KR100254998B1 - A method for treating waste water of livestock - Google Patents

A method for treating waste water of livestock Download PDF

Info

Publication number
KR100254998B1
KR100254998B1 KR1019970040339A KR19970040339A KR100254998B1 KR 100254998 B1 KR100254998 B1 KR 100254998B1 KR 1019970040339 A KR1019970040339 A KR 1019970040339A KR 19970040339 A KR19970040339 A KR 19970040339A KR 100254998 B1 KR100254998 B1 KR 100254998B1
Authority
KR
South Korea
Prior art keywords
nitrogen
livestock wastewater
hour
livestock
wastewater
Prior art date
Application number
KR1019970040339A
Other languages
Korean (ko)
Other versions
KR19980032307A (en
Inventor
최의소
음영진
Original Assignee
최의소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최의소 filed Critical 최의소
Priority to KR1019970040339A priority Critical patent/KR100254998B1/en
Publication of KR19980032307A publication Critical patent/KR19980032307A/en
Application granted granted Critical
Publication of KR100254998B1 publication Critical patent/KR100254998B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5209Regulation methods for flocculation or precipitation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE: A high efficiency treatment method of livestock wastewater is provided, which can apply to small and large scale livestock farming facilities without any additional treatment equipment and by a simple operation method to meet the discharge threshold of effluent water of the present regulation. CONSTITUTION: The method comprises following steps: (i) an excess nitrogen removing step for removing excess ammonia nitrogen by feeding air to livestock wastewater of high concentration at a rate of 3-12 liter per min. for 30-50 hours; (ii) a microorganism reaction step for converting nitric nitrogen to nitrous nitrogen and for denitrification by aerating livestock wastewater intermittently for 1-1.5 hours and by keeping anoxic state for 5-6 days repeatedly; and (iii) a feeding step of coagulating agent for removing suspended matter and phosphorus in denitrified wastewater.

Description

고효율 축산폐수처리방법High efficiency livestock wastewater treatment method

본 발명은 고효율 축산폐수처리방법에 관한 것으로, 더욱 상세하게는 축산 폐수내의 과량의 질소를 미리 제거함으로써 질산화미생물을 활성화시켜 질산화를 용이하게 함과 동시에 COD/N 비를 높여 탈질효과를 향상시키는 개량된 고효율 축산 폐수처리방법에 관한 것이다.The present invention relates to a high-efficiency livestock wastewater treatment method, and more particularly, to improve the denitrification effect by activating nitrifying microorganisms to facilitate nitrification by simultaneously removing excess nitrogen in the livestock wastewater. High efficiency livestock wastewater treatment method.

수질오염의 여러 원인중 축산폐수는 전체 폐수발생량의 0.7%에 불과하나 BOD로는 8%에 이른다고 알려져 있다. 축산폐수에 의한 심각한 수질오염을 방지하기 위하여 종래 여러 공법이 도입되어 시행되었으나 어느 방법도 현행 방류수 기준을 만족시키는 결과를 주지 못하였다. 폐수중에 존재하는 여러 유기물질과 질소중 유기물질은 미생물에 의하여 분해되어 CO2로 변화되어 정화되며, 유기질소는 미생물에 의하여 NH4N로 분해되어 수중에 존재하는 용존산소량에 따라 질산화되어 NO2N 및/또는 NO3N 상태로 변화된다(질산화과정). 상기 NO2N 또는 NO3N은 미생물 및 유기물질이 존재하는 상태에서 N2, CO2및 H2O로 분해되어 정화된다(탈질소화과정). 그러나, 축산폐수를 정제함에 있어서는 다음과 같은 문제점이 있다. 즉 축산폐수 중에는 질소가 COD에 비하여 상대적으로 많기 때문에 탈질소화과정이 용이하지 않고 또한 높은 질소농도는 질산화미생물에 부정적으로 작용하여 질산화과정이 어려워, 결과적으로 처리수내에는 NH4N, NO2N 및 NO3N 농도가 높아진다.Among the many causes of water pollution, livestock wastewater is known to account for only 0.7% of the total wastewater, but 8% as BOD. In order to prevent serious water pollution caused by livestock wastewater, various methods have been introduced and implemented. However, none of the methods have satisfied the current effluent standard. Various organic materials and organic materials of the nitrogen present in the waste water are decomposed by a microorganism and purification is changed into CO 2, organic nitrogen is nitrated according to the amount of dissolved oxygen, which is decomposed into NH 4 N by the microorganisms present in the underwater NO 2 Change to N and / or NO 3 N state (nitrification). The NO 2 N or NO 3 N is decomposed and purified to N 2 , CO 2 and H 2 O in the presence of microorganisms and organic substances (denitrification process). However, there are the following problems in purifying livestock wastewater. In other words, the denitrification process is not easy because nitrogen is relatively higher in the livestock wastewater than COD, and the high nitrogen concentration adversely affects nitrification microorganisms, making nitrification difficult. As a result, NH 4 N, NO 2 N And NO 3 N concentration becomes high.

종래에 적용된 축산폐수처리방법에는 SBR 및 C-SBR 공법이 있었으나 축산 폐수를 직접처리하는 SBR 공법(Sequencing Batch Reactor)에 있어서는, 반응조내의 과량의 질소(NH4N)에 의한 질산화미생물 저해작용으로 인하여 처리수내에 NH4N가 높고 COD/N비가 낮기 때문에 탈질이 어려워 처리수에 NO2N 및 NO3N가 높아 질소제거효율이 낮다고 알려져 있다. 또한 부족한 탄소를 주입시키는 C-SBR의 경우는 질소제거효율은 상승되나 소요체류시간이 길어진다는 문제점이 있었다.Conventionally applied livestock wastewater treatment methods include SBR and C-SBR, but in the SBR process (Sequencing Batch Reactor) that directly treats livestock wastewater, it is due to the nitrification inhibitory effect of excess nitrogen (NH 4 N) in the reactor. Because of high NH 4 N and low COD / N ratio in the treated water, it is known that the denitrification is difficult and the nitrogen removal efficiency is low due to the high NO 2 N and NO 3 N in the treated water. In addition, in the case of C-SBR injecting insufficient carbon, the nitrogen removal efficiency is increased, but the required residence time is long.

본 발명은 상기와 같은 축산폐수를 처리함에 있어 고농도 축산폐수처리에 근본적으로 내재하는 문제점을 해결하기 위하여 종래 여러 폐수처리방법을 검토하여 반복실험을 한 결과 발명된 것이다.In order to solve the problems inherent in the high concentration livestock wastewater treatment in the treatment of livestock wastewater as described above, the present invention has been invented as a result of repeated experiments by examining various conventional wastewater treatment methods.

본 발명은 축산폐수내의 과량의 질소를 미리 제거함으로써 질산화미생물을 활성화시켜 질산화를 용이하게 함과 동시에 COD/N비를 높여 탈질효과를 향상시키는 개량된 축산폐수처리방법을 제공함을 목적으로 한다. 또한 본 발명은 간단하면서도 조속한 방법으로 탈질효과를 향상시키는 개량된 축산폐수처리방법을 제공함을 목적으로 한다.It is an object of the present invention to provide an improved livestock wastewater treatment method which enhances denitrification effect by activating nitrifying microorganisms to facilitate nitrification and at the same time increasing the COD / N ratio by removing excess nitrogen in the livestock wastewater in advance. It is also an object of the present invention to provide an improved livestock wastewater treatment method for improving the denitrification effect in a simple and rapid manner.

상기와 같은 목적을 달성하기 위하여 본 발명은 과량의 공기를 주입하여 축산폐수내에 존재하는 과량의 질소를 제거하는 단계와, 상기 과량질소제거단계를 통과한 축산폐수에 산소긴장상태를 유지하여 질소를 NO2N 까지만 질산화하기 위한 미생물반응단계와, 상기 미생물반응단계에서 제거되지 아니한 부유물질 및 인을 제거하고 바람직한 색도로 조절하기 위한 약품주입단계로 이루어진다.In order to achieve the above object, the present invention injects excess air to remove excess nitrogen present in the livestock wastewater, and maintains the oxygen tension in the livestock wastewater passing through the excess nitrogen removal step to maintain nitrogen. Microbial reaction step for nitrifying only up to NO 2 N, and drug injection step for removing the suspended solids and phosphorus not removed in the microbial reaction step and to adjust to the desired color.

이하 본 발명의 구성을 실시예에 의하여 상세히 설명하고자 하나, 본 발명은 이에 한정되는 것은 아니다. 또한 본 발명은 바람직하게는 축산폐수상징액을 대상으로 하는 것이나 이에 한정하는 것은 물론 아니다.Hereinafter, the configuration of the present invention will be described in detail by examples, but the present invention is not limited thereto. In addition, the present invention preferably targets the livestock wastewater supernatant, but is not limited thereto.

(실시예)(Example)

실시예 1Example 1

a. 과량질소제거단계a. Excess Nitrogen Removal Step

축산폐수중 분과 같은 침전가능한 고형물은 계(system)외에서 침전시켜 제거하고 자체적으로 pH가 9인 상징액만을 공기스트리핑조(저류조)에 유입한 후 20 ∼23℃에서 5.6L/L/min (공기량/폐수량/분) 비율로 공기를 주입하여 암모니아성 이온을 암모니아로 전환시켜 제거하였다. 이때 체류시간은 48시간을 유지하였다.즉, 폐수중의 암모니아이온은 암모니아와 다음과 같은 반응식으로 평행을 이루고 있으나,Precipitable solids such as powder from livestock wastewater are removed by sedimentation outside the system, and only supernatant with a pH of 9 is introduced into the air stripping tank (storage tank), and then 5.6 L / L / min (air volume / Waste water volume / min) was injected into the air to convert ammonia ions to ammonia and removed. At this time, the retention time was maintained for 48 hours. In other words, the ammonia ion in the wastewater was parallel with the ammonia in the following equation.

NH3+ H2O = NH4 ++OH- NH 3 + H 2 O = NH 4 + + OH -

주입되는 공기에 의해 상기 평형은 파괴되어 왼쪽방향으로 반응이 진행되어 암모니아를 제거하는 것이며, 이때 축산폐수상징액의 온도 및 pH 정도가 제거되는 암모니아양을 결정하는 인자로 작용된다. 즉 pH가 높을수록 또한 온도가 높을수록 암모니아제거율은 높아진다.The equilibrium is destroyed by the injected air, and the reaction proceeds to the left direction to remove ammonia. At this time, the temperature and pH of the livestock wastewater supernatant are acted as a factor for determining the amount of ammonia to be removed. That is, the higher the pH and the higher the temperature, the higher the ammonia removal rate.

b. 미생물반응단계b. Microbial reaction stage

상기 과량질소제거단계후의 대부분의 암모니아성 질소가 제거된 축산폐수 상징액을 미생물반응조에 유입하여 수온 17℃ 내지 25℃에서 공기주입 (포화상태) 1시간 및 공기미주입 (무산소상태) 1시간 30분 (ON/OFF Aearation)을 5일동안 반복하면서 질산화 및 탈질소화에 관여하는 미생물에 대한 산소긴장상태를 유지하여 질산화과정 및 탈질소화과정을 조정함으로써 대부분의 질소를 N2로 분해하였다. 상징액중의 유기질소는 가수분해되어 NH4N로 분해되며 질산화미생물이 관여하여 존재하는 용존산소량에 따라 NO2N 및/또는 NO3N 상태로 변화되고, 상기 NO2N 또는 NO3N는 무산소상태에서 탈질소화미생물이 관여하여 탈질소화되어 N2가스로 분해된다. 본 발명자는 COD/N 비가 낮은 축산폐수에서는 질소를 NO3N 상태가 아닌 NO2N 상태로 질산화시켜, 탈질소하면 탈질효율이 향상된다는 발명적 고려하에, 상기와 같이 최적화된 공기주입 및 미주입 상태를 반복하여 실시함으로써 질산화 및 탈질소화에 관여하는 미생물활동을 조정하여 질소를 NO2N 상태로 질산화하여 최종적으로 탈질소화 하였다.After the excess nitrogen removal step, the livestock wastewater supernatant from which most of the ammonia nitrogen was removed was introduced into the microbial reactor, and air injection (saturated state) for 1 hour and no air injection (oxygen state) for 1 hour and 30 minutes were carried out at a water temperature of 17 ° C to 25 ° C. (ON / OFF Aearation) was repeated for 5 days to maintain most of the oxygen tension of the microorganisms involved in nitrification and denitrification to adjust the nitrification and denitrification process to decompose most of the nitrogen to N 2 . The organic nitrogen in the supernatant is hydrolyzed to be decomposed into NH 4 N and changed to NO 2 N and / or NO 3 N state according to the amount of dissolved oxygen present due to nitrifying microorganisms involved, and the NO 2 N or NO 3 N is anoxic In the state, denitrification microorganisms are involved to denitrify and decompose into N 2 gas. The present inventors have optimized the air injection and non-injection as described above under the consideration that the nitrification of nitrogen to NO 2 N state rather than NO 3 N state in the livestock wastewater with low COD / N ratio, the denitrification efficiency is improved. By repeating the state, the microorganisms involved in nitrification and denitrification were adjusted to nitrate nitrogen to NO 2 N state and finally denitrification.

c. 약품주입단계c. Drug injection stage

미생물반응단계에서 유출된 유출수에 FeCl3를 투입하여 인, 부유물질을 응집시켜 침전제거하였다. 본 단계에서 투입되는 FeCl3는 미생물반응단계에서 제거되지 아니한 오염물질을 응집시키는 역할을 할 뿐 아니라, 최종유출수의 색도를 조절 하는 기능을 포함한다. 즉, 축산폐수를 본 발명에서와 같이 생물학적으로 처리하는 경우 최종유출수의 색도가 매우 높아 미관상 바람직하지 않으므로 본 발명의 실시예와 같이 약품주입에 의한 최종유출수 색도조절과정은 축산폐수처리방법에 있어서 필수적인 최종단계인 것이다. 본 단계에 있어서 응집제로는 FeCl3를 사용하였으나 응집작용을 하는 각종 polymer를 사용할 수 있음은 물론이다.FeCl 3 was added to the effluent flowing out of the microbial reaction stage to coagulate phosphorus and suspended solids to precipitate out. FeCl 3 introduced in this step not only serves to agglomerate contaminants that have not been removed in the microbial reaction step, but also includes a function of controlling the color of the final effluent. In other words, when the livestock wastewater is biologically treated as in the present invention, the color of the final outflow water is very high, so it is not aesthetically desirable. Thus, the process of controlling the color of the final outflow water by chemical injection is essential in the livestock wastewater treatment method. It is the final step. FeCl 3 was used as a coagulant in this step, but various polymers having coagulation can be used, of course.

실시예 2Example 2

본 발명자는 과량질소제거단계에서 암모니아제거율을 결정하는 인자는 축산폐수상징액의 온도 및 공기량, pH 정도라고 판단하여, 자체 pH가 8.3인 상기 상징액의 온도를 20∼23℃로 유지하고, 주입공기량을 5.6L/L/min로 조정하면서, 체류시간은 48시간으로 조정하였다.The present inventors determine that the factor for determining the ammonia removal rate in the excess nitrogen removal step is the temperature, air amount, and pH of the livestock wastewater supernatant, and maintains the temperature of the supernatant liquid having its own pH of 8.3 to 20 to 23 ° C. The residence time was adjusted to 48 hours while adjusting to 5.6 L / L / min.

이후의 미생물반응단계 및 약품주입단계는 실시예 1과 동일하게 실시하였다.Subsequent microbial reaction step and drug injection step was carried out in the same manner as in Example 1.

실시예 3Example 3

본 발명자는 과량질소제거단계에서 체류시간을 30시간 및 40시간으로 변화시키면서 자체 pH가 9인 축산폐수상징액의 온도를 20∼23℃로 유지하고, 주입공기량을 5.6L/L/min 비율로 공기를 주입하여 과량질소를 제거하였다. 이후의 미생물조정단계 및 약품주입단계는 실시예 1과 동일하게 실시하였다.The present inventors maintain the temperature of the livestock wastewater solution having a pH of 9 at 20 to 23 ° C. while changing the residence time to 30 hours and 40 hours in the excess nitrogen removal step, and maintains the injected air amount at a rate of 5.6 L / L / min. Excess nitrogen was removed by injection. Subsequent microbial adjustment step and drug injection step was performed in the same manner as in Example 1.

실시예 4Example 4

본 발명자는 과량질소제거단계에서 주입공기량을 3L/L/min 및 4L/L/min으로 변화시키면서 자체 pH가 9인 축산폐수상징액의 온도를 20∼23℃, 체류시간을 48 시간으로 유지하여 과량질소를 제거하였다. 이후의 미생물조정단계 및 약품주입 단계는 실시예 1과 동일하게 실시하였다.The present inventors maintained the temperature of the livestock wastewater supernatant with its own pH of 20 to 23 ° C. and the residence time at 48 hours while changing the injected air amount to 3L / L / min and 4L / L / min in the excess nitrogen removal step. Nitrogen was removed. Subsequent microbial adjustment step and drug injection step was performed in the same manner as in Example 1.

실시예 5Example 5

본 발명자는 실시예 1의 과량질소제거단계후에 미생물제거단계에서 포기상태를 1시간 30분으로 그리고 무산소상태를 1시간으로 설정하여 5일동안 반복하여 산소긴장 상태를 유지하였으며, 이후 약품주입단계는 실시예 1과 동일하게 실시하였다.The inventors set the aeration state to 1 hour 30 minutes and the anaerobic state to 1 hour in the microbial removal step after the excess nitrogen removal step of Example 1 to maintain the nervous tension repeatedly for 5 days, and then the drug injection step It carried out similarly to Example 1.

실시예 6Example 6

본 발명자는 실시예 1의 과량질소제거단계후에 미생물제거단계에서 포기상태를 1시간, 무산소상태를 1시간 30분으로 설정하여, 체류시간을 6일 및 7일로 유지하였고, 이후 약품주입단계는 실시예 1과 동일하게 실시하였다.The present inventors set the aeration state in the microbial removal step to 1 hour and the anaerobic state to 1 hour and 30 minutes after the excess nitrogen removal step of Example 1, and maintained the residence time for 6 days and 7 days, and then the drug injection step was carried out. It carried out similarly to Example 1.

본 발명자는 상기 실시예 1 내지 실시예 6에서, 저류조내의 상징액의 온도를 20℃ 내지 23℃로 유지하였으나,The present inventors maintained the temperature of the supernatant liquid in the storage tank at 20 ° C to 23 ° C in Examples 1 to 6,

상기 온도범위는 다른 결정인자들과 최적화된 온도 범위이며, 15℃ 내지 25℃ 온도범위내에서 본 발명이 실시되어도 동일한 효과를 얻을 수 있다.The temperature range is an optimized temperature range with other determinants, and even if the present invention is carried out within the temperature range of 15 ℃ to 25 ℃ can obtain the same effect.

상기 각 실시예에 의한 각 단계별 수질을 측정한 결과는 다음 표와 같다.The results of measuring the water quality for each step according to each embodiment are shown in the following table.

표에서 A는 축산폐수중 침전가능한 고형물을 미리 침전시켜 제거한 상징액에 대하여 공기주입에 의한 과량질소제거단계전의 수질상태이며, B는 공기주입에 의해 과량질소 (암모니아)가 제거된 후의 수질상태이며, C는 미생물조정단계후의 수질 상태이고, D는 약품 (응집제) 주입후 부유물 및 인이 제거된 최종유출수의 수질 상태이다.In the table, A is the water quality before the excess nitrogen removal step by air injection for the supernatant removed by precipitating the solid precipitated in the livestock wastewater, and B is the water quality after the excess nitrogen (ammonia) is removed by air injection. C is the water quality after the microbial adjustment step, and D is the water quality of the final effluent with suspended solids and phosphorus removed after drug (coagulant) injection.

실시예 1에 의한 각 단계별 수질측정결과Water quality measurement results for each step according to Example 1 〈 조건 〉저류조온도 : 20∼23℃, pH = 9, 공기주입량 5.6L/L/min, 체류기간 48시간, 미생물반응조온도 : 17∼25℃, 포기상태 및 무산소상태 각 1시간및 1시간 30분, 반복기간 5일<Condition> Storage tank temperature: 20 ~ 23 ℃, pH = 9, air injection volume 5.6L / L / min, retention period 48 hours, microbial reaction tank temperature: 17 ~ 25 ℃, aeration and anoxic state 1 hour and 1 hour 30 Minutes, 5 days 항 목Item AA BB CC DD 제거효율(%)Removal efficiency (%) pHpH 9.09.0 8.88.8 8.38.3 6.96.9 -- TCODTCOD 8,0258,025 4,5104,510 900900 240240 9797

항 목Item AA BB CC DD 제거효율(%)Removal efficiency (%) BODBOD 4,4104,410 820820 4242 1212 99.799.7 SSSS 1,4601,460 1,4601,460 7777 2828 98.198.1 TNTN 2,8102,810 500500 110110 4747 98.398.3 TPTP 7575 7575 6363 22 97.397.3 색도Chromaticity 6.66.6 4.54.5 21.821.8 95.795.7 95.495.4 TCOD/TNTCOD / TN 2.92.9 9.09.0 -- -- --

주) pH를 제외한 항목의 단위는 mg/L 임Note) Except for pH, the unit is mg / L.

주) 색도의 단위는 투과도 백분율임Note) The unit of chromaticity is the transmittance percentage.

실시예 2에 의한 각 단계별 수질측정결과Water quality measurement results for each step according to Example 2 〈 조건 〉저류조 온도 : 20∼23℃, pH = 8.3, 공기주입량 5.6L/L/min,체류기간 : 48시간, 미생물반응조온도 : 17∼25℃, 포기상태 및 무산소상태 각 1시간 및 1시간 30분, 반복기간 5일<Condition> Storage tank temperature: 20 ~ 23 ℃, pH = 8.3, air injection volume 5.6L / L / min, retention period: 48 hours, microbial reaction tank temperature: 17-25 ℃, aeration state and anoxic state for 1 hour and 1 hour 30 minutes, repeating 5 days 항 목Item AA BB CC DD 제거효율(%)Removal efficiency (%) pHpH 8.38.3 7.67.6 8.18.1 6.66.6 -- TCODTCOD 8,0258,025 5,1005,100 742742 232232 97.197.1 BODBOD 4,4104,410 924924 3838 1515 99.799.7 SSSS 1,4601,460 1,4601,460 6565 2323 98.498.4 TNTN 2,8102,810 887887 153153 9090 96.896.8 TPTP 7575 7575 6464 22 97.397.3 색도Chromaticity 6.66.6 3.83.8 22.222.2 94.894.8 94.494.4 TCOD/TNTCOD / TN 2.92.9 5.85.8 -- -- --

실시예 3에 의한 각 단계별 수질측정결과Water quality measurement results for each step according to Example 3 〈 조건 〉저류조온도 : 20∼23℃, pH = 9, 공기주입량 5.6L/L/min, 체류기간 30시간,40시간, 미생물반응조온도 : 17∼25℃, 포기상태 및 무산소상태 각 1시간 및1시간 30분, 반복기간 5일<Condition> Storage tank temperature: 20 ~ 23 ℃, pH = 9, air injection volume 5.6L / L / min, residence time 30 hours, 40 hours, microbial reaction tank temperature: 17-25 ℃, aeration state and anoxic state for 1 hour and 1 hour 30 minutes, repeating 5 days 항 목Item AA BB CC DD 제거효율(%)Removal efficiency (%) pHpH (체류시간이 30시간) 9.0(30 hours of stay) 9.0 8.88.8 7.97.9 6.36.3 -- (체류시간이 40시간)9.0(40 hours) 8.78.7 8.18.1 6.76.7 -- TCODTCOD 8.0258.025 4,8404,840 954954 250250 96.996.9 8,0258,025 4,6554,655 852852 235235 97.197.1 BODBOD 4,4104,410 890890 5050 1515 99.799.7 4,4104,410 855855 4242 1212 99.799.7 SSSS 1,4601,460 1,4601,460 7575 2525 98.398.3 1,4601,460 1,4601,460 7272 2424 98.498.4 TNTN 2,8102,810 640640 180180 110110 96.196.1 2,8102,810 542542 130130 6565 97.797.7 TPTP 7575 7575 6464 33 9696 7575 7575 6363 22 97.397.3 색도Chromaticity 6.66.6 3.23.2 20.420.4 95.295.2 94.994.9 6.66.6 4.14.1 21.321.3 96.196.1 95.895.8 TCOD/TNTCOD / TN 2.92.9 8.48.4 -- -- -- 2.92.9 9.19.1 -- -- --

실시예 4에 의한 각 단계별 수질측정결과Water quality measurement results for each step according to Example 4 〈 조건 〉저류조 온도 : 20∼23℃, pH = 9, 공기주입량 3L/L/min, 4L/L/min, 체류기간48 시간, 미생물반응조온도 : 17∼25℃, 포기상태 및 무산소상태 각 1시간및 1시간 30분, 반복기간 5일<Condition> Storage tank temperature: 20 ~ 23 ℃, pH = 9, air injection volume 3L / L / min, 4L / L / min, retention period 48 hours, microbial reaction tank temperature: 17 ~ 25 ℃, aeration state and anoxic state each 1 Hour and 1 hour 30 minutes, repeating 5 days 항 목Item AA BB CC DD 제거효율(%)Removal efficiency (%) pHpH (공기주입량이 3L/L/min인경우) 9(When air injection amount is 3L / L / min) 9 8.88.8 7.17.1 6.26.2 -- (공기주입량이 4L/L/min인경우) 9(When air injection rate is 4L / L / min) 9 8.78.7 7.87.8 6.66.6 -- TCODTCOD 8,0258,025 5,0455,045 944944 275275 96.696.6 8,0258,025 4,6204,620 910910 240240 9797 BODBOD 4,4104,410 924924 5555 2424 99.599.5 4,4104,410 825825 4545 1515 99.799.7 SSSS 1,4601,460 1,4601,460 7272 2525 98.398.3 1,4601,460 1,4601,460 6868 2424 98.498.4 TNTN 2,8102,810 770770 193193 118118 95.895.8 2,8102,810 570570 146146 8585 9797 TPTP 7575 7575 6464 55 93.393.3 7575 7575 6363 22 97.397.3 색도Chromaticity 6.66.6 4.04.0 21.421.4 96.196.1 95.895.8 6.66.6 4.44.4 21.721.7 95.995.9 95.695.6 TCOD/TNTCOD / TN 2.92.9 6.66.6 -- -- -- 2.92.9 8.18.1 -- -- --

실시예 5에 의한 각 단계별 수질측정결과Water quality measurement results for each step according to Example 〈 조건 〉저류조 온도 : 20∼23℃, pH = 9, 공기주입량 5.6L/L/min, 체류기간 48시간, 미생물반응조온도 : 17∼25℃, 포기상태 1시간 30분 및 무산소상태1시간, 반복기간 5일<Condition> Storage tank temperature: 20 ~ 23 ℃, pH = 9, air injection volume 5.6L / L / min, retention period 48 hours, microbial reaction tank temperature: 17 ~ 25 ℃, aeration state 1 hour 30 minutes, oxygen free state 1 hour, Repeat period 5 days 항 목Item AA BB CC DD 제거효율(%)Removal efficiency (%) pHpH 9.09.0 8.78.7 7.47.4 6.36.3 -- TCODTCOD 8,0258,025 4,5104,510 984984 280280 96.596.5 BODBOD 4,4104,410 4,4104,410 5050 2020 99.599.5 SSSS 1,4601,460 1,4601,460 6868 2525 98.398.3 TNTN 2,8102,810 500500 150150 8888 96.996.9 TPTP 7575 7575 6565 33 9696 색도Chromaticity 6.66.6 4.44.4 23.323.3 96.596.5 96.396.3 TCOD/TNTCOD / TN 2.92.9 9.09.0 -- -- --

실시예 6에 의한 각 단계별 수질측정결과Water quality measurement results for each step according to Example 6 〈 조건 〉저류조 온도 : 20∼23℃, pH = 9, 공기주입량 5.6L/L/min, 체류기간 48시간,미생물반응조온도 : 17∼25℃, 포기상태 1시간, 무산소상태 1시간 30분,반복기간 6일, 7일<Condition> Storage tank temperature: 20 ~ 23 ℃, pH = 9, air injection volume 5.6L / L / min, retention period 48 hours, microbial reaction tank temperature: 17 ~ 25 ℃, aeration state 1 hour, anoxic state 1 hour 30 minutes, Repeat period 6 days, 7 days 항 목Item AA BB CC DD 제거효율(%)Removal efficiency (%) pHpH 반복기간이 6일인경우Repeat period is 6 days 8.88.8 8.18.1 6.56.5 -- 반복기간이 7일인경우Repeat period is 7 days 8.88.8 7.87.8 6.26.2 -- TCODTCOD 8,0258,025 4,5104,510 745745 220220 97.397.3 8,0258,025 4,5104,510 640640 200200 97.597.5 BODBOD 4,4104,410 820820 3535 1212 99.799.7 4,4104,410 820820 3030 1010 99.899.8 SSSS 1,4601,460 1,4601,460 7272 2424 98.498.4 1,4601,460 1,4601,460 7070 2222 98.598.5 TNTN 2,8102,810 500500 9292 2929 9999 2,8102,810 500500 7575 1212 99.699.6 TPTP 7575 7575 5353 1One 98.798.7 7575 7575 4545 1One 98.798.7 색도Chromaticity 6.66.6 4.54.5 23.123.1 95.995.9 95.695.6 6.66.6 4.54.5 28.528.5 96.296.2 95.995.9 TCOD/TNTCOD / TN 2.92.9 9.09.0 -- -- -- 2.92.9 9.09.0 -- -- --

본 발명은 미생물에 의한 질산화 및 탈질소화과정전에 과량의 공기를 주입 하여 암모니아이온을 암모니아로 전환시켜 제거하는 과량질소제거단계와, 산소의 긴장상태를 유지시켜 미생물에 의한 질산화단계를 조정하여 탈질효율을 향상시키는 미생물반응단계와, 잉여부유물질 또는 인을 제거하고 최종유출수가 바람직한 색도를 가지게 하기 위한 약품주입단계로 이루어진 개량된 축산폐수처리방법에 관한 것이다.In the present invention, the excess nitrogen removal step of injecting excess air before nitrification and denitrification process by microorganisms converts and removes ammonia ions into ammonia, and adjusts nitrification step by microorganisms by maintaining oxygen tension to denitrification efficiency. An improved livestock wastewater treatment method comprising a microbial reaction step of improving the chemical reaction step and a chemical injection step to remove excess contaminants or phosphorus and to make the final effluent have the desired color.

본 발명자에 의한 다각적인 연구결과, 상기 과량질소제거단계에서 저류조 내의 상징액온도, pH, 체류시간 및 주입공기량을 조절하여 효율적인 탈질효과를 얻을 수 있음을 알 수 있었다. 더욱 상세히 설명하면, 저류조내의 상징액온도는 높을수록 암모니아제거율은 향상되며, 바람직하게는 15℃ 내지 25℃에서 다른 결정인자들과 최적화될 수 있다. 상징액의 산도 역시 암모니아제거율, 결과적으로 탈질효율에 기여하며, pH가 높을수록 저류조내의 NH4N의 제거율이 향상되나, 공정중에서 다른 결정인자들과 최적화될 수 있는 pH는 9이다. 주입공기량 역시 탈질효율과 비례관계가 있으나, 바람직하기로는 3 내지 12L/L/min 범위내에서 지속적인 공기주입이 요구된다. 저류조내에서 상징액의 체류시간은 최소한 30시간이상, 바람직하기로는 30시간 내지 50시간 유지되어야 한다. 또한 본 발명은 저류조에서 과량의 질소를 제거한 후 미생물반응조에서 질산화미생물에 영향이 없도록 공기주입을 간헐적으로 실시하여 질소가 NO2N까지 질산화 되도록 조정하는 미생물조정단계를 포함하며, 여러실시예의 결과에서 명백히 알 수 있듯이, 미생물반응조에서의 포기상태 및 무산소상태의 반복기간은 최소한 5일이상, 바람직하게는 5일 내지 6일 정도가 유지되어야 하며, 1회 포기상태 및 무산소상태는 각각 1시간 내지 3시간, 바람직하게는 1시간 내지 1시간 30분동안 실시되어야 한다.As a result of various studies by the present inventors, it was found that an efficient denitrification effect can be obtained by controlling the supernatant temperature, pH, residence time and amount of injected air in the storage tank in the excess nitrogen removal step. In more detail, the higher the supernatant liquid temperature in the storage tank, the higher the ammonia removal rate, and preferably can be optimized with other determinants at 15 ° C to 25 ° C. The acidity of the supernatant also contributes to the ammonia removal rate and consequently to the denitrification efficiency. The higher the pH, the higher the removal rate of NH 4 N in the reservoir, but the pH that can be optimized with other determinants in the process is 9. The amount of injected air is also proportional to the denitrification efficiency, but preferably, continuous air injection is required within the range of 3 to 12 L / L / min. The residence time of the supernatant in the reservoir should be maintained for at least 30 hours, preferably 30 to 50 hours. In addition, the present invention includes a microbial adjustment step of adjusting the nitrogen to nitric acid to NO 2 N by intermittently performing the air injection so that the nitrogen microorganisms are not affected in the microbial reactor after removing excess nitrogen in the storage tank, in the results of various embodiments As can be seen clearly, the repetition period of the aeration state and the anaerobic state in the microbial reactor should be maintained for at least 5 days, preferably 5 to 6 days, and the once aeration state and the anoxic state are 1 hour to 3 days, respectively. The time should preferably be carried out for 1 hour to 1 hour 30 minutes.

본 발명은 현행 방류수기준인 BOD 30㎎/L, SS 30㎎/L, TN 120㎎/L, TP 16 ㎎/L를 만족시키는 최종유출수를 적은 처리비용으로 방출할 수 있는 개량된 축산 폐수처리방법이며, 소규모 및 대규모 축산시설에 별도의 처리시설없이 간단한 운전방법으로 실시할 수 있는 경제적인 폐수처리방법이다.The present invention is an improved livestock wastewater treatment method which can discharge the final effluent water satisfying the current effluent standards BOD 30mg / L, SS 30mg / L, TN 120mg / L, TP 16mg / L with low treatment cost. It is an economical wastewater treatment method that can be carried out by simple operation without separate treatment facilities in small and large livestock facilities.

또한, 본 발명은 여러 결정인자를 효율적으로 조절하여 예상치 못하였던 부하변동에 능동적으로 대처할 수 있는 유용한 폐수처리방법이다.In addition, the present invention is a useful wastewater treatment method that can effectively cope with unexpected load fluctuations by efficiently adjusting various determinants.

Claims (1)

고농도의 축산폐수에 주입량 3 내지 12L/L/min 범위의 공기를 30시간 내지 50시간동안 주입시켜 축산폐수내의 암모니아성 질소를 제거하는 과량질소제거단계와,An excess nitrogen removal step of removing ammonia nitrogen from the livestock wastewater by injecting air having a concentration of 3 to 12 L / L / min into the high concentration livestock wastewater for 30 to 50 hours; 상기 과량질소제거단계후 과량질소가 제거된 축산폐수에 공기를 간헐적으로 주입하여 1시간 내지 1시간 30분의 포기상태와 1시간 내지 1시간 30분의 무산소상태를 5일 내지 6일동안 반복적으로 유지함으로써 상기 출산폐수내의 질소를 NO3N 상태가 아닌 NO2N 상태로 질산화시켜 탈질소화하는 미생물반응단계와,After the excess nitrogen removal step, air is intermittently injected into the animal wastewater from which the excess nitrogen has been removed, and then repeatedly aerated for 1 hour to 1 hour 30 minutes and anoxic state for 1 hour to 1 hour 30 minutes for 5 to 6 days. A microbial reaction step of nitrifying and nitrifying the nitrogen in the birth wastewater to a NO2N state rather than a NO3N state by maintaining it; 상기 미생물반응단계 후 탈질소화된 축산폐수의 부유물질 및 인을 제거하는 응집제주입단계로 이루어진 고효율 축산폐수처리방법.A high efficiency livestock wastewater treatment method comprising a flocculant injection step of removing suspended solids and phosphorus from denitrified livestock wastewater after the microbial reaction step.
KR1019970040339A 1997-08-23 1997-08-23 A method for treating waste water of livestock KR100254998B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970040339A KR100254998B1 (en) 1997-08-23 1997-08-23 A method for treating waste water of livestock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970040339A KR100254998B1 (en) 1997-08-23 1997-08-23 A method for treating waste water of livestock

Publications (2)

Publication Number Publication Date
KR19980032307A KR19980032307A (en) 1998-07-25
KR100254998B1 true KR100254998B1 (en) 2000-05-01

Family

ID=19518262

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970040339A KR100254998B1 (en) 1997-08-23 1997-08-23 A method for treating waste water of livestock

Country Status (1)

Country Link
KR (1) KR100254998B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100424068B1 (en) * 2001-03-05 2004-03-24 주식회사 에코젠 Apparatus for wastewater treatment from livestock farm
KR100432141B1 (en) * 2001-07-13 2004-05-17 주식회사 대명테크 Method for treating leachate using TCBF

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08141552A (en) * 1994-11-22 1996-06-04 Ebara Corp Method for treating nitrogen in wastewater
KR970020992A (en) * 1996-12-12 1997-05-28 박형인 Nitrogen removal method of high concentration organic sewage in liquid corrosion method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08141552A (en) * 1994-11-22 1996-06-04 Ebara Corp Method for treating nitrogen in wastewater
KR970020992A (en) * 1996-12-12 1997-05-28 박형인 Nitrogen removal method of high concentration organic sewage in liquid corrosion method

Also Published As

Publication number Publication date
KR19980032307A (en) 1998-07-25

Similar Documents

Publication Publication Date Title
US20200377398A1 (en) Partial nitrification-denitrification coupled two-stage autotrophic denitrification advanced nitrogen removal method
KR100719434B1 (en) Method for removing high concentration of nitrogen from anaerobict-treated wastewater and apparatus for implementing the method
KR100386224B1 (en) Advanced Piggery Wastewater Treatment System
JP2661093B2 (en) Wastewater treatment method by activated sludge method
KR100254998B1 (en) A method for treating waste water of livestock
KR20090080594A (en) The system and method of removing BOD, N, and P removal from an animal wastewater
KR100322947B1 (en) Method for removing nitrogen in waste water
KR100470350B1 (en) Method for disposing of livestock waste water
ATE267774T1 (en) WASTE WATER PURIFICATION PROCESS
KR19980043482A (en) Waste Landfill Leachate Treatment Method
KR100192144B1 (en) Solid waste made land leachate treatment process
KR100325722B1 (en) A treatment method of sewage and wastewater using ozone and oxygen
KR100438323B1 (en) High intergated Biological Nutrient Removal System
KR100971588B1 (en) Method for removing of nitrogen and perchlorate in waste water
KR950000212B1 (en) Waste water clarifier
KR102052163B1 (en) Wastewater treatment apparatus and method
KR100283127B1 (en) Wastewater treatment methods including denitrification and dephosphorization
JP2946163B2 (en) Wastewater treatment method
KR100719435B1 (en) Apparatus for treating livestock wastewater and method for treating the same
CN113636720B (en) Nitrogenous wastewater treatment system
JPH02198695A (en) Nitrite type nitrification method
KR0165170B1 (en) Elimination method of nitrogen from waste water containing acrylonitrile butadiene styrene(abs)
KR19980075718A (en) Advanced treatment of high concentration wastewater
KR100235252B1 (en) Improved method for removing nitrogen of wastewater with abs type
JPH0418992A (en) Treatment of night soil sewage

Legal Events

Date Code Title Description
A201 Request for examination
G15R Request for early opening
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060210

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee