KR100257719B1 - Reflection type color liquid crystal display device using chiral neumatic composition structure - Google Patents

Reflection type color liquid crystal display device using chiral neumatic composition structure Download PDF

Info

Publication number
KR100257719B1
KR100257719B1 KR1019970039586A KR19970039586A KR100257719B1 KR 100257719 B1 KR100257719 B1 KR 100257719B1 KR 1019970039586 A KR1019970039586 A KR 1019970039586A KR 19970039586 A KR19970039586 A KR 19970039586A KR 100257719 B1 KR100257719 B1 KR 100257719B1
Authority
KR
South Korea
Prior art keywords
liquid crystal
lcd
color
chiral
reflective
Prior art date
Application number
KR1019970039586A
Other languages
Korean (ko)
Other versions
KR19990016875A (en
Inventor
김영진
이신두
박순모
Original Assignee
김영남
오리온전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영남, 오리온전기주식회사 filed Critical 김영남
Priority to KR1019970039586A priority Critical patent/KR100257719B1/en
Publication of KR19990016875A publication Critical patent/KR19990016875A/en
Application granted granted Critical
Publication of KR100257719B1 publication Critical patent/KR100257719B1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

PURPOSE: A reflective type color LCD(liquid crystal display) apparatus is to provide the liquid crystal having a horizontal alignment to any one of substrates and provide the liquid crystal having a vertical alignment to the other of the substrates, thereby reducing an operating voltage and removing backlight. CONSTITUTION: The liquid crystal is also oriented vertically in the other of the substrates. Ratio(d/p) of a cell gap(d) of the liquid crystal to a pitch(p) becomes 0.4 to 1 by addition of chiral additive. The two substrates are rubbed to be parallel. To a front surface and a rear surface of the LCD, a polarizer is perpendicularly attached. Direction of any one of the polarizers forms 45 degrees relative to the direction of rubbing. A reflective plate is attached to the polarizer for the rear surface. At voltage of 2.4V, the best contrast is obtained. As the voltage is increased, the contrast is rapidly decreased.

Description

카이랄 네마틱 혼성 배향 구조를 이용한 반사형 칼라 액정 표시 장치Reflective color liquid crystal display using chiral nematic hybrid alignment structure

따라서 본 발명은 상기와 같은 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 복굴절을 이용하되, 액정이 수평 배향 구조를 가지는 기존의 STN LCD에서는 액정에 카이랄 첨가제를 혼합하여 비틀림 각을 크게 한 반면, 본 발명에서는 일측기판은 수평 배향 구조를 가지고, 타측기판은 수직 배향 구조를 가지는 혼성 배향 구조를 사용하여 응답성이 개선되고, 구동 전압을 감소시킬 수 있으며, 표시 가능한 색의 수를 증가시켜 공정수율 및 소자동작의 신뢰성을 향상시킬 수 있는 카이랄 네마틱 혼성 배향 구조를 이용한 반사형 칼라 LCD를 제공함에 있다.Therefore, the present invention is to solve the above problems, the object of the present invention is to use the birefringence, while in the conventional STN LCD liquid crystal has a horizontal alignment structure, the torsion angle is increased by mixing a chiral additive in the liquid crystal In the present invention, one side substrate has a horizontal alignment structure, and the other side substrate uses a hybrid alignment structure having a vertical alignment structure to improve responsiveness, reduce driving voltage, and increase the number of displayable colors. The present invention provides a reflective color LCD using a chiral nematic hybrid alignment structure capable of improving yield and reliability of device operation.

제1도는 종래 기술에 따른 반사형 STN LCD의 단면도.1 is a cross-sectional view of a reflective STN LCD according to the prior art.

제2도는 반사형 칼라 LCD의 dㆍΔn 변화에 따른 투과율 그래프.2 is a graph of transmittance according to the change of d · Δn of the reflective color LCD.

제3도는 종래 기술에 따른 반사형 칼라 STN LCD의 색좌표.3 is a color coordinate of a reflective color STN LCD according to the prior art.

제4도는 본 발명에 따른 반사형 칼라 STN LCD의 색좌표.4 is a color coordinate of a reflective color STN LCD according to the present invention.

제5도는 본 발명에 따른 반사형 칼라 STN LCD의 인가 전압에 따른 밝기 그래프.5 is a brightness graph according to the applied voltage of the reflective color STN LCD according to the present invention.

제6도는 본 발명에 따른 반사형 칼라 STN LCD의 단면도.6 is a sectional view of a reflective color STN LCD according to the present invention;

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

11 : 기판 13 : 투명전극11 substrate 13 transparent electrode

15 : 배향막 17 : 실패턴15: alignment layer 17: failure turn

19 : 액정 21 : 편광판19: liquid crystal 21: polarizing plate

23 : 반사판23: reflector

본 발명은 카이랄 네마틱 혼성 배향 구조를 이용한 반사형 칼라 액정 표시 장치(liquid crystal display; 이하 LCD라 칭함)에 관한 것으로서, 특히 혼성배향구조의 LCD에서 수직배향막을 수평 배향과 같은 방향으로 러빙하여 수직배향에 방향성을 주고, 카이랄 첨가제를 첨가하여 액정에 적당한 회전력을 가지는 배향방향이 일정한 LCD를 형성하여 인가 전압의 크기에 따라 녹색, 청색, 적색, 백색 및 흑색을 나타낼 수 있어, 백라이트가 없는 반사형 LCD의 칼라화를 용이하게 형성하여 LCD의 소형화에 유리하고, 소비전력이 감소되며, 공정수율 및 소자동작의 신뢰성을 향상시킬 수 있는 카이랄 네마틱 혼성 배향 구조를 이용한 반사형 칼라 액정 표시 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflective color liquid crystal display (LCD) using a chiral nematic hybrid alignment structure. In particular, in a hybrid alignment structure LCD, the vertical alignment layer is rubbed in the same direction as the horizontal alignment. Directionality is given to the vertical alignment, and chiral additives are added to form an LCD having a constant orientation in the liquid crystal having a suitable rotational force, and thus display green, blue, red, white and black depending on the magnitude of the applied voltage. Reflective color liquid crystal display using chiral nematic hybrid alignment structure to easily form coloration of reflective LCD, which is advantageous for miniaturization of LCD, reduced power consumption, and improved process yield and device operation reliability Relates to a device.

평판표시장치의 일종인 LCD는 액체의 유동성과 결정의 광학적 성질을 겸비하는 액정(Liquid Crystal)에 전계를 가하여 광학적 이방성이 변화되는 전기 광학 효과를 이용한 장치로서, 종래 음극선관(Cathode Ray Tube)에 비하여 소비전력이 낮고, 경박단 소화가 용이하며 대형화 및 고정세화가 가능하여 널리 사용되고 있다.LCD, which is a kind of flat panel display device, uses an electro-optic effect in which the optical anisotropy is changed by applying an electric field to a liquid crystal that combines liquidity and optical properties of a crystal. Compared with the low power consumption, easy to extinguish light and thin end, large size and high definition are widely used.

일반적으로 LCD 판넬은 제1도에 도시되어있는 바와 같이, 투명전극(13)패턴과 액정을 배향 시킬 수 있는 배향막(15)이 도포되어 있는 두 장의 투명 기판(11)의 사이에 실패턴(17)에 의해 밀봉되어있는 액정(19)을 주입하고, 양쪽 기판의 바깥 면에 편광판(21)이 부착되어 있는 장치이다.In general, as shown in FIG. 1, the LCD panel has a failure turn 17 between the transparent electrode 13 pattern and the two transparent substrates 11 on which the alignment layer 15 capable of orienting the liquid crystal is coated. The liquid crystal 19 sealed by () is injected, and the polarizing plate 21 is attached to the outer surface of both board | substrates.

상기와 같은 LCD 판넬은 자체적으로 빛을 발광하지 못하고 외부의 빛을 이용하여 화면을 표시하는데, 빛이 전달되는 방식에 따라 투과형과 반사형으로 나누어지며, 투과형의 경우에는 LCD의 뒷면에 빛을 발광시키는 장치인 발광소자, 예를들어 이.엘 (electro luminescence; 이하 EL이라 칭함) 소자나 발광 다이오드(light emitting diode; 이하 LED라 칭함) 판넬과 함께 모듈의 형태로 사용되며, 반사형의 경우에는 입사된 빛을 다시 반사시킬 수 있는 반사판(23)이 부착되어 있다.The LCD panel, as described above, does not emit light by itself and displays the screen by using external light. The LCD panel is divided into a transmissive type and a reflective type according to the way the light is transmitted. Light emitting device, for example, an electroluminescent (EL) device or a light emitting diode (LED) panel, and is used in the form of a module. There is attached a reflecting plate 23 capable of reflecting the incident light again.

최근에 LCD가 고품질화되어 칼라의 필요성을 느끼게 되면서 칼라를 실현하기 위하여 칼라 필터를 부착 사용하게 되었는데, 기존의 칼라 LCD는 적색(R), 청색(B), 녹색(G)의 3가지 색을 가지는 칼라 필터를 사용한다. 각각의 색은 하나의 화소를 구성하므로 화소의 갯수가 흑백 장치에 비해서 3배가 많아지게 되며, 3가지 색을 서로 조합하여 원하는 칼라를 구현한다.Recently, LCD has been improved in quality and color needs to be attached to realize color. Existing color LCD has three colors of red (R), blue (B) and green (G). Use a color filter. Since each color constitutes one pixel, the number of pixels is three times larger than that of a black and white device, and the three colors are combined with each other to realize a desired color.

상기와 같은 칼라필터를 사용하는 칼라 표현 방법은 주로 투과형에서 사용되고 있는데, 반사형에서 사용하면 밝기가 급격하게 감소되는 단점이 있다.The color expression method using the color filter as described above is mainly used in the transmission type, there is a disadvantage that the brightness is sharply reduced when used in the reflection type.

그 이유는 외부에서 투과된 빛이 칼라 필터를 통과하게 되면 어느 색을 가지는 화소를 통과하느냐에 따라 그 색외의 색은 모두 필터에 흡수된다. 예를 들어, 빛이 녹색 화소를 통과하면 녹색 이외의 다른 색은 모두 필터에 흡수되어서 빛의 세기는 약 1/3로 줄어들게되는데, 반사형 LCD의 경우에 빛이 LCD의 전면에서 입사되어 액정 층과 칼라 필터를 통과한 후 반사장치에 의해 액정 층과 칼라 필터를 다시 통과되고, 이런 경우 빛은 칼라 필터 층을 두 번 투과하게 된다. 예를 들어, 입사할 때 녹색 화소를 통과한 빛이 반사되어 나갈 때 청색 화소를 통과하게 되면 빛은 모두 흡수되어 버린다. 그러므로 반사형 LCD에 칼라 필터를 사용하면 빛이 입사되는 세기에 비해 약 1/9 정도로 감소되어 매우 어두운 상태가 된다. 실제로 반사형 LCD에 칼라 필터를 적용하면 매우 어두운 상태가 되어 표시 정보가 구분되지 않으므로 칼라 LCD는 투과형만이 사용되고 있다.The reason is that when the light transmitted from the outside passes through the color filter, all colors other than the color are absorbed by the filter, depending on which color the pixel has. For example, when light passes through a green pixel, all other colors other than green are absorbed by the filter, reducing the intensity of light by about one third. In the case of reflective LCDs, light is incident from the front of the LCD, causing the liquid crystal layer After passing through the color filter, the light is passed through the liquid crystal layer and the color filter by the reflector again, in which case the light passes through the color filter layer twice. For example, when the light passing through the green pixel is reflected when it is incident, the light is absorbed when passing through the blue pixel. Therefore, when the color filter is used in the reflective LCD, it is reduced to about 1/9 of the intensity of the incident light, which is very dark. In fact, when the color filter is applied to the reflective LCD, the display becomes very dark and display information is not distinguished. Therefore, only the transmissive LCD is used.

기존의 초 비틀림 네마틱(Super Twisted nematic; 이하 STN이라 칭함) LCD에서 칼라 필터를 사용하지 않고 칼라 필터 대신 액정의 복굴절성을 이용하여 칼라를 표시하는 방법이 있다. 즉 제2도에 도시되어 있는 바와 같이, 액정의 굴절율 이방성 Δn과 셀갭 d의 곱인 dㆍΔn이 인가된 전압의 크기에 따라 변화되어 칼라가 다르게 표시되는 원리를 이용한 것이다. 여기서 편광판의 각도를 적절하게 조절하면 dㆍΔn의 변화에 따라 투과되거나 반사되는 빛의 세기가 파장에 따라 변화되는 성질이 있다. 복굴절 값이 증가되거나 감소되면 투과되는 빛의 파장이 주기적으로 증가 또는 감소되는 현상이 발생되며, dㆍΔn을 적절하게 조절하여 바탕색을 정할 수 있다. 이러한 현상은 기존의 STN LCD에서 기본적인 특성으로 이용되어 왔다. 기존의 단색 STN LCD는 이러한 복굴절 값이 크지 않는 반면, 이를 칼라의 구현에 이용하기 위해서는 복굴절 값이 큰 액정 물질을 이용한다. 액정의 유효 복굴절은 전압이 인가되면 실질적으로 감소되는 것과 같은 현상을 보이는데, 이는 액정의 배향이 수평에서 수직 상태로 변화되기 때문이다. 예를 들어, 액정이 모두 수직 배향 상태가 되면 복굴절은 존재하지 않는 것과 같은 상태가 된다.In the conventional super twisted nematic (hereinafter referred to as STN) LCD, there is a method of displaying color using birefringence of liquid crystal instead of a color filter without using a color filter. That is, as shown in FIG. 2, the principle is that d · Δn, which is the product of the refractive index anisotropy Δn of the liquid crystal and the cell gap d, is changed according to the magnitude of the applied voltage to display the color differently. Herein, when the angle of the polarizer is appropriately adjusted, the intensity of light transmitted or reflected by the change of d · Δn is changed according to the wavelength. When the birefringence value is increased or decreased, a phenomenon in which the wavelength of transmitted light periodically increases or decreases occurs, and the background color can be determined by appropriately adjusting d · Δn. This phenomenon has been used as a basic feature in the existing STN LCD. Conventional monochromatic STN LCDs do not have such a high birefringence value, but in order to use them for color implementation, a liquid crystal material having a high birefringence value is used. The effective birefringence of the liquid crystal shows such a phenomenon that the voltage is substantially reduced when a voltage is applied because the orientation of the liquid crystal changes from horizontal to vertical. For example, when all of the liquid crystals are in a vertical alignment state, birefringence is in a state in which there is no presence.

액정의 굴절률 이방성이 Δn이고, 셀갭이 d이면 LCD의 복굴절 값은 dㆍΔn이 된다. 액정 분자가 수평으로부터 이루는 각을 θ라고 하면 유효 복굴절 값은 다음 식 1과 같다.When the refractive index anisotropy of the liquid crystal is Δn and the cell gap is d, the birefringence value of the LCD is d · Δn. When the angle formed by the liquid crystal molecules from the horizontal is θ, the effective birefringence value is expressed by the following equation (1).

Figure kpo00001
Figure kpo00001

여기서 전압이 증가하면 θ도 증가하므로 LCD의 복굴절 값은 작아지게 된다.In this case, as the voltage increases, θ also increases, so the birefringence value of the LCD becomes smaller.

상기와 같은 종래 기술에 따른 복굴절을 이용한 반사형 칼라 LCD는 3 또는 4가지의 색만을 실현 할 수 있지만 칼라 필터를 사용하지 않기 때문에 빛의 손실이 없고 또한 구조가 기존의 단색 LCD와 유사하므로 제작이 간단하고, 한 화소에서 3가지 또는 4가지의 색을 모두 구현하므로 칼라 필터를 사용하는 경우와 같이 화소수를 3배로 증가시키지 않아도 되는 등의 이점이 있으나, 한 화소에서 모든 칼라가 구현되므로 전압의 증감에 따라 구현되는 칼라의 순서가 있다. 예를 들어, 제2도의 색좌표에 도시되어있는 바와 같이, 기존의 LCD를 이용한 반사형 칼라 LCD는 제2도에 도시되어 있는 바와 같이, 전압에 따라 녹색→청색→적색→백색 또는 백색→녹색→청색→적색의 순서를 가진다. 따라서 응답 시간은 가장 먼저 나타나는 색에서 가장 나중에 나타나는 색으로 이동될 때 걸리는 시간으로 정의 되며, 이때 가장 큰 복굴절 차이가 요구되므로 상대적으로 긴 시간을 필요로 한다. 따라서 기존의 양산되는 제품을 예로 들면, 반사형 칼라 LCD는 단색 LCD보다 응답 시간은 약 2~3배정도 길어져 동화상 구현이 어려운 등의 문제점이 있다.Reflective color LCD using birefringence according to the prior art as described above can realize only 3 or 4 colors, but since there is no color filter, there is no loss of light and the structure is similar to the conventional monochromatic LCD. It is simple and realizes all three or four colors in one pixel, so there is no need to triple the number of pixels as in the case of using a color filter.However, since all colors are implemented in one pixel, There is a sequence of colors implemented by increments. For example, as shown in the color coordinates of FIG. 2, a reflective color LCD using an existing LCD is shown in FIG. 2, depending on the voltage, green → blue → red → white or white → green → It has a sequence of blue to red. Therefore, the response time is defined as the time taken to move from the first appearing color to the last appearing color, which requires a relatively long time since the largest birefringence difference is required. Therefore, the conventional mass-produced products, for example, the reflective color LCD has a problem that the response time is about 2 to 3 times longer than the monochrome LCD is difficult to implement a moving picture.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 카이랄 네마틱 혼성 배향 구조를 이용한 반사형 칼라 LCD의 특징은, 일측기판은 수직배향되고, 타측 기판은 수평배향되는 혼성 배향구조의 반사형 LCD에 있어서, 상기 수평배향 방향과 같은 방향으로 러빙되어 있는 수직배향되는 기판의 배향막과, 상기 LCD의 액정의 셀갭(d)과 피치(p)의 비(d/p)가 0.4~1이 되도록 카이랄 첨가제가 첨가되어 있는 것을 특징으로 한다.A characteristic of the reflective color LCD using the chiral nematic hybrid alignment structure according to the present invention for achieving the above object is that the one side substrate is vertically oriented, the other substrate is horizontally oriented reflection type LCD And a chiral so that the ratio (d / p) of the cell gap (d) and the pitch (p) of the liquid crystal of the LCD and the alignment film of the vertically aligned substrate rubbed in the same direction as the horizontal alignment direction is 0.4 to 1. It is characterized by the addition of an additive.

이하, 본 발명에 따른 카이랄 네마틱 혼성 배향 구조를 이용한 반사형 칼라 LCD에 관하여 첨부 도면을 참조하여 상세히 설명한다.Hereinafter, a reflective color LCD using a chiral nematic hybrid alignment structure according to the present invention will be described in detail with reference to the accompanying drawings.

먼저, 본 발명에 따른 반사형 칼라 LCD의 중요한 특성은 첫째, 두장의 기판에 각각 수평 및 수직방향으로 액정이 배향되도록하고, 둘째, 수직배향 구조에 러빙과정을 통하여 방향성을 주며, 셋째, 액정에 카이랄 첨가제를 첨가한다.First, an important characteristic of the reflective color LCD according to the present invention is first, to align the liquid crystal in the horizontal and vertical direction on each of the two substrates, and second, to give a direction through the rubbing process to the vertical alignment structure, third, to the liquid crystal Add chiral additives.

종래에도 혼성 배향 구조를 이용한 LCD는 제시된 것이 있으나, 이러한 종래의 혼성 배향 구조는 문턱 전압이 거의 존재하지 않으므로 다중 구동 등에 불리하고 특히 시야각 특성이 좋지 않아 일반 장치에는 응용되지 못하였는데, 본 발명에서는 이러한 문제를 제거하기 위해서 액정 물질에 카이랄 첨가제를 혼합하여 혼성 배향 구조에 비틀림이 발생하게 하였다.LCDs using hybrid alignment structures have been proposed in the related art, but such conventional hybrid alignment structures have little threshold voltage and thus are disadvantageous in multiple driving and the like, and are not particularly applicable to general devices due to poor viewing angle characteristics. To eliminate the problem, chiral additives were mixed with the liquid crystal material to cause distortion in the hybrid alignment structure.

이때 카이랄 첨가제의 농도를 적절하게 조절하여 최적의 전기 광학 특성을 가지는 비틀림 각을 찾기가 어려운데, 상기 광학 특성은 dㆍΔn에 가장 민감하여 1200~3000nm 정도를 가져야 하고, 기판 표면 배향 특성에 의한 표면 고정 에너지에도 민감하다.At this time, it is difficult to find the torsion angle having the optimal electro-optic properties by appropriately adjusting the concentration of the chiral additive. The optical properties are most sensitive to d · Δn and should have about 1200 to 3000 nm, It is also sensitive to surface fixation energy.

액정을 기판에 수평하게 배향시키기 위해서는 폴리아미드와 같은 고분자 배향막을 한 방향으로 일정하게 문질러 주는 과정인 러빙을 실시하여 사용하며, 수직 배향을 위해서는 레시틴(Lecitin) 같은 배향 자료를 이용하며 이때는 러빙 과정이 필요하지 않았으나, 본 발명에서는 수직 배향막 표면을 한 방향으로 러빙하였다.In order to align the liquid crystal on the substrate horizontally, rubbing, which is a process of constantly rubbing a polymer alignment film such as polyamide in one direction, is used. For the vertical alignment, an alignment material such as lecitin is used. Although not necessary, in the present invention, the surface of the vertical alignment layer was rubbed in one direction.

이는 카이랄 물질이 첨가된 네마틱 액정을 혼성 배향 LCD에 주입하면 액정 분자는 일정한 비틀림 각을 가지는데, 한 기판은 수평 배향을 하고 있으므로 비틀림이 안정화되지만, 다른 기판은 수직 배향을 하고 있으므로 안정된 비틀림이 존재하지 않아 비틀림의 방향이 정확하게 정의될 수 없는 특성을 고려한 것이다.This is because when the nematic liquid crystal containing chiral material is injected into the hybrid alignment LCD, the liquid crystal molecules have a constant torsion angle. The torsion is stabilized because one substrate is in a horizontal orientation, but the other is in a vertical orientation. This does not exist and takes into account the characteristic that the direction of torsion cannot be accurately defined.

카이랄 첨가제가 첨가된 네마틱 액정은 수직배향기판이 러빙되지 않은 혼성 배향 LCD에서 두 가지 이상의 배향 상태가 공존하는 영역(domain)을 보이는데, 서로 다른 배향 상태는 각기 일정한 영역을 확보하고 있으며, 외부에서 인가된 전압이나 충격, 열에 의해서 영역이 변화된다.The nematic liquid crystal added with chiral additives shows a domain in which two or more alignment states coexist in a hybrid alignment LCD in which the vertical alignment substrate is not rubbed, and the different alignment states have a constant area. The area is changed by the applied voltage, shock, or heat.

본 발명자의 실험결과에 따르면, 상기의 두 영역은 비틀림 각의 차이에 의한 것임을 알 수 있는데, 두 영역의 비틀림 각이 180°만큼 차이가 난다.According to the experimental results of the present inventors, it can be seen that the two areas are due to the difference in the torsion angle, the torsion angle of the two areas differ by 180 °.

상기의 비틀림각 차이의 원인을 살펴보면 다음과 같다.The causes of the torsional angle difference are as follows.

즉, 카이랄 첨가제에 의해서 형성된 카이랄 네마틱 액정의 피치를 p라 히고, 셀갭을 d라 하면, LCD내에서 액정의 비틀림 각은 d/p에 의해서 결정되는데, LCD내의 액정의 비틀림 각을 Φ라고 하면 다음 식 2와 같은 관계가 성립된다.That is, if the pitch of the chiral nematic liquid crystal formed by the chiral additive is p and the cell gap is d, the torsion angle of the liquid crystal in the LCD is determined by d / p, and the torsion angle of the liquid crystal in the LCD is Φ. In this case, the relationship shown in Equation 2 is established.

Figure kpo00002
Figure kpo00002

그러나 수평 배향 기판에서는 액정이 러빙 방향에 평행하려는 성질이 있으므로 이러한 비틀림 각을 갖지 못하므로, 러빙 방향을 0°로 놓았을 때, 비틀림 각은 180°의 배수가 되어야 하므로, 비틀림 각은 0°, 180°의 값을 가져야 한다. 따라서 d/p의 크기에 따라 비틀림 각은 식 3의 범위로 주어지며, 바람직하기는 0.4≤d/p≤0의 값을 가진다.However, in the horizontal alignment substrate, since the liquid crystal has a property to be parallel to the rubbing direction, it does not have such a torsion angle. When the rubbing direction is set to 0 °, the torsion angle should be a multiple of 180 °. It should have a value of 180 °. Therefore, according to the size of d / p, the torsion angle is given in the range of equation 3, preferably has a value of 0.4≤d / p≤0.

Figure kpo00003
Figure kpo00003

특히, 혼성 배향 LCD은 한 기판이 수직 배향 구조를 가지고 있으므로 d/p에 따라 두 가지의 비틀림이 항상 공존한다.In particular, in a hybrid alignment LCD, two twists always coexist according to d / p since one substrate has a vertical alignment structure.

이러한 영역을 제거하기 위해서 수직 배향 구조에 방향성을 주는 것이 필요하여 수직 배향막을 한 방향으로 러빙한다. 상기의 러빙된 수직 배향막은 외부의 힘이 작용하지 않는 경우에는 러빙 방향에 무관하게 수직 배향 상태를 이루며, 외부에서 힘이 가해지면 액정 분자들의 방향자가 변형되면서 러빙에 의한 방향성의 효과가 나타난다.In order to remove such a region, it is necessary to give a direction to the vertical alignment structure, so that the vertical alignment layer is rubbed in one direction. The rubbed vertical alignment layer is in a vertical alignment state irrespective of the rubbing direction when no external force is applied, and when the external force is applied, the direction of the liquid crystal molecules is deformed and the directional effect due to rubbing is exhibited.

또한 카이랄 첨가제에 의한 회전력은 액정 분자가 한 방향으로 회전하려는 힘을 주게되어 수직 배향 구조에서 러빙에 의한 효과가 발생된다. 실제로 본 발명자의 실험결과에 따르면 카이랄 혼성 배향 LCD에서 수직 배향막을 러빙하였을 때 상기에서의 영역이 제거되었다.In addition, the rotational force by the chiral additives gives the liquid crystal molecules a rotational force in one direction, thereby generating an effect due to rubbing in the vertical alignment structure. In fact, according to the experimental results of the present inventors, the above areas were removed when the vertical alignment layer was rubbed in a chiral hybrid alignment LCD.

본 발명의 LCD에 사용되는 액정은 유전율 이방성 Δε이 양의 값을 갖는다.The liquid crystal used in the LCD of the present invention has a positive dielectric anisotropy Δε.

여기서 Δε>0인 경우에는 전압이 인가되면, 혼성배향구조가 거의 수직배향 구조로 전이되어, dΔn이 유효하게 감소되어 기존의 제품과 비슷한 특성을 보이며, Δε<인 경우에는 전압이 인가되면, 혼성배향구조가 수평배향구조로 전이되어, dΔn이 증가된다.In the case of Δε> 0, when a voltage is applied, the hybrid alignment structure is shifted to a substantially vertical alignment structure, and dΔn is effectively reduced to exhibit characteristics similar to those of the conventional products. The alignment structure is transferred to the horizontal alignment structure, so that dΔn is increased.

본 발명의 한 실시예로, 일본 로딕(LODIC)사의 액정 RDP-61408과 카이랄 첨가제 S-811을 사용하여 카이랄 혼성 배향 LCD을 제작하였다. 이 액정의 굴절률 이방성 Δn=0.2082이고, LCD 셀갭은 10㎛로 하였으며, 이 액정에 d/p=0.5가 되게 카이랄 첨가제 S-811을 혼합하였다.In one embodiment of the present invention, a chiral hybrid alignment LCD was manufactured using liquid crystal RDP-61408 and chiral additive S-811 manufactured by LODIC of Japan. The refractive index anisotropy of the liquid crystal was Δn = 0.2082, the LCD cell gap was set to 10 µm, and chiral additive S-811 was mixed with the liquid crystal such that d / p = 0.5.

또한 한 기판은 수평 배향을 위해 일본 합성 고무(Japan Synthetic Rubber)사의 폴리아미드 SL-1054를 도포하여 러빙하였고, 다른 기판은 수직 배향을 위해서 일본 합성 고무 사의 폴리아미드 JALS-203을 도포하여 러빙하되, 두 기판은 러빙방향이 서로 평행토록 러빙 되었다.In addition, one substrate was rubbed by applying polyamide SL-1054 made by Japan Synthetic Rubber for horizontal orientation, and the other board was rubbed by applying polyamide JALS-203 made by Japan Synthetic Rubber for vertical orientation. The two substrates were rubbed with rubbing directions parallel to each other.

또한 LCD의 전면과 후면에 편광판이 서로 수직이 되도록 부착되었으며, 한 편광판의 방향은 러빙 방향과 45°를 이루게 하였고, 후면 편광판에는 반사판을 부착하였다.In addition, the polarizers were attached to the front and rear of the LCD so that the polarizers were perpendicular to each other. The direction of one polarizer was 45 ° to the rubbing direction, and a reflective plate was attached to the rear polarizer.

그후, 본 발명의 따른 LCD의 칼라 특성을 측정한 결과를 제4도에 나타내었는데, 제4도는 본 발명에 따른 LCD의 색좌표로서, 이런 상태에서 LCD에 전압을 인가하여 칼라로 전압이 증가함에 따라 LCD은 녹색, 청색, 적색, 백색, 그리고 흑색을 나타내고 있다. 백색과 흑색은 색 좌표 상에서 구분되지 않으며 LCD의 밝기로 평가된다.Then, the result of measuring the color characteristics of the LCD according to the present invention is shown in Figure 4, Figure 4 is a color coordinate of the LCD according to the present invention, in this state by applying a voltage to the LCD as the voltage increases in color LCDs are green, blue, red, white, and black. White and black are not distinguished in color coordinates and are evaluated by the brightness of the LCD.

상기 LCD의 밝기를 측정한 결과는 제4도에 도시되어 있는 바와 같이, 전압이 약 2.4V에서 최대의 밝기가 되며 이 때의 칼라는 백색에 해당되며, 전압이 더욱 증가되면 밝기는 급격히 감소된다. 색좌표 상에서 칼라는 2.4V를 지나면서 수렴하고 있으며, 이 때의 색이 흑색이 된다.As a result of measuring the brightness of the LCD, as shown in FIG. 4, the voltage becomes the maximum brightness at about 2.4V, and the color at this time corresponds to white, and the brightness decreases rapidly as the voltage is further increased. . On the color coordinate, the color converges by passing 2.4V, and the color becomes black at this time.

따라서 본 실시예에서 카이랄 혼성 배향 구조를 이용한 반사형 칼라 LCD는 5가지의 색을 표시할 수 있으나, 기존의 반사형 칼라 STN LCD의 색 좌표 특성이 나타나 있는 제3도에서 볼 수 있듯이 종래 반사형 칼라 LCD 네마틱 LCD는 4가지의 색만을 표시할 수 있어, 백색과 흑색을 모두 표시할 수 있는 특성이 본 발명의 중요한 장점 중의 하나이다.Therefore, in the present embodiment, the reflective color LCD using the chiral hybrid alignment structure can display five colors, but as shown in FIG. 3 showing the color coordinate characteristics of the conventional reflective color STN LCD, the conventional reflection is reflected. The type color LCD nematic LCD can display only four colors, and therefore, a characteristic capable of displaying both white and black is one of the important advantages of the present invention.

이상에서 설명한 바와 같이, 본 발명에 따른 카이랄 네마틱 혼성 배향 구조를 이용한 반사형 칼라 LCD는 혼성배향구조를 가지되, 수직배향막을 수평 배향과 같은 방향으로 러빙하여 수직배향에 방향성을 주고, 액정에 적당한 회전력을 가지도록 카이랄 첨가제를 혼합하여 회전방향이 일정한 혼성 배향 LCD를 형성하고, 인가 전압의 크기에 따라 녹색, 청색, 적색, 백색 및 흑색을 나타낼 수 있어, 백라이트가 없는 반사형 LCD의 칼라화를 용이하게 형성하여 LCD의 소형화에 유리하고, 소비전력이 감소되며, 공정수율 및 소자동작의 신뢰성을 향상시킬 수 있는 이점이 있다.As described above, the reflective color LCD using the chiral nematic hybrid alignment structure according to the present invention has a hybrid alignment structure, but rubs the vertical alignment layer in the same direction as the horizontal alignment to give direction to the vertical alignment, and The chiral additive is mixed to have a proper rotational force to form a hybrid orientation LCD with a constant rotational direction, and green, blue, red, white and black can be displayed depending on the magnitude of the applied voltage. It is advantageous to miniaturize LCDs by easily forming color, reduce power consumption, and improve process yield and reliability of device operation.

Claims (3)

일측기판은 수직배향되고, 타측 기판은 수평배향되는 혼성 배향구조의 반사형 LCD에 있어서, 상기 수평배향 방향과 같은 방향으로 러빙되어있는 수직배향되는 기판의 배향막과, 상기 LCD의 액정의 셀갭(d)과 액정의 피치(p)의 비(d/p)가 0.4~1이 되도록 카이랄 첨가제가 첨가되어 있는 것을 특징으로 하는 카이랄 네마틱 혼성 배향 구조를 이용한 반사형 칼라 LCD.In a reflective LCD having a hybrid alignment structure in which one side is vertically oriented and the other is horizontally oriented, an alignment layer of the vertically oriented substrate which is rubbed in the same direction as the horizontal alignment direction, and a cell gap (d) of the liquid crystal of the LCD. And a chiral additive is added so that the ratio (d / p) of the pitch (p) of the liquid crystal to 0.4 to 1 is a reflection type color LCD using a chiral nematic hybrid alignment structure. 제1항에 있어서, 상기 액정의 유전율 이방성이 양의 값을 가지는 것을 특징으로 하는 카이랄 네마틱 혼성 배향 구조를 이용한 반사형 칼라 LCD.The reflective color LCD using a chiral nematic hybrid alignment structure according to claim 1, wherein the dielectric anisotropy of the liquid crystal has a positive value. 제1항에 있어서, 상기 액정의 굴절율 이방성 Δn과 셀갭의 곱이 dㆍΔn=1200~3000nm의 값을 가지는 것을 특징으로 하는 카이랄 네마틱 혼성 배향 구조를 이용한 반사형 칼라 LCD.The reflective color LCD using a chiral nematic hybrid alignment structure according to claim 1, wherein the product of the refractive index anisotropy Δn of the liquid crystal and the cell gap has a value of d · Δn = 1200 to 3000 nm.
KR1019970039586A 1997-08-20 1997-08-20 Reflection type color liquid crystal display device using chiral neumatic composition structure KR100257719B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970039586A KR100257719B1 (en) 1997-08-20 1997-08-20 Reflection type color liquid crystal display device using chiral neumatic composition structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970039586A KR100257719B1 (en) 1997-08-20 1997-08-20 Reflection type color liquid crystal display device using chiral neumatic composition structure

Publications (2)

Publication Number Publication Date
KR19990016875A KR19990016875A (en) 1999-03-15
KR100257719B1 true KR100257719B1 (en) 2000-06-01

Family

ID=19517887

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970039586A KR100257719B1 (en) 1997-08-20 1997-08-20 Reflection type color liquid crystal display device using chiral neumatic composition structure

Country Status (1)

Country Link
KR (1) KR100257719B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100500690B1 (en) * 2002-01-18 2005-07-12 비오이 하이디스 테크놀로지 주식회사 A spiral-aligned-nematic lcd

Also Published As

Publication number Publication date
KR19990016875A (en) 1999-03-15

Similar Documents

Publication Publication Date Title
KR100259111B1 (en) Liquid crystal display device
US7420635B2 (en) Liquid crystal display and electronic apparatus having a quasi-isotropic liquid crystal material
US20020180914A1 (en) Reverse transmittance mode direct-view liquid crystal display employing a liquid crystal having a characteristic wavelength in the non-visible spectrum
JPH02176625A (en) Liquid crystal display device
KR20000053405A (en) Reflective liquid crystal display element
KR19980033500A (en) Reflective bistable nematic liquid crystal display
US5058998A (en) Liquid crystal display devide with a twisted alignment state
US5742368A (en) Reflection liquid crystal display device
KR20010042793A (en) Reflection liquid crystal display device
KR100257719B1 (en) Reflection type color liquid crystal display device using chiral neumatic composition structure
US7505090B2 (en) ECB-type colour liquid crystal display with restrained temperature dependency of colour tone
KR19980033499A (en) Reflective liquid crystal display with twisted nematic hybrid orientation
JP3946745B2 (en) Liquid crystal display
KR100235168B1 (en) Reflection type lcd device
JP2819670B2 (en) Liquid crystal display device
Morris 5.2 liquid-crystal displays,”
KR100734233B1 (en) color liquid crystal display
KR19990024959A (en) Polymer dispersed liquid crystal display
JP3946744B2 (en) Liquid crystal display
JP3946740B2 (en) Liquid crystal display
JP3946738B2 (en) Liquid crystal display
JP3946741B2 (en) Liquid crystal display
JP3946746B2 (en) Liquid crystal display
JP3946742B2 (en) Liquid crystal display
JP3946743B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee