬기, 또는 페닐기이다.Organosilicon monomers contain aromatic or aliphatic groups that enhance processability and limit the π-conjugated length to predict blue light emitting diodes. Preferred R and R 'groups are methyl, hexyl or alkyl groups, or phenyl groups.

상기 일반식 (1)의 제조방법은 디-(p-브로모메틸페닐)알킬/아릴실란을 시안화나트륨과 반응시켜 얻는다.The production method of the general formula (1) is obtained by reacting di- (p-bromomethylphenyl) alkyl / arylsilane with sodium cyanide.

일반식 (1)의 단량체를 사용하여 중합을 하는 경우에는 예를 들어 본 발명의 단량체를 테레프탈알데히드, 플로렌알데히드, 티오펜알데히드, 카르바졸알데히드 또는 피리딘알데히드, 또는 그 유도체와 중합반응시켜 공중합체를 제조한다.When the polymerization is carried out using the monomer of the general formula (1), for example, the monomer of the present invention is polymerized with terephthalaldehyde, florenealdehyde, thiophenaldehyde, carbazolealdehyde or pyridinealdehyde, or a derivative thereof to copolymerize the copolymer. To prepare.

전체적인 화학반응식은 하기 반응식 1 및 2에 나타내었다. 반응식 1은 단량체의 합성과정을 반응식 2는 중합체의 합성과정을 나타낸 것이다.The overall chemical scheme is shown in Schemes 1 and 2 below. Scheme 1 shows the synthesis of monomers, and Scheme 2 shows the synthesis of polymers.

화학반응식 2에서는 일반식(I)의 단량체와 공중합되는 단량체로서 테레프탈알데히드를 사용한 것을 예로 나타내었으나, 이 외에도 플로렌알데히드, 티오펜알데히드, 카르바졸알데히드 또는 피리딘알데히드, 또는 그 유도체와 중합반응시켜 공중합체를 제조할 수 있다.In Chemical Scheme 2, terephthalaldehyde was used as a monomer copolymerized with the monomer of general formula (I), but in addition, it was polymerized with florenealdehyde, thiophenaldehyde, carbazolealdehyde or pyridinealdehyde, or derivatives thereof to form The coalescence can be prepared.

〔화학반응식 1〕[Chemical Reaction Formula 1]

상기 식에서, Where

R 및 R' 는 알킬 또는 아릴 그룹이다.R and R 'are alkyl or aryl groups.

(*위의 화합물 중에서 디-(p-브로모메틸페닐)디알킬/아릴실란 화합물과 디-(p-시아노메틸페닐)알킬실란의 재료는 특허출원(출원번호: 97-464) 중임.)(* Among the above compounds, the materials of the di- (p-bromomethylphenyl) dialkyl / arylsilane compound and the di- (p-cyanomethylphenyl) alkylsilane are patent applications (application number: 97-464).)

〔화학반응식 2〕[Chemical Reaction Formula 2]

상기 식에서,Where

R 및 R' 는 알킬 또는 아릴 그룹이다.R and R 'are alkyl or aryl groups.

다음의 실시예에 본 발명을 좀 더 상세하게 설명하였다.The present invention is explained in more detail in the following examples.

실시예Example

시약reagent

테레프탈알데히드, 카바졸알데히드, 티오펜디알데히드, 테트라부틸암모늄하이드록사이드는 알드리치사의 제품을 정제없이 사용하였고, 테트라하이드로퓨란, t-부틸알코올은 기존에 알려진 방법(D. D. Perrin, and Armarego, Purification of Laboratory Chemical, 3rd Ed., Pergamon Press (1988))에 의해 정제하여 사용하였다.Terephthalaldehyde, carbazolealdehyde, thiophendialdehyde, and tetrabutylammonium hydroxide were used without purification of Aldrich's products, and tetrahydrofuran and t-butyl alcohol were previously known methods (DD Perrin, and Armarego, Purification of Laboratory). Purified by Chemical, 3rd Ed., Pergamon Press (1988)).

일반적인 방법Common way

모든 신규의 화합물들은1H-NMR과 IR로 구조를 확인하였다.1H-NMR 스펙트럼은 Bruker AM-200, 300 분광기를 사용하여 기록하였고, 모든 화학적 이동도는 내부 표준물질 테트라메틸 실란에 대해 ppm 단위로 기록되었다. 별다른 언급이 없는 한, 클로로포름을 NMR용매로 사용하였다.All new compounds were identified by 1 H-NMR and IR. 1 H-NMR spectra were recorded using a Bruker AM-200, 300 spectrometer, and all chemical mobility was reported in ppm relative to the internal standard tetramethyl silane. Unless otherwise stated, chloroform was used as the NMR solvent.

IR 스펙트럼은 Perkin-Elmer Spectrometer를 사용하여 KBr 펠렛으로 측정하였다.IR spectra were measured on KBr pellets using a Perkin-Elmer Spectrometer.

UV-가시광선 흡수스펙트럼은 클로로포름 용매를 사용하여 Perkin-Elmer Spectrometer를 사용하여 측정하였다.UV-visible spectra were measured using a Perkin-Elmer Spectrometer using a chloroform solvent.

951TGA 및 910S DSC 모듈이 부착된 Dupont 990 열분석기를 사용하여 열중량 분석 및 시차주사열량을 각각 측정하였다.Thermogravimetric analysis and differential scanning calorimetry were measured using a Dupont 990 thermal analyzer equipped with 951 TGA and 910S DSC modules, respectively.

단량체 합성Monomer Synthesis

실시예 1 : 디-(p-시아노메틸페닐)헥실메틸실란Example 1 di- (p-cyanomethylphenyl) hexylmethylsilane

100㎖ 용량의 둥근바닥 플라스크에 2g의 디-(p-브로모메틸페닐)헥실메틸실란을 넣고 0.63g의 NaCN을 10㎖의 DMSO에 녹여 플라스크에 넣고 이 혼합물을 24시간동안 환류시켰다. 반응이 끝난후, 물을 붓고 디에틸에테르로 유기물을 추출하였다. 물로 세척한 다음 무수황산마그네슘으로 건조시킨 뒤 디에틸에테르를 제거하였다. 용리제로 헥산/에틸아세테이트(5/1)를 사용하여 칼럼크로마토그래피를 한 다음, 다시 테트라하이드로퓨란으로 다시 칼럼크로마토그래피로 갈색의 생성물을 얻었다. 생성물은 12g이었고 수율은 75%였다.In a 100 ml round bottom flask, 2 g of di- (p-bromomethylphenyl) hexylmethylsilane was added, 0.63 g of NaCN was dissolved in 10 ml of DMSO, and the mixture was refluxed for 24 hours. After the reaction was completed, water was poured and the organics were extracted with diethyl ether. After washing with water and drying over anhydrous magnesium sulfate, diethyl ether was removed. Column chromatography was performed using hexane / ethyl acetate (5/1) as the eluent, and then again by column chromatography using tetrahydrofuran to obtain a brown product. The product was 12 g and the yield was 75%.

IR (neat, ㎝-1): 1210, 964, 885 (Si-지방족); 1105, 750, (Si-Ph); 2250 (Ph-CH2CN)IR (neat, cm −1 ): 1210, 964, 885 (Si-aliphatic); 1105, 750, (Si-Ph); 2250 (Ph-CH 2 CN)

1H-NMR (CDCl3, ppm): 0.8-1.4 (m 16H, Si-지방족); 3.7 (s, 4H, 아릴 CH2); 7.4-7.5 (q, 8H, 아릴 CH) 1 H-NMR (CDCl 3 , ppm): 0.8-1.4 (m 16H, Si-aliphatic); 3.7 (s, 4H, aryl CH 2 ); 7.4-7.5 (q, 8H, aryl CH)

실시예 2 : 디-(p-시아노메틸페닐)디페닐실란Example 2 Di- (p-cyanomethylphenyl) diphenylsilane

100㎖ 용량의 둥근바닥 플라스크에 2g의 디-(p-브로모메틸페닐)디페닐실란을 넣고 0.46g의 NaCN을 10㎖의 DMSO에 녹여 플라스크에 넣고 이 혼합물을 24시간동안 환류시켰다. 반응이 끝난후, 물을 붓고 디에틸에테르로 유기물을 추출하였다. 물로 세척한 다음 무수황산마그네슘으로 건조시킨 뒤 디에틸에테르를 제거하였다. 수율은 75%였다.2 g of di- (p-bromomethylphenyl) diphenylsilane was added to a 100 ml round bottom flask, 0.46 g of NaCN was dissolved in 10 ml of DMSO, and the mixture was refluxed for 24 hours. After the reaction was completed, water was poured and the organics were extracted with diethyl ether. After washing with water and drying over anhydrous magnesium sulfate, diethyl ether was removed. Yield 75%.

IR (KBr 펠렛, ㎝-1): 1425, 1105, 750, (Si-Ph); 2250 (Ph-CH2CN)IR (KBr pellet, cm −1 ): 1425, 1105, 750, (Si-Ph); 2250 (Ph-CH 2 CN)

1H-NMR (CDCl3, ppm): 3.7 (s, 4H, 아릴 CH2); 7.2-7.6 (q, 18H, 아릴 CH) 1 H-NMR (CDCl 3 , ppm): 3.7 (s, 4H, aryl CH 2 ); 7.2-7.6 (q, 18H, aryl CH)

중합체 합성Polymer synthesis

실시예 3 : 헥실메틸실란/페닐렌/시아노페닐렌비닐렌 공중합체(HMCNPPV)Example 3 hexylmethylsilane / phenylene / cyanophenylenevinylene copolymer (HMCNPPV)

100㎖ 용량의 둥근바닥 플라스크에 동몰의 테레프탈알데히드 (0.42g, 0.003mol) 및 디-(p-시아노메틸페닐)헥실메틸실란 (1.13g, 0.003mol)을 넣고 테트라히드로푸란과 t-부틸알코올 4㎖에 용해시켰다(테트라히드로푸란 : t-부틸알코올=1:1). 50∼60℃로 유지시킨 다음, 0.16㏄의 테트라부틸암모니움하이드록사이드를 넣고 20분 반응시켰다. 메탄올에 침전시킨 뒤, 중합체를 여과하고 오븐에서 진공건조하였다. 수율은 25%로 갈색의 중합체 생성물을 얻었다. 중합체의 물성은 하기 표 1에 게재하였다. 중합체의 열적 성질 및 광학적 성질을 측정하여 표 2에 기재하였다.In a 100 ml round bottom flask, equimolar terephthalaldehyde (0.42 g, 0.003 mol) and di- (p-cyanomethylphenyl) hexylmethylsilane (1.13 g, 0.003 mol) were added, and tetrahydrofuran and t-butyl alcohol 4 Dissolved in mL (tetrahydrofuran: t-butyl alcohol = 1: 1). After maintaining at 50-60 degreeC, 0.16 Pa of tetrabutyl ammonium hydroxide was added, and it was made to react for 20 minutes. After precipitation in methanol, the polymer was filtered and vacuum dried in an oven. The yield was 25% to give a brown polymer product. Physical properties of the polymer are listed in Table 1 below. The thermal and optical properties of the polymers were measured and listed in Table 2.

실시예 4 : 디부틸실란/페닐렌/시아노페닐렌비닐렌 공중합체(BuCNPPV)Example 4 dibutylsilane / phenylene / cyanophenylenevinylene copolymer (BuCNPPV)

100㎖ 용량의 둥근바닥 플라스크에 동몰의 테레프탈알데히드 (0.29g, 0.002mol) 및 디-(p-시아노메틸페닐)디부틸실란 (0.8g, 0.002mol)을 넣고 테트라히드로푸란과 t-부틸알코올 4㎖에 용해시켰다(테트라히드로푸란 : t-부틸알코올=1:1). 50∼60℃로 유지시킨 다음, 0.12㏄의 테트라부틸암모니움하이드록사이드를 넣고 20분 반응시켰다. 메탄올에 침전시킨 뒤, 중합체를 여과하고 오븐에서 진공건조하였다. 수율은 23%로 갈색의 중합체 생성물을 얻었다. 중합체의 물성은 하기 표 1에 게재하였다. 중합체의 열적 성질 및 광학적 성질을 측정하여 표 2에 기재하였다.To a 100 ml round bottom flask, equimolar terephthalaldehyde (0.29 g, 0.002 mol) and di- (p-cyanomethylphenyl) dibutylsilane (0.8 g, 0.002 mol) were added, tetrahydrofuran and t-butyl alcohol 4 Dissolved in mL (tetrahydrofuran: t-butyl alcohol = 1: 1). After maintaining at 50-60 degreeC, tetrabutylammonium hydroxide of 0.12Pa was added, and it reacted for 20 minutes. After precipitation in methanol, the polymer was filtered and vacuum dried in an oven. The yield was 23% to give a brown polymer product. Physical properties of the polymer are listed in Table 1 below. The thermal and optical properties of the polymers were measured and listed in Table 2.

실시예 5 : 디페닐실란/페닐렌/시아노페닐렌비닐렌 공중합체(PhCNPPV)Example 5 diphenylsilane / phenylene / cyanophenylenevinylene copolymer (PhCNPPV)

100㎖ 용량의 둥근바닥 플라스크에 동몰의 테레프탈알데히드 (0.36g, 0.0027mol) 및 디-(p-시아노메틸페닐)디페닐실란 (1.0g, 0.0027mol)을 넣고 테트라히드로푸란과 t-부틸알코올 4㎖에 용해시켰다(테트라히드로푸란 : t-부틸알코올=1:1). 50∼60℃로 유지시킨 다음, 0.13㏄의 테트라부틸암모니움하이드록사이드를 넣고 20분 반응시켰다. 메탄올에 침전시킨 뒤, 중합체를 여과하고 오븐에서 진공건조하였다. 수율은 20%로 갈색의 중합체 생성물을 얻었다.In a 100 ml round bottom flask, equimolar terephthalaldehyde (0.36 g, 0.0027 mol) and di- (p-cyanomethylphenyl) diphenylsilane (1.0 g, 0.0027 mol) were added, followed by tetrahydrofuran and t-butyl alcohol. Dissolved in mL (tetrahydrofuran: t-butyl alcohol = 1: 1). After maintaining at 50-60 degreeC, tetrabutylammonium hydroxide of 0.13Pa was added, and it reacted for 20 minutes. After precipitation in methanol, the polymer was filtered and vacuum dried in an oven. Yield 20% to give a brown polymer product.

실시예 6 : 헥실메틸실란/카바졸/시아노페닐렌비닐렌 공중합체(HMCNPVK)Example 6 Hexylmethylsilane / carbazole / cyanophenylenevinylene copolymer (HMCNPVK)

테레프탈알데히드 대신에 카바졸알데히드를 사용하는 것을 제외하고는 실시예 3과 동일한 방법으로 헥실메틸실란/카바졸/시아노페닐렌비닐렌 공중합체를 제조하였다.A hexylmethylsilane / carbazole / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 3 except that carbazole aldehyde was used instead of terephthalaldehyde.

실시예 7 : 디페닐실란/카바졸/시아노페닐렌비닐렌 공중합체(PhCNPVK)Example 7 diphenylsilane / carbazole / cyanophenylenevinylene copolymer (PhCNPVK)

테레프탈알데히드 대신에 카바졸알데히드를 사용하는 것을 제외하고는 실시예 3과 동일한 방법으로 디페닐실란/카바졸/시아노페닐렌비닐렌 공중합체를 제조하였다.A diphenylsilane / carbazole / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 3 except that carbazolealdehyde was used instead of terephthalaldehyde.

실시예 8 : 헥실메틸실란/티오펜/시아노페닐렌비닐렌 공중합체(HMCNThV)Example 8 hexylmethylsilane / thiophene / cyanophenylenevinylene copolymer (HMCNThV)

테레프탈알데히드 대신에 티오펜알데히드를 사용하는 것을 제외하고는 실시예 3과 동일한 방법으로 헥실메틸실란/티오펜/시아노페닐렌비닐렌 공중합체를 제조하였다.A hexylmethylsilane / thiophene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 3 except that thiophenaldehyde was used instead of terephthalaldehyde.

실시예 9 : 디페닐실란/티오펜/시아노페닐렌비닐렌 공중합체(PhCNThV)Example 9 diphenylsilane / thiophene / cyanophenylenevinylene copolymer (PhCNThV)

테레프탈알데히드 대신에 티오펜알데히드를 사용하는 것을 제외하고는 실시예 3과 동일한 방법으로 디페닐실란/티오펜/시아노페닐렌비닐렌 공중합체를 제조하였다.A diphenylsilane / thiophene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 3 except that thiophenaldehyde was used instead of terephthalaldehyde.

실시예 10 : 헥실메틸실란/피리딘/시아노페닐렌비닐렌 공중합체(HMCNPyV)Example 10 hexylmethylsilane / pyridine / cyanophenylenevinylene copolymer (HMCNPyV)

테레프탈알데히드 대신에 피리딘알데히드를 사용하는 것을 제외하고는 실시예 3과 동일한 방법으로 헥실메틸실란/피리딘/시아노페닐렌비닐렌 공중합체를 제조하였다.A hexylmethylsilane / pyridine / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 3 except that pyridinealdehyde was used instead of terephthalaldehyde.

실시예 11 : 디페닐실란/피리딘/시아노페닐렌비닐렌 공중합체(PhCNPyV)Example 11 Diphenylsilane / Pyridine / Cyanophenylenevinylene Copolymer (PhCNPyV)

테레프탈알데히드 대신에 피리딘알데히드를 사용하는 것을 제외하고는 실시예 3과 동일한 방법으로 디페닐실란/피리딘/시아노페닐렌비닐렌 공중합체를 제조하였다.A diphenylsilane / pyridine / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 3 except that pyridinealdehyde was used instead of terephthalaldehyde.

실시예 12 :Example 12:

헥실메틸실란/알콕시페닐렌/시아노페닐렌비닐렌 공중합체(HMCNAKPPV)Hexylmethylsilane / alkoxyphenylene / cyanophenylenevinylene copolymer (HMCNAKPPV)

테레프탈알데히드 대신에 알콕시페닐렌알데히드를 사용하는 것을 제외하고는 실시예 3과 동일한 방법으로 디페닐실란/알콕시페닐렌/시아노페닐렌비닐렌 공중합체를 제조하였다.A diphenylsilane / alkoxyphenylene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 3 except that alkoxyphenylenealdehyde was used instead of terephthalaldehyde.

실시예 13 : 디페닐실란/알콕시페닐렌/시아노페닐렌비닐렌 공중합체(PhCNAKPPV)Example 13: diphenylsilane / alkoxyphenylene / cyanophenylenevinylene copolymer (PhCNAKPPV)

테레프탈알데히드 대신에 알콕시페닐렌알데히드를 사용하는 것을 제외하고는 실시예 3과 동일한 방법으로 디페닐실란/알콕시페닐렌/시아노페닐렌비닐렌 공중합체를 제조하였다.A diphenylsilane / alkoxyphenylene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 3 except that alkoxyphenylenealdehyde was used instead of terephthalaldehyde.

실시예 14 : 헥실메틸실란/알콕시티오펜/시아노페닐렌비닐렌 공중합체(HMCNAKThV)Example 14 Hexylmethylsilane / alkoxythiophene / cyanophenylenevinylene copolymer (HMCNAKThV)

테레프탈알데히드 대신에 알콕시티오펜알데히드를 사용하는 것을 제외하고는 실시예 3과 동일한 방법으로 디페닐실란/알콕시티오펜/시아노페닐렌비닐렌 공중합체를 제조하였다.A diphenylsilane / alkoxythiophene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 3 except that alkoxythiophenaldehyde was used instead of terephthalaldehyde.

실시예 15 : 디페닐실란/알콕시티오펜/시아노페닐렌비닐렌 공중합체(PhCNAKThV)Example 15 Diphenylsilane / Alkoxythiophene / Cyanophenylenevinylene Copolymer (PhCNAKThV)

테레프탈알데히드 대신에 알콕시티오펜알데히드를 사용하는 것을 제외하고는 실시예 3과 동일한 방법으로 디페닐실란/알콕시티오펜/시아노페닐렌비닐렌 공중합체를 제조하였다.A diphenylsilane / alkoxythiophene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 3 except that alkoxythiophenaldehyde was used instead of terephthalaldehyde.

실시예 16 : 헥실메틸실란/플로렌/시아노페닐렌비닐렌 공중합체(HMCNPAF)Example 16 Hexylmethylsilane / Florene / Cyanophenylenevinylene Copolymer (HMCNPAF)

테레프탈알데히드 대신에 플로렌알데히드를 사용하는 것을 제외하고는 실시예 3과 동일한 방법으로 디페닐실란/플로렌/시아노페닐렌비닐렌 공중합체를 제조하였다.A diphenylsilane / florene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 3 except that florenealdehyde was used instead of terephthalaldehyde.

실시예 17 : 디페닐실란/플로렌/시아노페닐렌비닐렌 공중합체(PhCNPAF)Example 17 Diphenylsilane / Florene / Cyanophenylenevinylene Copolymer (PhCNPAF)

테레프탈알데히드 대신에 플로렌알데히드를 사용하는 것을 제외하고는 실시예 3과 동일한 방법으로 디페닐실란/플로렌/시아노페닐렌비닐렌 공중합체를 제조하였다.A diphenylsilane / florene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 3 except that florenealdehyde was used instead of terephthalaldehyde.

실시예 18 : 헥실메틸실란/알콕시카바졸/시아노페닐렌비닐렌 공중합체(SiHMCNAkPVK)Example 18 Hexylmethylsilane / alkoxycarbazole / cyanophenylenevinylene copolymer (SiHMCNAkPVK)

테레프탈알데히드 대신에 알콕시카바졸알데히드를 사용하는 것을 제외하고는 실시예 3과 동일한 방법으로 헥실메틸실란/알콕시카바졸/시아노페닐렌비닐렌 공중합체를 제조하였다.A hexylmethylsilane / alkoxycarbazole / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 3 except that alkoxycarbazole aldehyde was used instead of terephthalaldehyde.

실시예 19 : 디부틸실란/알콕시카바졸/시아노페닐렌비닐렌 공중합체(SiBuCNAkPVK)Example 19 dibutylsilane / alkoxycarbazole / cyanophenylenevinylene copolymer (SiBuCNAkPVK)

테레프탈알데히드 대신에 알콕시카바졸알데히드를 사용하는 것을 제외하고는 실시예 4와 동일한 방법으로 디부틸실란/알콕시카바졸/시아노페닐렌비닐렌 공중합체를 제조하였다.A dibutylsilane / alkoxycarbazole / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 4 except that alkoxycarbazole aldehyde was used instead of terephthalaldehyde.

실시예 20 : 디페닐실란/알콕시카바졸/시아노페닐렌비닐렌 공중합체(SiPhCNAkPVK)Example 20 diphenylsilane / alkoxycarbazole / cyanophenylenevinylene copolymer (SiPhCNAkPVK)

테레프탈알데히드 대신에 알콕시카바졸알데히드를 사용하는 것을 제외하고는 실시예 5와 동일한 방법으로 디페닐실란/알콕시카바졸/시아노페닐렌비닐렌 공중합체를 제조하였다.A diphenylsilane / alkoxycarbazole / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 5 except that alkoxycarbazole aldehyde was used instead of terephthalaldehyde.

실시예 21 : 헥실메틸실란/아릴카바졸/시아노페닐렌비닐렌 공중합체(SiHMCNArPVK)Example 21 hexylmethylsilane / arylcarbazole / cyanophenylenevinylene copolymer (SiHMCNArPVK)

테레프탈알데히드 대신에 아릴카바졸알데히드를 사용하는 것을 제외하고는 실시예 3과 동일한 방법으로 헥실메틸실란/아릴카바졸/시아노페닐렌비닐렌 공중합체를 제조하였다.A hexylmethylsilane / arylcarbazole / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 3 except that arylcarbazole aldehyde was used instead of terephthalaldehyde.

실시예 22 : 디부틸실란/아릴카바졸/시아노페닐렌비닐렌 공중합체(SiBuCNArPVK)Example 22 Dibutylsilane / Arylcarbazole / Cyanophenylenevinylene Copolymer (SiBuCNArPVK)

테레프탈알데히드 대신에 아릴카바졸알데히드를 사용하는 것을 제외하고는 실시예 4와 동일한 방법으로 디부틸실란/아릴카바졸/시아노페닐렌비닐렌 공중합체를 제조하였다.A dibutylsilane / arylcarbazole / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 4 except for using arylcarbazole aldehyde instead of terephthalaldehyde.

실시예 23 : 디페닐실란/아릴카바졸/시아노페닐렌비닐렌 공중합체(SiPhCNArPVK)Example 23 diphenylsilane / arylcarbazole / cyanophenylenevinylene copolymer (SiPhCNArPVK)

테레프탈알데히드 대신에 아릴카바졸알데히드를 사용하는 것을 제외하고는 실시예 5와 동일한 방법으로 디페닐실란/아릴카바졸/시아노페닐렌비닐렌 공중합체를 제조하였다.A diphenylsilane / arylcarbazole / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 5 except that arylcarbazole aldehyde was used instead of terephthalaldehyde.

실시예 24 : 헥실메틸실란/티오펜/시아노페닐렌비닐렌 공중합체(SiHMCNThV)Example 24 hexylmethylsilane / thiophene / cyanophenylenevinylene copolymer (SiHMCNThV)

테레프탈알데히드 대신에 티오펜알데히드를 사용하는 것을 제외하고는 실시예 3과 동일한 방법으로 헥실메틸실란/티오펜/시아노페닐렌비닐렌 공중합체를 제조하였다.A hexylmethylsilane / thiophene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 3 except that thiophenaldehyde was used instead of terephthalaldehyde.

실시예 25 : 디부틸메틸실란/티오펜/시아노페닐렌비닐렌 공중합체(SiBuCNThV)Example 25 dibutylmethylsilane / thiophene / cyanophenylenevinylene copolymer (SiBuCNThV)

테레프탈알데히드 대신에 티오펜알데히드를 사용하는 것을 제외하고는 실시예 4와 동일한 방법으로 디부틸실란/티오펜/시아노페닐렌비닐렌 공중합체를 제조하였다.A dibutylsilane / thiophene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 4 except that thiophenaldehyde was used instead of terephthalaldehyde.

실시예 26 : 디페닐실란/티오펜/시아노페닐렌비닐렌 공중합체(SiPhCNThV)Example 26 diphenylsilane / thiophene / cyanophenylenevinylene copolymer (SiPhCNThV)

테레프탈알데히드 대신에 티오펜알데히드를 사용하는 것을 제외하고는 실시예 5와 동일한 방법으로 디페닐실란/티오펜/시아노페닐렌비닐렌 공중합체를 제조하였다.A diphenylsilane / thiophene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 5 except that thiophenaldehyde was used instead of terephthalaldehyde.

실시예 27 : 헥실메틸실란/알킬티오펜/시아노페닐렌비닐렌 공중합체(SiHMCNAThV)Example 27 Hexylmethylsilane / alkylthiophene / cyanophenylenevinylene copolymer (SiHMCNAThV)

테레프탈알데히드 대신에 알킬티오펜알데히드를 사용하는 것을 제외하고는 실시예 3과 동일한 방법으로 헥실메틸실란/알킬티오펜/시아노페닐렌비닐렌 공중합체를 제조하였다.A hexylmethylsilane / alkylthiophene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 3 except that alkylthiophenaldehyde was used instead of terephthalaldehyde.

실시예 28 : 디부틸실란/알킬티오펜/시아노페닐렌비닐렌 공중합체(SiBuCNAThV)Example 28 dibutylsilane / alkylthiophene / cyanophenylenevinylene copolymer (SiBuCNAThV)

테레프탈알데히드 대신에 알킬티오펜알데히드를 사용하는 것을 제외하고는 실시예 4와 동일한 방법으로 디부틸실란/알킬티오펜/시아노페닐렌비닐렌 공중합체를 제조하였다.A dibutylsilane / alkylthiophene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 4 except that alkylthiophenaldehyde was used instead of terephthalaldehyde.

실시예 29 : 디페닐실란/알킬티오펜/시아노페닐렌비닐렌 공중합체(SiPhCNAThV)Example 29 Diphenylsilane / Alkylthiophene / Cyanophenylenevinylene Copolymer (SiPhCNAThV)

테레프탈알데히드 대신에 알킬티오펜알데히드를 사용하는 것을 제외하고는 실시예 5와 동일한 방법으로 디페닐실란/알킬티오펜/시아노페닐렌비닐렌 공중합체를 제조하였다.A diphenylsilane / alkylthiophene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 5 except for using alkylthiophenaldehyde instead of terephthalaldehyde.

실시예 30 : 헥실메틸실란/알콕시티오펜/시아노페닐렌비닐렌 공중합체(SiHMCNAkThV)Example 30 hexylmethylsilane / alkoxythiophene / cyanophenylenevinylene copolymer (SiHMCNAkThV)

테레프탈알데히드 대신에 알콕시티오펜알데히드를 사용하는 것을 제외하고는 실시예 3과 동일한 방법으로 헥실메틸실란/알콕시티오펜/시아노페닐렌비닐렌 공중합체를 제조하였다.A hexylmethylsilane / alkoxythiophene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 3 except that alkoxythiophenaldehyde was used instead of terephthalaldehyde.

실시예 31 : 디부틸실란/알콕시티오펜/시아노페닐렌비닐렌 공중합체(SiBuCNAkThV)Example 31 dibutylsilane / alkoxythiophene / cyanophenylenevinylene copolymer (SiBuCNAkThV)

테레프탈알데히드 대신에 알콕시티오펜알데히드를 사용하는 것을 제외하고는 실시예 4와 동일한 방법으로 디부틸실란/알콕시티오펜/시아노페닐렌비닐렌 공중합체를 제조하였다.A dibutylsilane / alkoxythiophene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 4 except that alkoxythiophenaldehyde was used instead of terephthalaldehyde.

실시예 32 : 디페닐실란/알콕시티오펜/시아노페닐렌비닐렌 공중합체(SiPhCNAkThV)Example 32 diphenylsilane / alkoxythiophene / cyanophenylenevinylene copolymer (SiPhCNAkThV)

테레프탈알데히드 대신에 알콕시티오펜알데히드를 사용하는 것을 제외하고는 실시예 5와 동일한 방법으로 디페닐실란/알콕시티오펜/시아노페닐렌비닐렌 공중합체를 제조하였다.A diphenylsilane / alkoxythiophene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 5 except that alkoxythiophenaldehyde was used instead of terephthalaldehyde.

실시예 33 : 헥실메틸실란/아릴티오펜/시아노페닐렌비닐렌 공중합체(SiHMCNArThV)Example 33 hexylmethylsilane / arylthiophene / cyanophenylenevinylene copolymer (SiHMCNArThV)

테레프탈알데히드 대신에 아릴티오펜알데히드를 사용하는 것을 제외하고는 실시예 3과 동일한 방법으로 헥실메틸실란/아릴티오펜/시아노페닐렌비닐렌 공중합체를 제조하였다.A hexylmethylsilane / arylthiophene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 3 except that arylthiophenaldehyde was used instead of terephthalaldehyde.

실시예 34 : 디부틸실란/아릴티오펜/시아노페닐렌비닐렌 공중합체(SiBuCNAkThV)Example 34 dibutylsilane / arylthiophene / cyanophenylenevinylene copolymer (SiBuCNAkThV)

테레프탈알데히드 대신에 아릴티오펜알데히드를 사용하는 것을 제외하고는 실시예 4와 동일한 방법으로 디부틸실란/아릴티오펜/시아노페닐렌비닐렌 공중합체를 제조하였다.A dibutylsilane / arylthiophene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 4 except for using arylthiophenaldehyde instead of terephthalaldehyde.

실시예 35 : 디페닐실란/아릴티오펜/시아노페닐렌비닐렌 공중합체(SiPhCNAkThV)Example 35 diphenylsilane / arylthiophene / cyanophenylenevinylene copolymer (SiPhCNAkThV)

테레프탈알데히드 대신에 아릴티오펜알데히드를 사용하는 것을 제외하고는 실시예 5와 동일한 방법으로 디페닐실란/아릴티오펜/시아노페닐렌비닐렌 공중합체를 제조하였다.A diphenylsilane / arylthiophene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 5 except for using arylthiophenaldehyde instead of terephthalaldehyde.

실시예 36 : 헥실메틸실란/피리딘/시아노페닐렌비닐렌 공중합체(SiHMCNPyV)Example 36 hexylmethylsilane / pyridine / cyanophenylenevinylene copolymer (SiHMCNPyV)

테레프탈알데히드 대신에 피리딘알데히드를 사용하는 것을 제외하고는 실시예 3과 동일한 방법으로 헥실메틸실란/피리딘/시아노페닐렌비닐렌 공중합체를 제조하였다.A hexylmethylsilane / pyridine / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 3 except that pyridinealdehyde was used instead of terephthalaldehyde.

실시예 37 : 디부틸실란/피리딘/시아노페닐렌비닐렌 공중합체(SiBuCNPyV)Example 37 dibutylsilane / pyridine / cyanophenylenevinylene copolymer (SiBuCNPyV)

테레프탈알데히드 대신에 피리딘알데히드를 사용하는 것을 제외하고는 실시예 4와 동일한 방법으로 디부틸실란/피리딘/시아노페닐렌비닐렌 공중합체를 제조하였다.A dibutylsilane / pyridine / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 4 except that pyridinealdehyde was used instead of terephthalaldehyde.

실시예 38 : 디페닐실란/피리딘/시아노페닐렌비닐렌 공중합체(SiPhCNPyV)Example 38 Diphenylsilane / Pyridine / Cyanophenylenevinylene Copolymer (SiPhCNPyV)

테레프탈알데히드 대신에 피리딘알데히드를 사용하는 것을 제외하고는 실시예 5와 동일한 방법으로 디페닐실란/피리딘/시아노페닐렌비닐렌 공중합체를 제조하였다.A diphenylsilane / pyridine / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 5 except that pyridinealdehyde was used instead of terephthalaldehyde.

실시예 39 : 헥실메틸실란/플로렌/시아노페닐렌비닐렌 공중합체(SiHMCNPAF)Example 39 hexylmethylsilane / florene / cyanophenylenevinylene copolymer (SiHMCNPAF)

테레프탈알데히드 대신에 플로렌알데히드를 사용하는 것을 제외하고는 실시예 3과 동일한 방법으로 헥실메틸실란/플로렌/시아노페닐렌비닐렌 공중합체를 제조하였다.A hexylmethylsilane / florene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 3 except that florenealdehyde was used instead of terephthalaldehyde.

실시예 40 : 디부틸실란/플로렌/시아노페닐렌비닐렌 공중합체(SiBuCNPAF)Example 40 Dibutylsilane / Florene / Cyanophenylenevinylene Copolymer (SiBuCNPAF)

테레프탈알데히드 대신에 플로렌알데히드를 사용하는 것을 제외하고는 실시예 4와 동일한 방법으로 디부틸실란/플로렌/시아노페닐렌비닐렌 공중합체를 제조하였다.A dibutylsilane / florene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 4 except that florenealdehyde was used instead of terephthalaldehyde.

실시예 41 : 디페닐실란/플로렌/시아노페닐렌비닐렌 공중합체(SiPhCNPAF)Example 41 Diphenylsilane / Florene / Cyanophenylenevinylene Copolymer (SiPhCNPAF)

테레프탈알데히드 대신에 플로렌알데히드를 사용하는 것을 제외하고는 실시예 5와 동일한 방법으로 디페닐실란/플로렌/시아노페닐렌비닐렌 공중합체를 제조하였다.A diphenylsilane / florene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 5 except that florenealdehyde was used instead of terephthalaldehyde.

실시예 42 : 헥실메틸실란/알킬플로렌/시아노페닐렌비닐렌 공중합체(SiHMCNAPAF)Example 42 Hexylmethylsilane / Alkylfluorene / Cyanophenylenevinylene Copolymer (SiHMCNAPAF)

테레프탈알데히드 대신에 알킬플로렌알데히드를 사용하는 것을 제외하고는 실시예 3과 동일한 방법으로 헥실메틸실란/알킬플로렌/시아노페닐렌비닐렌 공중합체를 제조하였다.A hexylmethylsilane / alkylfluorene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 3 except for using alkylfluorene aldehyde instead of terephthalaldehyde.

실시예 43 : 디부틸실란/알킬플로렌/시아노페닐렌비닐렌 공중합체(SiBuCNAPAF)Example 43 Dibutylsilane / Alkylfluorene / Cyanophenylenevinylene Copolymer (SiBuCNAPAF)

테레프탈알데히드 대신에 알킬플로렌알데히드를 사용하는 것을 제외하고는 실시예 4와 동일한 방법으로 디부틸실란/알킬플로렌/시아노페닐렌비닐렌 공중합체를 제조하였다.A dibutylsilane / alkylfluorene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 4 except for using alkylfluorene aldehyde instead of terephthalaldehyde.

실시예 44 : 디페닐실란/알킬플로렌/시아노페닐렌비닐렌 공중합체(SiPhCNAPAF)Example 44 Diphenylsilane / Alkylfluorene / Cyanophenylenevinylene Copolymer (SiPhCNAPAF)

테레프탈알데히드 대신에 알킬플로렌알데히드를 사용하는 것을 제외하고는 실시예 5와 동일한 방법으로 디페닐실란/알킬플로렌/시아노페닐렌비닐렌 공중합체를 제조하였다.A diphenylsilane / alkylfluorene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 5 except that alkylfluorene aldehyde was used instead of terephthalaldehyde.

실시예 45 : 헥실메틸실란/알콕시플로렌/시아노페닐렌비닐렌 공중합체(SiHMCNAkPAF)Example 45 Hexylmethylsilane / alkoxyfluorene / cyanophenylenevinylene copolymer (SiHMCNAkPAF)

테레프탈알데히드 대신에 알콕시플로렌알데히드를 사용하는 것을 제외하고는 실시예 3과 동일한 방법으로 헥실메틸실란/알콕시플로렌/시아노페닐렌비닐렌 공중합체를 제조하였다.A hexylmethylsilane / alkoxyfluorene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 3 except that alkoxyfluorene aldehyde was used instead of terephthalaldehyde.

실시예 46 : 디부틸실란/알콕시플로렌/시아노페닐렌비닐렌 공중합체(SiBuCNAkPAF)Example 46 dibutylsilane / alkoxyfluorene / cyanophenylenevinylene copolymer (SiBuCNAkPAF)

테레프탈알데히드 대신에 알콕시플로렌알데히드를 사용하는 것을 제외하고는 실시예 4와 동일한 방법으로 디부틸실란/알콕시플로렌/시아노페닐렌비닐렌 공중합체를 제조하였다.A dibutylsilane / alkoxyfluorene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 4 except for using alkoxyfluorene aldehyde instead of terephthalaldehyde.

실시예 47 : 디페닐실란/알콕시플로렌/시아노페닐렌비닐렌 공중합체(SiPhCNAkPAF)Example 47 diphenylsilane / alkoxyfluorene / cyanophenylenevinylene copolymer (SiPhCNAkPAF)

테레프탈알데히드 대신에 알콕시플로렌알데히드를 사용하는 것을 제외하고는 실시예 5와 동일한 방법으로 디페닐실란/알콕시플로렌/시아노페닐렌비닐렌 공중합체를 제조하였다.A diphenylsilane / alkoxyfluorene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 5 except that alkoxyfluorene aldehyde was used instead of terephthalaldehyde.

실시예 48 : 헥실메틸실란/아릴플로렌/시아노페닐렌비닐렌 공중합체(SiHMCNArPAF)Example 48 hexylmethylsilane / arylfluorene / cyanophenylenevinylene copolymer (SiHMCNArPAF)

테레프탈알데히드 대신에 아릴플로렌알데히드를 사용하는 것을 제외하고는 실시예 3과 동일한 방법으로 헥실메틸실란/아릴플로렌/시아노페닐렌비닐렌 공중합체를 제조하였다.A hexylmethylsilane / arylflorene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 3 except that arylflorenealdehyde was used instead of terephthalaldehyde.

실시예 49 : 디부틸실란/아릴플로렌/시아노페닐렌비닐렌 공중합체(SiBuCNArPAF)Example 49 dibutylsilane / arylfluorene / cyanophenylenevinylene copolymer (SiBuCNArPAF)

테레프탈알데히드 대신에 아릴플로렌알데히드를 사용하는 것을 제외하고는 실시예 4와 동일한 방법으로 디부틸실란/아릴플로렌/시아노페닐렌비닐렌 공중합체를 제조하였다.A dibutylsilane / aryl fluorene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 4 except for using aryl florene aldehyde instead of terephthalaldehyde.

실시예 50 : 디페닐실란/아릴플로렌/시아노페닐렌비닐렌 공중합체(SiPhCNArPAF)Example 50 Diphenylsilane / Arylfluorene / Cyanophenylenevinylene Copolymer (SiPhCNArPAF)

테레프탈알데히드 대신에 아릴플로렌알데히드를 사용하는 것을 제외하고는 실시예 5와동일한 방법으로 디페닐실란/아릴플로렌/시아노페닐렌비닐렌 공중합체를 제조하였다.A diphenylsilane / arylfluorene / cyanophenylenevinylene copolymer was prepared in the same manner as in Example 5 except that arylflorenealdehyde was used instead of terephthalaldehyde.

중합체의 물성Physical properties of the polymer 중합체polymer 수율(%)yield(%) 수평균분자량Number average molecular weight 중량평균분자량Weight average molecular weight 분자량분포도계수Molecular Weight Distribution Factor 실시예 3(HMCNPPV)Example 3 (HMCNPPV) 2525 39003900 54005400 1.381.38 실시예 4(BuCNPPV)Example 4 (BuCNPPV) 2323 42004200 60006000 1.421.42

* 중합체의 수평균분자량, 중량평균분자량 및 분자량분포도계수는 폴리스티렌을 표준물질로 사용하는 겔 투과 크로마토그래피로 측정하였다.* The number average molecular weight, weight average molecular weight and molecular weight distribution coefficient of the polymer were measured by gel permeation chromatography using polystyrene as a standard.

표 1은 헥실메틸실란/페닐렌/시아노페닐렌비닐렌 공중합체(HMCNPPV)와 디부틸실란/페닐렌/시아노페닐렌비닐렌 공중합체(BuCNPPV)의 물성을 나타나낸 것이다. 수율은 23∼25%, 수평균분자량과 중량평균분자량은 각각 3900∼4200, 5400∼6000범위 였으며, 분자량 분포도 계수는 1.38∼1.42였다.Table 1 shows the physical properties of hexylmethylsilane / phenylene / cyanophenylenevinylene copolymer (HMCNPPV) and dibutylsilane / phenylene / cyanophenylenevinylene copolymer (BuCNPPV). The yield was 23-25%, the number average molecular weight and the weight average molecular weight were in the range of 3900-4200 and 5400-6000, respectively, and the molecular weight distribution coefficients were 1.38-1.42.

중합체의 열적 성질 및 광학적 성질Thermal and Optical Properties of Polymers 중합체polymer *TID(℃) * T ID (℃) Tg(℃)T g (℃) UV λmax(nm)UV λ max (nm) 광발광 λmax(nm)Photoluminescence λ max (nm) 전기발광 λmax(nm)Electroluminescence λ max (nm) 구동전압Driving voltage 실시예 3(HMCNPPV)Example 3 (HMCNPPV) 206206 8282 345345 466466 480480 7V7 V

* 질량의 최초 손실이 나타날 때의 온도.* The temperature at which the initial loss of mass appears.

표 2는 디부틸실란/페닐렌/시아노페닐렌비닐렌 공중합체(BuCNPPV)의 열적 성질 및 광학적 성질을 나타낸 것이다. DSC에 의해 측정된 공중합체의 유리전이온도는 82℃였으며, TGA에 의한 열 안정성을 조사한 결과 질소대기하에서 206℃ 정도에서 초기분해를 보였다. 공중합체의 UV-Visible 흡수 스펙트럼은 345nm에서 최대흡수 파장을 보였으며, PL 발광 스펙트럼은 466 nm 사이에서 최대발광을 보였다. 그리고, EL 발광 스펙트럼은 약 480 nm에서 최대발광을 보였으며, I-V 특성에서는 약 7V에서 전류가 흐르기 시작하는 것을 알 수 있었다.Table 2 shows the thermal and optical properties of the dibutylsilane / phenylene / cyanophenylenevinylene copolymer (BuCNPPV). The glass transition temperature of the copolymer measured by DSC was 82 ° C, and thermal stability by TGA showed initial decomposition at about 206 ° C under nitrogen atmosphere. The UV-Visible absorption spectrum of the copolymer showed a maximum absorption wavelength at 345 nm, and the PL emission spectrum showed a maximum emission between 466 nm. In addition, the EL emission spectrum showed the maximum emission at about 480 nm, and the I-V characteristics showed that current began to flow at about 7V.

본 발명의 결과로부터 실리콘이 공액이중결합 골격 주사슬에 도입되면 공액이중결합이 전자이동을 편재화하여 청색발광을 얻을 수 있고, 시아노그룹이 측사슬에 치환되어 구동전압이 낮은 것을 알 수 있다.From the results of the present invention, it can be seen that when the silicon is introduced into the conjugated double bond backbone main chain, the conjugated double bond localizes electron transfer to obtain blue light emission, and the cyano group is substituted on the side chain to lower driving voltage. .

본 발명의 중합체는 실리콘을 함유하는 단량체를 먼저 합성한 후, knoevenagel 반응에 의해 합성되었다. 주사슬에 실리콘이 결합된 중합체는 보통의 유기 용매에 대해 좋은 용해도를 나타내고, 우수한 물리적 특성을 나타낸다.The polymer of the present invention was synthesized by knoevenagel reaction after first synthesizing the monomer containing silicon. Polymers in which the silicon is bonded to the main chain show good solubility in ordinary organic solvents and excellent physical properties.

본 발명의 중합체는 전기발광이 480nm로 청색발광을 하며, 구동전압은 약 7V로 기존의 중합체보다 구동전압이 낮음을 알 수 있다.The polymer of the present invention exhibits blue light emission at 480 nm, and the driving voltage is about 7 V, indicating that the driving voltage is lower than that of the conventional polymer.

Claims (4)

하기 일반식(I)의 디-(p-시아노메틸페닐)알킬/아릴실란:Di- (p-cyanomethylphenyl) alkyl / arylsilanes of the general formula (I) (Ⅰ) (Ⅰ) 상기 식에서,Where R 및 R' 는 같거나 다르고 알킬 또는 아릴 그룹이다.R and R 'are the same or different and are alkyl or aryl groups. 디알킬 디클로로 실란 또는 디아릴 디클로실란을 알칼리금속 또는 알칼리 토금속 촉매하에 p-브로모톨루엔과 반응시켜 디-p-톨일디알킬/아릴 실란을 제조하고 상기 디-p-톨일디알킬/아릴실란을 시안화나트륨과 반응시키는 것을 특징으로 하는 하기 일반식(Ⅰ)의 디-(p-시아노메틸페닐) 디알킬/아릴 실란의 제조방법.Dialkyl dichloro silane or diaryl diclosilane is reacted with p-bromotoluene under an alkali or alkaline earth metal catalyst to produce di-p-tolyldialkyl / aryl silane and the di-p-tolyldialkyl / arylsilane A method for producing a di- (p-cyanomethylphenyl) dialkyl / aryl silane of the general formula (I), which is reacted with sodium cyanide. (Ⅰ) (Ⅰ) 상기 식에서,Where R 및 R' 는 같거나 다르고 알킬 또는 아릴 그룹이다.R and R 'are the same or different and are alkyl or aryl groups. 하기 일반식(II)의 전기발광특성을 가지는 중합체:A polymer having electroluminescent properties of the general formula (II) (Ⅱ) (Ⅱ) 상기 식에서,Where R 및 R1은 알킬 또는 아릴 그룹이고,R and R 1 are alkyl or aryl groups, X는X is 이고, ego, R2및 R3는 수소, 알킬, 알콕시 또는 아릴 그룹이고,R 2 and R 3 are hydrogen, alkyl, alkoxy or aryl groups, R4는 수소, 알킬, 알콕시 또는 아릴 그룹이고,R 4 is hydrogen, alkyl, alkoxy or an aryl group, R5는 알킬, 알콕시 또는 아릴 그룹이고,R 5 is an alkyl, alkoxy or aryl group, R6및 R7은 수소, 알킬, 알콕시 또는 아릴 그룹이고,R 6 and R 7 are hydrogen, alkyl, alkoxy or aryl groups, n은 10∼1000의 정수이다.n is an integer of 10-1000. 하기 일반식 (Ⅰ)의 화합물을 테레프탈알데히드, 플로렌알데히드, 티오펜알데히드, 카르바졸알데히드 또는 피리딘알데히드, 또는 그 유도체와 반응시키는 것을 특징으로 하는 하기 일반식(Ⅱ)의 전기발광특성을 가지는 중합체의 제조방법;A polymer having electroluminescent properties of the following general formula (II) characterized by reacting a compound of the following general formula (I) with terephthalaldehyde, florenealdehyde, thiophenaldehyde, carbazolealdehyde or pyridinealdehyde, or derivatives thereof Manufacturing method of; (Ⅰ) (Ⅰ) (Ⅱ) (Ⅱ) 상기식에서,Where R 및 R1은 알킬 또는 아릴 그룹이고,R and R 1 are alkyl or aryl groups, X는X is 이고, ego, R2및 R3는 수소, 알킬, 알콕시 또는 아릴 그룹이고,R 2 and R 3 are hydrogen, alkyl, alkoxy or aryl groups, R4는 수소, 알킬, 알콕시 또는 아릴 그룹이고,R 4 is hydrogen, alkyl, alkoxy or an aryl group, R5는 알킬, 알콕시 또는 아릴 그룹이고,R 5 is an alkyl, alkoxy or aryl group, R6및 R7은 수소, 알킬, 알콕시 또는 아릴 그룹이고,R 6 and R 7 are hydrogen, alkyl, alkoxy or aryl groups, n은 10∼1000의 정수이다.n is an integer of 10-1000.
KR1019980011714A 1998-04-02 1998-04-02 Silicon compounds for electroluminescent element KR100258593B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980011714A KR100258593B1 (en) 1998-04-02 1998-04-02 Silicon compounds for electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980011714A KR100258593B1 (en) 1998-04-02 1998-04-02 Silicon compounds for electroluminescent element

Publications (2)

Publication Number Publication Date
KR19990079226A KR19990079226A (en) 1999-11-05
KR100258593B1 true KR100258593B1 (en) 2000-06-15

Family

ID=19535780

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980011714A KR100258593B1 (en) 1998-04-02 1998-04-02 Silicon compounds for electroluminescent element

Country Status (1)

Country Link
KR (1) KR100258593B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100451440B1 (en) * 2002-04-26 2004-10-06 학교법인 포항공과대학교 Tin-based electroluminescent polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100451440B1 (en) * 2002-04-26 2004-10-06 학교법인 포항공과대학교 Tin-based electroluminescent polymer

Also Published As

Publication number Publication date
KR19990079226A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
JP3939579B2 (en) White electroluminescent polymer compound and organic electroluminescent device using the same
JP4904002B2 (en) Spirocyclopentaphenanthrenefluorene compound and organic EL device using the same
US8361636B2 (en) Luminescent polymer
KR101170168B1 (en) Organic electroluminescent polymer having 9,9-difluorenyl-2,7-fluorenyl unit and organic electroluminescent device manufactured using the same
US5879821A (en) Electroluminescent polymer compositions and processes thereof
KR100323606B1 (en) Light Emitting Polymers having High Efficiency and Color Tunable Properties
JP4898106B2 (en) Cyclopentaphenanthrene compound and organic electroluminescence device using the same
JP4884668B2 (en) Luminescent polymer and organic electroluminescent display using the same
JP2005220354A (en) Thieno[3,2-b]indole polymer and organic electroluminescent element using the same
KR101513727B1 (en) Electroluminescent polymers containing fluorine functional groups and organic electroluminescent device manufactured using the same
JP3939533B2 (en) Electroluminescent polymer introduced with fluorene and electroluminescent device using the same
JP5196747B2 (en) Polymer for luminescence
KR100730454B1 (en) Blue light emitting polymers containing 9,10-diphenylanthracene moiety and the electroluminescent device prepared using the same
KR20020027106A (en) Poly(phenylenevinylene) Derivatives Substituted with Spirobifluorenyl Group and the Electroluminescent Device Prepared Using the Same
KR101350744B1 (en) Electriluminescent polymer containing benzothiadiazole derivatives and organoelectriluminescent device emloying the same
KR100258593B1 (en) Silicon compounds for electroluminescent element
KR101258701B1 (en) Organic electroluminescent polymer having arylamine unit containing 9'-aryl-fluoren-9'-yl group and organic electroluminescent device manufactured using the same
KR20070017733A (en) Fluorene derivatives, Organic Electroluminescent Polymer Prepared Therefrom and the Electroluminescent Device Manufactured Using the Same
KR100510094B1 (en) Highly Efficient Poly(p-phenylenevinylene) Derivatives Containing 1,3,4-Oxadiazole Side Group For Polymer Light Emitting Diodes
KR101249640B1 (en) Electroluminescent Polymers having 9-fluoren-2-yl-9-aryl-2,7-fluorenyl Unit and the Electroluminescent Device Prepared Using the Same
KR101400472B1 (en) Organic electroluminescent polymer containing novel blue dopants and organic electroluminescent devices manufactured using the same
KR101412813B1 (en) Organic electroluminescent polymer containing oxadiazole group and organic electroluminescent device manufactured using the same
KR100394509B1 (en) High Functional Light Emitting Polymers Containing Tetra-substituted Phenylene unit for Use in Electroluminescent Devices
KR100451440B1 (en) Tin-based electroluminescent polymer
KR100775271B1 (en) Organic electroluminescent polymers having vinyl group in side chain and the electroluminescent device prepared using the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee