KR100256366B1 - The hyper eutectic high chrome composit carbide line alloy for excellent wear resistance and impact toughness - Google Patents

The hyper eutectic high chrome composit carbide line alloy for excellent wear resistance and impact toughness Download PDF

Info

Publication number
KR100256366B1
KR100256366B1 KR1019950048674A KR19950048674A KR100256366B1 KR 100256366 B1 KR100256366 B1 KR 100256366B1 KR 1019950048674 A KR1019950048674 A KR 1019950048674A KR 19950048674 A KR19950048674 A KR 19950048674A KR 100256366 B1 KR100256366 B1 KR 100256366B1
Authority
KR
South Korea
Prior art keywords
alloy
carbide
wear resistance
chromium
impact toughness
Prior art date
Application number
KR1019950048674A
Other languages
Korean (ko)
Other versions
KR970043233A (en
Inventor
백응률
김낙준
안상호
Original Assignee
이구택
포항종합제철주식회사
신현준
재단법인포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철주식회사, 신현준, 재단법인포항산업과학연구원 filed Critical 이구택
Priority to KR1019950048674A priority Critical patent/KR100256366B1/en
Publication of KR970043233A publication Critical patent/KR970043233A/en
Application granted granted Critical
Publication of KR100256366B1 publication Critical patent/KR100256366B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

PURPOSE: A hypoeutectic Cr-rich composite alloy (carbide-based) is provided to improve abrasion resistance and impact toughness, especially to give superior scratch resistance to hypereutectic Cr-rich composite alloy (iron-based). CONSTITUTION: The hypoeutectic Cr-rich composite alloy (carbide-based) comprises C 2.0-4.5wt.%, Cr 12-25wt.%, Mn 0.1-3wt.%, Si 0.1-1wt.%, Nb 1-10wt.%, Mo 1-10wt.%, W 1-10wt.%, V 0.1-2wt.%, a balance of Fe, and other inevitable impurities. In the alloy composition, the C+Cr content is within the range of hypoeutectic Cr-rich composite alloy (carbide-based) where coarse grain of£(Cr,Fe)7C3|is not precipitated.

Description

충격인성 및 내마모성이 우수한 아공정 고크롬 복합탄화물계 합금Subprocess high chromium composite carbide alloy with excellent impact toughness and wear resistance

본 발명은 준설기기, 파쇄롤 등 충격인성 및 내 마모성을 필요로 하는 분야에 사용되는 고크롬 복합탄화물계 합금에 관한 것으로, 보다 상세하게는, 높은 충격응력이 부가되면서 극심함 마모가 발생하는 곳에서 뛰어난 내마모 성능을 발취할 수 있는 고크롬 복합탄화물계 합금에 관한 것이다.The present invention relates to a high chromium composite carbide-based alloy used in fields requiring impact toughness and wear resistance, such as dredging equipment, crushing rolls, more specifically, where high abrasion is added while extreme wear occurs The present invention relates to a high chromium composite carbide alloy capable of extracting excellent wear resistance.

고크롬 철계 합금은 합금이 함유하고 있는 탄소와 크롬원소가 응고 도중에 상호 결합하여 경도값이 Hv1,100-1,700으로 매우 높은 고경질의 크롬탄화물[(Cr, Fe)7C3]을 석출시킴으로서, 내마모성이 특히 우수한 합금이다. 이 고크롬 철계 합금들은 주조품 및 육성용접품 등 여러 제품형태로 산업기기 전반에 사용되고 있다. 특히 토사 및 광물과의 마찰로 인한 극심한 마모 발생부위, 즉 준설기기, 시멘트 공장의 파쇄롤, 제철소의 원료 및 소결광의 스크린, 호파(Hopper), 화력 발전소의 원료탄장입부, 레미콘기 내부 등의 수명 연장을 위해 사용된다.In the high chromium iron alloy, carbon and chromium elements contained in the alloy are bonded to each other during solidification to precipitate very high chromium carbide [(Cr, Fe) 7 C 3 ] with a hardness value of Hv1,100-1,700. It is an alloy with particularly good wear resistance. These high chromium iron-based alloys are used throughout industrial equipment in various product forms, such as cast and raised welded parts. Particularly, wear and tear areas caused by friction with soil and minerals, namely dredging equipment, crushing rolls in cement plants, raw materials of steel mills and screens of sintered ores, hoppers, raw coal loading parts of thermal power plants, and inside of ready-mixed concrete machines Used for extension.

복합탄화물을 가지는 고크롬 철계 합금은 내마모성을 필요로 하는 분야에서 매우 중요하게 사용되는 재료이다. 이들 고크롬 철계 합금들은 주물이나 육성용접에 의해서 제조되며 무엇보다도 타 재료들에 비해서 값이 싸면서도 내마모성이 우수하다는 장점을 지니고 있다.High chromium iron-based alloy having a composite carbide is a very important material used in the field requiring abrasion resistance. These high chromium iron-based alloys are manufactured by casting or wet welding, and above all, they are inexpensive and excellent in wear resistance compared to other materials.

고크롬 철계합금은 복합 탄화물을 둘러싸고 있는 기지조직 혹은 복합탄화물의 종류에 따라 분류된다. 즉 크롬탄화물을 둘러싸고 있는 기지조직이 오스테나이트, 마르텐사이트, 퍼얼라이트상 이냐에 따라서 오스테나이트형, 마르텐사이트형, 퍼얼라이트형 고크롬 내마모합금으로 분류되며, 그리고 기지조직이 무엇인가는 상관없이 기지조직에 의해 둘러싸여 있는 탄화물 중에 일차탄화물이 존재하면 과공정 고크롬 내마모합금, 일차탄화물이 없이 공정탄화물만 존재하면 아공정 고크롬 내마모합금으로 분류된다.High chromium iron alloys are classified according to the matrix structure or the type of complex carbide surrounding the composite carbide. In other words, the matrix structure surrounding the chromium carbide is classified into austenite, martensite, and perlite high chromium abrasion alloys depending on whether it is austenite, martensite, or perlite phase, and regardless of the matrix structure. The presence of primary carbides in carbides surrounded by matrix structures is classified into hypereutectic high chromium abrasion alloys and, if primary carbides are present without primary carbides, they are classified as secondary eutectic high chromium abrasion alloys.

이들 고크롬 철계합금은 주로 저응력 긁힘마모에서는 과공정 고크롬 내마모 육성합금이 가장 뛰어난 내마모성을 가짐으로해서 많이 사용되어져 오고 있으나, 이들재료는 충격인성이 열악하여 높은 응력하의 조건에서는 오히려 내마모성이 아공정 고크롬 내마모재 보다 열악한 특성을 가졌다. 그 결과 고응력 조건에서는 아공정 고크롬 철계합금이 개발되어 사용되어오고 있다.These high chromium iron alloys have been commonly used in low stress scratch wear because the over-process high chromium wear-grown alloys have the best wear resistance, but these materials have poor impact toughness and are therefore more abrasion resistant under high stress conditions. It was inferior to the subprocess high chromium wear resistant material. As a result, subprocess high chromium iron alloys have been developed and used under high stress conditions.

아공정 고크롬 철계합금은 크롬 탄화물을 둘러싸고 있는 기지조직에 따라 오스테나이트 고크롬 철계합금과 마르텐사이트계 고크롬 철계합금으로 분류되어져 사용되고 있으나 이들 두 종류는 모두 저응력 긁힘마모에서는 과공정고크롬 철계 합금보다는 내마모성이 떨어지나 충격인성은 우수하다.Subprocess high chromium iron alloys are classified into austenitic high chromium iron alloys and martensitic high chromium iron alloys according to the base structure surrounding chromium carbide, but both of them are over-process high chromium iron alloys in low stress scratch wear. Rather than wear resistance, but impact toughness is excellent.

오스테나이트 고크롬 철계합금은 최초로 1928년 미국특허 1,671,384에서 2%C+8%Mn+29.5%Cr+Fe(나머지)합금이 발표된 이후 현재까지 탄소함량을 5%까지 증가시켜 크롬탄화물량을 증대시키고, 경도값을 조금더 증가시켜 내마모성을 개선시켜 사용하고 있다. 그리고 마르텐사이트계 고크롬 철계합금은 최초의 1917년 미국특허 1,245,552에서부터 HC250인 2.25-2.85%C+0.5-1.25%Mn+0.25-1.0%Si+24-30%Cr+Fe(나머지)합금을 열처리함으로서 낮은 응력하에서의 긁힘내마성을 상기한 오스테나이트계 고크롬 철계합금 보다 향상시켜 사용하고 있다.Austenitic high chromium iron alloys have increased chromium carbide content by increasing carbon content to 5% to date since the first 2% C + 8% Mn + 29.5% Cr + Fe (rest) alloy was published in US Patent 1,671,384 in 1928. It is used to improve the wear resistance by further increasing the hardness value. Martensitic high chromium iron alloys were first heat treated to 2.250-2.85% C + 0.5-1.25% Mn + 0.25-1.0% Si + 24-30% Cr + Fe (rest) alloy of HC250 from US Patent No. 1,245,552 in 1917. In this case, scratch resistance under low stress is improved and used above the austenitic high chromium iron alloy.

그러나 상기와 같이 마르텐사이트계 및 오스테나이트계 고크롬 철계합금의 내마모성을 향상시켜도 그 정도에는 한계가 있으며 과공정 고크롬 철계 합금보다는 저응력 긁힘 마모에서 내마모성이 열등하다.However, even if the wear resistance of the martensitic and austenitic high chromium iron alloys is improved as described above, there is a limit to the wear resistance, and the wear resistance is inferior to the low stress scratch wear than the over-process high chromium iron alloys.

이에 본 발명자는 조대한 일차탄화물을 함유하고 있는 과공정 고크롬 철계합금 보다도 저응력 긁힘 내마모성이 우수하면서 동시에 충격인성이 아공정 고크롬 철계합금탄화물의 높은 값을 가지는 아공석 고크롬 복합탄화물계 육성용접용 합금을 제공하기 위하여 연구와 실험을 행하고, 그 결과에 근거하여 본 발명을 제안하게 된 것이다.Accordingly, the present inventors have improved low-abrasion scratch resistance and high toughness of high-process iron chromium-based carbides with low stress scratch resistance compared to over-process high-chromium iron-based alloys containing coarse primary carbides. In order to provide a welding alloy, researches and experiments have been conducted, and the present invention has been proposed based on the results.

본 발명은 합금성분 및 그 함량을 적절히 제어하므로서, 과공정 고크롬 철계 합금보다 저응력 긁힘 내마모성이 우수하면서 동시에 충격인성은 아공정 고크롬 철계합금의 높은값을 가지는 충격인성 및 내마모성이 우수한 아공정 고크롬복합 탄화물계 합금을 제공하고자 하는데, 그 목적이 있다.According to the present invention, the alloy component and its content are properly controlled, and thus, the low stress scratch wear resistance is superior to the hypereutectic high chromium iron alloy, and the impact toughness is superior to the impact toughness and abrasion resistance having a high value of the sub process high chromium iron alloy. An object of the present invention is to provide a high chromium composite carbide-based alloy.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

본 발명은 중량%로, C : 2.0-4.5%, Cr : 12-25%. Mn : 0.1-3%. Si : 0.1-1%, Nb : 1-10%, Mo : 1-10%, W : 1-10%, V : 0.1-2%, 나머지 : Fe 및 기타 불가피한 불순물로 조성되고, 상기 C+Cr 함량이 조대한 일차크롬계 탄화물[(Cr,Fe)7C3]을 석출하지 않는 아공정 고크롬 탄화물계 합금범위인 충격인성 및 내마모성이 우수한 아공정 고크롬 복합탄화물계 합금에 관한 것이다The present invention is by weight, C: 2.0-4.5%, Cr: 12-25%. Mn: 0.1-3%. Si: 0.1-1%, Nb: 1-10%, Mo: 1-10%, W: 1-10%, V: 0.1-2%, remainder: Fe and other unavoidable impurities, the C + Cr The present invention relates to a low eutectic high chromium composite carbide alloy having excellent impact toughness and abrasion resistance, which does not precipitate coarse primary chromium carbide [(Cr, Fe) 7 C 3 ].

이하, 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

상기한 목적을 달성하기 위하여 본 발명에서는 상기와 같이 합금을 조성함이 바람직한데 그 이유는 다음과 같다.In order to achieve the above object, in the present invention, it is preferable to form an alloy as described above.

C는 철을 강화시켜주는 원소로서 재료의 경도를 증가시킨다. 본 발명에서는 C는 크롬, Mo, W, Nb, V등과 결합하여 고경질의 탄화물을 형성하고, 나머지는 이들 탄화물을 둘러싸는 기지조직 중에 고용된다. 따라서 본 발명에 있어서의 탄소첨가 함량은 내마모성에 절대적으로 기여하는 탄화물을 형성할 수 있는 2.0%이상이어야 하며, 4.5%이상 첨가되었을 경우에는 취성이 열악해지면서 오히려 내마모성을 저해하게 되므로 첨가량의 하한치는 2.0%, 상한치는 4.5%로 한정함이 바람직하다.C is an iron strengthening element that increases the hardness of the material. In the present invention, C combines with chromium, Mo, W, Nb, V and the like to form a hard carbide, and the remainder is dissolved in the matrix structure surrounding these carbides. Therefore, the content of carbon in the present invention should be 2.0% or more capable of forming carbides which contribute absolutely to the wear resistance, and if it is added more than 4.5%, the brittleness becomes poor and rather the wear resistance is impaired. It is preferable to limit 2.0% and an upper limit to 4.5%.

Cr은 본 발명의 합금에 있어서 필수적인 원소이다. 탄소 및 철과의 결합으로 값이 싸면서도 내마모성이 우수한 경질의 크롬계탄화물을 형성하고, 내산화성을 향상시킨다. 크롬계 탄화물을 형성하기 위해서는 12%이상 첨가되어야 하며, 25%이상은 내마모성 개선효과가 뚜렷하지 않으며 동시에 경제성이없으므로 첨가량의 하한치는 12%, 상한치는 25%로 한정함이 바람직하다.Cr is an essential element in the alloy of the present invention. Coupling with carbon and iron forms hard chromium carbides which are inexpensive and have excellent wear resistance and improve oxidation resistance. In order to form chromium carbide, 12% or more must be added, and 25% or more is not obviously improved in wear resistance and at the same time economical, so the lower limit of the added amount is preferably limited to 12% and the upper limit to 25%.

Nb은 본 발명의 합금에 있어서 필수적인 원소이다. 탄소와의 결합으로 내마모성이 우수한 경질의 나오비움계 탄화물을 형성한다. 니오비움계 탄화물을 형성하기 위해서는 1%이상 첨가되어야 하며, 10%이상은 내마모성 개선효과가 뚜렷하지 않으며 동시에 경제성이 없으므로 첨가량의 하한치는 1%, 상한치는 10%로 한정함이 바람직하다.Nb is an essential element in the alloy of the present invention. Coupling with carbon forms a hard naobium carbide having excellent wear resistance. In order to form niobium carbide, at least 1% should be added, and at least 10% is not abrasion resistance improving effect and economical at the same time, the lower limit of the addition amount is preferably limited to 1%, the upper limit is 10%.

V은 본 발명의 합금에 있어서 필수적인 원소이다. 탄소와의 결합으로 내마모성이 우수한 경질의 미세한 바나디움계탄화물을 형성하여 내마모성을 향상시킨다. 바나디움계 탄화물을 형성하기 위해서는 0.1%이상 첨가되어야 하며, 2%이상은 내마모성 개선효과가 뚜렷하지 않으며 동시에 취성을 갖게되며, 경제성이 없으므로 첨가량의 하한치는 0.1%, 상한치는 2%로 한정함이 바람직하다.V is an essential element in the alloy of the present invention. Bonding with carbon forms a hard fine vanadium carbide having excellent wear resistance, thereby improving wear resistance. In order to form vanadium carbide, 0.1% or more must be added, and more than 2% is not obviously effective in improving wear resistance, and brittle, and since it is not economical, the lower limit of addition amount is preferably limited to 0.1% and the upper limit to 2%. Do.

Mo 및 W은 본 발명의 합금에 있어서 필수적인 원소이다. 탄소와의 결합으로 내마모성이 우수한 경질의 크롬, 몰리브덴, 텅스턴계 복합탄화물을 형성하여 내마모성을 향상시킨다. 크롬, 몰리브덴, 텅스턴계 복합탄화물을 형성하기 위해서는 몰리브덴(Mo) 및 텅스텐(W)이 각각 1%이상 첨가되어야 하며, 10%이상은 내마모성 개선효과가 뚜렷하지 않으며 동시에 경제성이 없다. 따라서 첨가량의 하한치는 몰리브덴(Mo) 및 텅스텐(W)을 각각 1%, 상한치는 각각 10%로 한정함이 바람직하다.Mo and W are essential elements in the alloy of the present invention. Bonding with carbon forms hard chromium, molybdenum and tungsten-based composite carbides having excellent wear resistance, thereby improving wear resistance. In order to form chromium, molybdenum and tungsten-based composite carbide, molybdenum (Mo) and tungsten (W) should be added at least 1%, respectively, and at least 10% is not obviously improved in wear resistance and at the same time economical. Therefore, the lower limit of the added amount is preferably limited to 1% of molybdenum (Mo) and tungsten (W), respectively, and to 10% of the upper limit.

Mn은 본 발명의 합금에서 응고시 용강중의 용존산소를 제거해주는 역할을 하므로 1%이하 첨가시는 그 기능이 미악하며. 3%이상 첨가시는 오스테나이트의 경도를 저하시켜 결국 내마모성을 저해하는 단점을 야기하므로 첨가량의 하한치는 0.1%, 상한치는 3%로 한정함이 바람직하다.Mn plays a role of removing dissolved oxygen in molten steel during solidification in the alloy of the present invention, and its function is poor when added below 1%. When 3% or more is added, the hardness of austenite is lowered, which in turn causes a disadvantage of inhibiting abrasion resistance. Therefore, the lower limit of the added amount is preferably limited to 0.1% and the upper limit to 3%.

Si는 본 발명의 합금에 있어서 용강 중의 산소를 탈산시키는 기능을 가지고 있다. 0.1%이하 첨가시는 그 기능이 미약하며, 1%이상 첨가시는 본 발명재의 취성 및 내마모성을 저해하는 퍼얼라이트상을 유발시키므로 첨가량의 하한치는 0.1%, 상한치는 1%로 한정함이 바람직하다.Si has a function of deoxidizing oxygen in molten steel in the alloy of the present invention. When it is added below 0.1%, its function is weak, and when it is added above 1%, it causes a pearlite phase that impairs brittleness and abrasion resistance of the present invention. Therefore, the lower limit of the added amount is preferably limited to 0.1% and the upper limit to 1%. .

또한 본 발명에서는 상기와 같은 조성 및 함량범위로 합금을 조성시 탄소+크롬 함량이 조대한 일차크롬계 탄화물[(Cr, Fe)7C3]을 석출하지 않는 아공정 고크롬 탄화물계 합금범위(Metal Handbook, Vol.8,8th edition, Metal Oark, Phio, ASM.1973.P.402)가 되도록 해야만 하는데, 그 이유는 다음과 같다.In addition, in the present invention, when forming the alloy in the composition and content range as described above, the sub-process high chromium carbide-based alloy range does not precipitate the primary chromium-based carbide [(Cr, Fe) 7 C 3 ] Metal Handbook, Vol. 8, 8th edition, Metal Oark, Phio, ASM.1973.P. 402).

합금성분중 (탄소+크롬)의 함량이 조대한 일차 크롬계 탄화물[(Cr, Fe)7C3]을 석출하지 않는 아공정 고크롬 탄화물계 합금범위를 가져야 하는 이유로는 과공정 합금의 경우 고충격에 쉽게 떨어져나가는 조대한 일차크롬계상이 존재하고 또한 이들 조대 일차크롬계탄화물이 크랙발생의 시발점이 되어서 충격인성을 저하시키기 때문이다.The reason why the content of (carbon + chromium) in the alloy components should have a range of subprocess high chromium carbide alloys that do not precipitate coarse primary chromium carbides ((Cr, Fe) 7 C 3 ] This is because there are coarse primary chromium phases that easily fall off the impact, and these coarse primary chromium carbides are the starting point of cracking and lower the impact toughness.

이상과 같은 조건을 만족하도록 고크롬 탄화물계 합금을 조성하게 되면, 본 발명의 합금은 내충격성에 나쁜 영향을 주는 조대 일차 크롬계 탄화물이 없는 아공정 합금계가 되며, 동시에 그 합금조직내에 미세한 니오비움, 바나듐, 몰리브덴 및 텅스텐 탄화물을 가지게 되어, 아공정 합금계의 단점인 열악한 내마모성을 개선시킬 수 있다.When the high chromium carbide-based alloy is formed to satisfy the above conditions, the alloy of the present invention becomes a sub-alloy-based alloy without coarse primary chromium carbides that adversely affect the impact resistance, and at the same time, fine niobium in the alloy structure And vanadium, molybdenum and tungsten carbides, thereby improving poor abrasion resistance, which is a disadvantage of the subprocess alloy system.

상기한 바와 같은 본 발명의 합금은 통상 주조법 육성용접법등의 방법에 의해 제조되는데, 주로 육성용접에 의해 제조된다.The alloy of the present invention as described above is usually produced by a method such as casting method growth welding method, mainly produced by growth welding.

이하, 실시예를 통하여 본 발명에 대하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예]EXAMPLE

하기표 1과 같은 합금 성분계를 갖는 합금을 육성용접에 의해 제조했다. 이때, 육성용접에 의한 본 발명재의 합금화는 먼저 용접시 희석률을 고려해서 용착금속이 본 발명재의 합금성분이 되는 고합금의 용접봉을 이용하여 용접봉과 모재간에 아크를 발생시키고 아크열에 의해 용접봉이 녹아 모재 표면에 용착되게 하여 제조하였다.An alloy having an alloy component system as shown in Table 1 was produced by wet welding. At this time, the alloying of the present invention by the growth welding first takes into account the dilution rate during welding, using the high-alloy electrode that the weld metal is an alloy component of the present invention, using the high-alloy electrode generates an arc between the electrode and the base material, and the electrode melts by arc heat It was prepared by welding to the surface of the base material.

[표 1]TABLE 1

상기와 같이 제조된 육성용접 합금의 육성용접부의 미세조직이 조대한(50㎛)일차 크롬탄화물이 있는 과공정 조직인지 아니면 일차 탄화물이 없는 아공정조직인지의 유무 그리고 이들시료의 내충격 특성을 나타내는 파괴인성값인 KIc값 및 마모량을 평가하고, 그 결과를 하기 표 2에 나타내었다.The microstructure of the welded weld alloy of the welded welded alloy prepared as described above is a hyper-processed structure with coarse (50 µm) primary chromium carbide or a sub-processed structure without primary carbide, and the fracture resistance showing the impact resistance characteristics of these samples. The K Ic value and the wear amount, which are toughness values, were evaluated, and the results are shown in Table 2 below.

이때, 파괴인성값 측정은 ASTM-E399에 따랐으며, 사용한 압출인장시편( Compact Tension : C-T시편)은 두께 5㎜, 두께/폭비는 1/4였다.At this time, the fracture toughness value was measured according to ASTM-E399, and the extruded tensile specimen (Compact Tension: C-T specimen) used had a thickness of 5 mm and a thickness / width ratio of 1/4.

그리고 마모량 측정은 저응력 건식 긁힘마모 시험기(Dry Sand Rubber Wheel Abrasive Test : ASTM STandard G65-85)에서 하중 20㎏, 마모거리 : 4300m, 회전속도 : 200RPM, 사용모래직경 : 0.15-0.3㎜인 동일 조건에서 시험했을때의 마모량을 나타낸 것이다.And the amount of wear was measured under the low stress dry sand wheel abrasive test (ASTM STandard G65-85) load 20㎏, wear distance: 4300m, rotational speed: 200RPM, use sand diameter: 0.15-0.3㎜ It shows the amount of wear when tested at.

[표 2]TABLE 2

상기 표 2에서 알 수 있는 바와 같이, 과공정 조직을 가지는 종래재(1-3)의 경우 내마모성은 아공정 조직을 가진 비교재(1,2)보다 우수하나 파괴인성값은 열악함을 알 수 있다. 그러나 아공정 조직인 발명재(1-3)의 경우를 살펴보면 내마모성은 과공정인 종래재(1-3)보다 우수하고 동시에 충격인성은 아공정조직인 비교재(1-2)의 파괴인성값과 동등 이상이며 종래재(1-3)의 파괴인성값 보다는 높은 값을 가졌음을 알 수 있다. 따라서 본 발명재(1-3)의 경우 내마모성은 과공정 합금이상이면서 충격인성은 아공정합금의 특성을 지닌 것으로서 고충격이 부가되는 마모조건에서도 뛰어난 내마모성 특성을 발취할 수 있음을 알 수 있다.As can be seen in Table 2, in the case of the conventional material (1-3) having an overprocessed structure, the wear resistance is superior to that of the comparative material (1,2) having a subprocessed structure, but the fracture toughness value is poor. have. However, in the case of the invention material (1-3), which is a subprocess structure, the wear resistance is superior to the conventional material (1-3), which is overprocess, and the impact toughness is equal to or higher than the fracture toughness value of the comparative material (1-2), which is the subprocess structure. It can be seen that it had a higher value than the fracture toughness value of the conventional material (1-3). Therefore, in the case of the present invention (1-3) it can be seen that the wear resistance is more than the hypereutectic alloy, but the impact toughness has the characteristics of the sub-alloy alloy, and even excellent wear resistance characteristics can be extracted even under high wear conditions.

상술한 바와 같이, 본 발명은 합금성분 및 그 함량을 적절히 제어하여 아공정 고크롬 탄화물계 합금을 조성하므로서, 내마모성은 과공정 합금 이상 이면서 충격인성은 아공정합금의 특성을 지닌 것으로서 고충격이 부가되는 마모조건에서도 뛰어난 내마모성 특성을 발취할 수 있는 효과가 있다. 특히, 고응력이 부가되는 가혹한 마모조건의 파쇄기, 롤러 밀 등에서는 그간 극심한 마모 발생으로 설비의 열화가 심했으나 우수한 고인성 내마모 품질특성을 지닌 본 발명재의 개발은 향후 이 분야의 많은 응용범위의 확대 및 설비수명연장 효과가 있다.As described above, according to the present invention, the alloy component and its content are properly controlled to form a sub-process high chromium carbide-based alloy, and thus the wear resistance is higher than that of the over-process alloy, and the impact toughness has the characteristics of the sub-alloy. It has the effect of extracting excellent wear resistance even under abrasion conditions. In particular, in severe crushing machines, roller mills, etc., where the high stress is applied, deterioration of the equipment due to severe wear has occurred, but the development of the present invention material having excellent toughness and abrasion quality characteristics is expected to have many applications in this field. It has the effect of extending and extending the service life.

Claims (1)

중량%로, C : 2.0-4.5%, Cr : 12-25%. Mn : 0.1-3%. Si : 0.1-1%, Nb : 1-10%, Mo : 1-10%, W : 1-10%, V : 0.1-2%, 나머지 : Fe 및 기타 불가피한 불순물로 조성되고, 상기 C+Cr 함량이 조대한 일차크롬계 탄화물[(Cr,Fe)7C3]을 석출하지 않는 아공정 고크롬 탄화물계 합금범위인 것을 특징으로 하는 충격인성 및 내마모성이 우수한 아공정 고크롬 복합탄화물계 합금.By weight, C: 2.0-4.5%, Cr: 12-25%. Mn: 0.1-3%. Si: 0.1-1%, Nb: 1-10%, Mo: 1-10%, W: 1-10%, V: 0.1-2%, remainder: Fe and other inevitable impurities, and the C + Cr A low eutectic high chromium composite carbide alloy having impact toughness and abrasion resistance, characterized in that it is in the range of subprocess high chromium carbide alloys that do not precipitate coarse primary chromium carbides [(Cr, Fe) 7 C 3 ].
KR1019950048674A 1995-12-12 1995-12-12 The hyper eutectic high chrome composit carbide line alloy for excellent wear resistance and impact toughness KR100256366B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950048674A KR100256366B1 (en) 1995-12-12 1995-12-12 The hyper eutectic high chrome composit carbide line alloy for excellent wear resistance and impact toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950048674A KR100256366B1 (en) 1995-12-12 1995-12-12 The hyper eutectic high chrome composit carbide line alloy for excellent wear resistance and impact toughness

Publications (2)

Publication Number Publication Date
KR970043233A KR970043233A (en) 1997-07-26
KR100256366B1 true KR100256366B1 (en) 2000-05-15

Family

ID=19439238

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950048674A KR100256366B1 (en) 1995-12-12 1995-12-12 The hyper eutectic high chrome composit carbide line alloy for excellent wear resistance and impact toughness

Country Status (1)

Country Link
KR (1) KR100256366B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160010930A (en) * 2014-07-21 2016-01-29 국민대학교산학협력단 (High wear-resistant cold work tool steels with enhanced impact toughness
KR102187655B1 (en) * 2020-05-27 2020-12-07 주식회사 정원엔지니어링 Grinding roll and table of pulverizer having a good wear resistant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179947A (en) * 1992-12-15 1994-06-28 Kawasaki Steel Corp Composite roll made by centrifugal casting
KR950018588A (en) * 1993-12-28 1995-07-22 조말수 Chromium carbide alloy with excellent wear resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179947A (en) * 1992-12-15 1994-06-28 Kawasaki Steel Corp Composite roll made by centrifugal casting
KR950018588A (en) * 1993-12-28 1995-07-22 조말수 Chromium carbide alloy with excellent wear resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160010930A (en) * 2014-07-21 2016-01-29 국민대학교산학협력단 (High wear-resistant cold work tool steels with enhanced impact toughness
KR102187655B1 (en) * 2020-05-27 2020-12-07 주식회사 정원엔지니어링 Grinding roll and table of pulverizer having a good wear resistant

Also Published As

Publication number Publication date
KR970043233A (en) 1997-07-26

Similar Documents

Publication Publication Date Title
JP6211099B2 (en) High performance low alloy wear resistant steel sheet and method for producing the same
KR102128026B1 (en) Ultrahigh-strength, high toughness, wear-resistant steel plate and manufacturing method thereof
EP2881486B1 (en) Abrasion resistant steel plate with high strength and high toughness, and process for preparing same
AU2002211409B2 (en) Grain-refined austenitic manganese steel casting having microadditions of vanadium and titanium and method of manufacturing
JP2016509630A (en) High toughness low alloy wear resistant steel sheet and method for producing the same
EP2881485B1 (en) Abrasion resistant steel plate with high strength and high toughness, and process for preparing same
AU2002211409A1 (en) Grain-refined austenitic manganese steel casting having microadditions of vanadium and titanium and method of manufacturing
Choo et al. Correlation of microstructure with the wear resistance and fracture toughness of hardfacing alloys reinforced with complex carbides
KR100256366B1 (en) The hyper eutectic high chrome composit carbide line alloy for excellent wear resistance and impact toughness
KR960006038B1 (en) Chrom-carbide type alloy
KR100256367B1 (en) The manufacturing method for high chrome carbide line alloy and same product
KR100256368B1 (en) Hypereutectoid high chrome carbide type alloy for built-up welding
EP0692548B1 (en) Wear-resisting high-manganese cast steel
KR100198972B1 (en) Complex carbide
JP3005363B2 (en) Wear resistant high manganese cast steel
SU1725757A3 (en) Wear-resistant cast iron
JP4367992B2 (en) Agglomerated mineral wear material
RU2149207C1 (en) Alloyed steel
JP3217427B2 (en) Lump-resistant mineral wear material
CA2159358C (en) Wear-resisting high-manganese cast steel
JPS63118054A (en) High-speed tool steel having superior toughness
HU204104B (en) High-strength, wear-resistant, weldable steel
NZ290640A (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130213

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20140221

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee