KR100222599B1 - Ni-cu-zn magnet icoxide material and producing method - Google Patents

Ni-cu-zn magnet icoxide material and producing method Download PDF

Info

Publication number
KR100222599B1
KR100222599B1 KR1019920025318A KR920025318A KR100222599B1 KR 100222599 B1 KR100222599 B1 KR 100222599B1 KR 1019920025318 A KR1019920025318 A KR 1019920025318A KR 920025318 A KR920025318 A KR 920025318A KR 100222599 B1 KR100222599 B1 KR 100222599B1
Authority
KR
South Korea
Prior art keywords
oxide
weight
bismuth trioxide
less
magnetic material
Prior art date
Application number
KR1019920025318A
Other languages
Korean (ko)
Other versions
KR940014165A (en
Inventor
강상원
박종학
박찬욱
Original Assignee
박영구
삼성코닝주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박영구, 삼성코닝주식회사 filed Critical 박영구
Priority to KR1019920025318A priority Critical patent/KR100222599B1/en
Publication of KR940014165A publication Critical patent/KR940014165A/en
Application granted granted Critical
Publication of KR100222599B1 publication Critical patent/KR100222599B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

주성분으로서 산화아연, 산화니켈, 산화제이구리 및 산화제이철, 부성분으로서 이산화규소, 산화망간, 산화칼슘 중에서 2 내지 3 성분, 소결촉진제로서 삼산화비스무트 및 응력완화제로서 산화마그네슘으로 이루어지는 Ni-Cu-Zn계 산화물 자성재료는 기계적강도와 외부충격에 대한 완충효과가 향상되므로써 로타리 트랜스코어와 같이 연삭가공이 필요한 제품으로 제조할 때 균열이나 칩의 발생이 감소되고 생산비가 절감된다.Ni-Cu-Zn oxide consisting of zinc oxide, nickel oxide, cupric oxide and ferric oxide as main components, two to three components in silicon dioxide, manganese oxide and calcium oxide as secondary components, bismuth trioxide as sintering accelerator and magnesium oxide as stress relaxant Magnetic materials improve the mechanical strength and shock resistance against external shocks, which reduces the occurrence of cracks and chips and reduces production costs when manufactured with products that require grinding, such as rotary transcore.

Description

니켈-구리-아연계 산화물자성재료 및 그의 제조방법Nickel-copper-zinc oxide magnetic material and its manufacturing method

제1도는 소결온도 1080℃에서 제조한 산화물자성재료의 삼산화비스무트 함량에 따른 초기투자을 변화 그래프이며,1 is a graph showing a change in the initial investment according to the bismuth trioxide content of the oxide magnetic material prepared at the sintering temperature 1080 ℃,

제2도는 소결온도 1080℃에서 제조한 산화물 자성재료의 산화마그네슘 함량에 따른 초기투자율 변화 그래프이며,2 is a graph of the initial permeability change according to the magnesium oxide content of the magnetic oxide material prepared at sintering temperature 1080 ℃,

제3도는 소결온도 1080℃에서 제조한 산화물자성 재료의 산화마그네슘 함량에 따른 곡강도 변화 그래프이며,3 is a graph showing the change in bending strength according to the magnesium oxide content of the oxide magnetic material prepared at the sintering temperature of 1080 ℃,

제4도는 소결온도 1080℃에서 제조한 산화물 자성재료의 산화마그데슘 함량에 따른 파괴인성변화 그래프이다.4 is a graph showing the change in fracture toughness according to the magnesium oxide content of the oxide magnetic material prepared at the sintering temperature of 1080 ℃.

본 발떵은 로타리 트랜스 등의 연삭가공이 필요한 제품을 제조하는 데 사용되는 산화물 자성재료에 관한 것으로서, 더욱 상세하게는 삼산화비스무트(Bi2O3) 및 산화마그네슘(MgO) 첨가에 의해 기계적 강도가 증가되며 생산비 절감효과를 얻을 수 있는 Ni-Cu-Zn계 산화물 자성재료 및 그 제조방법에 관한 것이다.The present invention relates to an oxide magnetic material used to manufacture a product that requires a grinding process such as a rotary transformer. More specifically, the mechanical strength is increased by adding bismuth trioxide (Bi 2 O 3 ) and magnesium oxide (MgO). The present invention relates to a Ni-Cu-Zn-based oxide magnetic material and a method of manufacturing the same, which can reduce production costs.

종래에는 로타리 트랜스용코어(core)를 제조하기 위하여, 주성분으로서 산화제이철(Fe2O3), 산화니켈(Ni), 산화아연(ZnO), 산화제이구리(CuO) 등을 혼합하고 하소시킨 후에 분쇄하여 프레스 성형함으로써 성형체를 제조하고, 이것을 대기 중에서 소결하여 Ni-Cu-Zn계 산화물 자성재료의 소결체로 만들고 이를 연삭가공하여 로타리트랜스 등의 고정밀도를 요하는 물품으로 제조하였다.Conventionally, in order to manufacture a core for a rotary transformer, ferric oxide (Fe 2 O 3 ), nickel oxide (Ni), zinc oxide (ZnO), copper oxide (CuO) and the like are mixed, calcined, and pulverized as main components. The molded article was manufactured by press molding, and then sintered in air to make a sintered compact of Ni-Cu-Zn oxide magnetic material, which was then ground and manufactured into an article requiring high precision such as a rotary transformer.

그러나 이와 같은 종래방법에서는 Ni-Cu-Zn계 산화물 자성재료의 고유특성이 금속재료에 비해서 경도가 높기 때문에 연삭가공 공정에서 제품의 표면에 균열(crack)이나 칩(chip)이 쉽게 발생하는 단점이 있었다.However, in the conventional method, since the intrinsic properties of Ni-Cu-Zn oxide magnetic materials are higher in hardness than metal materials, cracks or chips easily occur on the surface of the product in the grinding process. there was.

특히, 로타리 트랜스 연삭가공작업시에는 지름이 20mm 내지 70mm인 크기의 제품에 대해서 가공면의 평행도 5μm이하, 평면도 10μm이하의 고정밀도가 요구됨으로 인하여, 이와 같은 정밀한 칫수를 얻기 위해서는 가공시간이 길어지고 칫수의 규격을 맞추기가 어려워 따라서 저가의 코어(core) 제조가 불가능하였다.In particular, in the case of rotary trans-grinding, high precision of 5μm or less parallelism and 10μm flatness is required for products with diameters of 20mm to 70mm. Difficult to meet the dimensions of the dimensions, thus making it impossible to manufacture low-cost cores.

본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위한 것으로서, 로타리 트랜스의 전자기적 특성을 만족시키고 기계적 가공성이 우수하여 연삭가공시에 균열이나 칩이 발생하지 않고 요구칫수를 용이하게 얻을 수 있는, Ni-Cu-2n계 산화물 자성재료를 제공함을 목적으로 한다.The present invention is to solve the problems of the prior art as described above, it satisfies the electromagnetic characteristics of the rotary transformer and excellent mechanical workability can be easily obtained without the generation of cracks or chips during grinding processing And an Ni-Cu-2n-based oxide magnetic material.

상기한 목적을 달성하기 위하여 본 발명은, 주성분으로서 산화아연(ZnO) 21.5 ~23.54중량%, 산화니켈(NiO) 8.28~10.26중량%, 산화제이구리(CuO) 3.03~5.05중량%, 산화제이철(Fe2O3) 64.23~66.87중량%, 부성분으로서 0.05중량% 이하의 이산화규소(SiO2), 0.2중량% 이하의 산화망간(MnO), 0.07중량% 이하의 산화칼슘(CaO) 중에서 2 내지 3 성분, 소결촉진제로서 0.001∼0.05중량%의 삼산화비스무트(Bi2O3)와 응력완화제로서 0.001∼0.4중량%의 산화마그네슘(MgO)으로 이루어지는 Ni-Cu-Zn계 산화물 자성 재료를 제공한다.In order to achieve the above object, the present invention, the main component is zinc oxide (ZnO) 21.5 ~ 23.54% by weight, nickel oxide (N i O) 8.28 ~ 10.26% by weight, copper oxide (CuO) 3.03 ~ 5.05% by weight, ferric oxide (Fe 2 O 3 ) 64.23 to 66.87% by weight, 0.05% by weight or less of silicon dioxide (SiO 2 ), 0.2% by weight or less of manganese oxide (M n O), 0.07% or less by weight of calcium oxide (CaO) Ni-Cu-Zn-based oxide magnetic material composed of 0.001 to 0.05% by weight of bismuth trioxide (Bi 2 O 3 ) as a sintering accelerator and 0.001 to 0.4% by weight of magnesium oxide (MgO) as a stress releasing agent do.

또한 본 발명은 21.5~23.54중량%의 산화아연, 8.28~10.26중량%의 산화니켈, 3.03∼5.05중량%의 산화제이구리, 64.23-66.87중량%의 산화제이철, 0.05중량% 이하의 이산화규소, 0.2중량% 이하의 산화망간, 0.07중량% 이하의 산화칼슘 중에서 2 내지 3 성분을 혼합하고 하소한 후 분쇄하면서 0.001∼0.05중량%의 삼산화비스무트와 0.001∼0.4중량 %의 산화마그녜슘을 첨가한 다음, 압축성형하고 소결하는 것으로 이루어지는 Ni-Cu-Zn계 산화물 자성재료의 제조방법을 제공한다.The present invention also provides 21.5 to 23.54 wt% zinc oxide, 8.28 to 10.26 wt% nickel oxide, 3.03 to 5.05 wt% copper oxide, 64.23-66.87 wt% ferric oxide, 0.05 wt% or less silicon dioxide, 0.2 wt% 2 to 3 components are mixed, calcined, and pulverized in an amount of not more than% manganese oxide and not more than 0.07% by weight calcium oxide, followed by addition of 0.001-0.05% by weight bismuth trioxide and 0.001-0.4% by weight magnesium oxide, followed by compression. Provided is a method for producing a Ni-Cu-Zn-based oxide magnetic material comprising molding and sintering.

이하, 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail.

본 발명의 Ni-Cu-Zn계 산화물 자성재료를 제조하기 위하여 21.5~23.54중량%의 산화아연 8.28-10.26중량%의 산화니켈, 3.03~5.05중량의 산화제이구리 및 64.23-66.87중량%의 산화제이철에 0.05 중량 % 이하의 이산화규소, 0.2중량 %이하의 산화망간, 0.07중량 %이하의 산화칼슘 중에서 2 내지 3 성문을 첨가한다. 이 혼합물에 0.001~0.05중량 %의 삼산화비스무트를 첨가하고 산화마그네슘을 0.001~0.4중량 %의 양으로 변화시켜 첨가한 에 얻어진 재료를 대기 중에서 1040~1120℃온도 범위에서 1시간 30분 동안 소결하여 산화마그네슘을 입계(grain boundary)에 개입시킨다. 개입된 산화마그네슘은 외부의 응력에 대한 완충작용을 하여 균열이나 칩을 감소시키게 된다. 따라서 1 NHz, 0.1mA에서 로타리 트랜스에 적용되는 투자율 400∼1900 까지의 적정수준의 Ni-Cu-Zn계 산화물자성재료의 제조가 가능하며, 얻어진 산화물 자성재료는 우수한 기계적강도를 갖는다.In order to prepare the Ni-Cu-Zn-based oxide magnetic material of the present invention, 21.5 to 23.54 wt% zinc oxide 8.28-10.26 wt% nickel oxide, 3.03 to 5.05 wt cuprous oxide, and 64.23-66.87 wt% ferric oxide 2-3 gates are added in 0.05 wt% or less of silicon dioxide, 0.2 wt% or less of manganese oxide, and 0.07 wt% or less of calcium oxide. To this mixture, 0.001 to 0.05% by weight of bismuth trioxide was added, and magnesium oxide was changed to 0.001 to 0.4% by weight of the obtained material, followed by sintering in air at 1040 to 1120 ° C for 1 hour and 30 minutes for oxidation. Magnesium intervenes in the grain boundary. The involved magnesium oxide buffers external stresses and reduces cracks and chips. Therefore, it is possible to manufacture Ni-Cu-Zn-based oxide magnetic materials having an appropriate level of permeability of 400 to 1900 applied to rotary transformers at 1 NHz and 0.1 mA. The obtained oxide magnetic materials have excellent mechanical strength.

본 발명의 산화물 자성재료에 있어서, 삼산화비스무트의 첨가량이 0.05중량%초과시에는 삼산화비스무트가 입계에 존재하게되어 투자율이 감소되고 손실계수(tan δ/μi)가 급격히 증가하여 로타리 트랜스용 산화물 자성재료로서 사용하기에 적당하지 못하다.In the oxide magnetic material of the present invention, when the addition amount of bismuth trioxide is more than 0.05% by weight, bismuth trioxide is present at the grain boundary, the permeability decreases and the loss factor (tan δ / μi) is rapidly increased to form the oxide magnetic material for rotary transformer. Not suitable for use

또한 산화마그네슘의 첨가량이 0.4중량%를 초과하는 때에는 투자율이 500 이하로 저하되어 로타리 트랜스용 재료로 사용할 수 없었으며 기계적 강도가 오히려 저하되는 현상이 나타난다. 삼산화비스무트 또는 산화마그네슘의 첨가량이 0.001중량% 미만인 경우에는, 곡강도(F)가 800kg/am2이하, 파괴인성(Kic) 1.1MN/mm 1/2 이하의 낮은 값을 나타내어 연삭가공 공정에서 균열이나 칩이 다량 발생하게 된다.In addition, when the addition amount of magnesium oxide is more than 0.4% by weight, the permeability is lowered to 500 or less, which can not be used as a material for rotary transformer, the mechanical strength is rather reduced. When the addition amount of bismuth trioxide or magnesium oxide is less than 0.001% by weight, the flexural strength (F) is lower than 800 kg / am 2 and the fracture toughness (Kic) 1.1 MN / mm 1/2 or less, so that cracking or A large amount of chips will be generated.

본발명에 따라, 상기한 바와 같은 조성의 주성분을 사용함으로써 로타리 트랜스용으로 이용되는 Ni-Cu-Zn계 산화물 자성재료에 요구되는 특성, 즉 고투자율, 저손실을 만족시킬 수 있다.According to the present invention, by using the main component of the composition as described above, it is possible to satisfy the characteristics required for the Ni-Cu-Zn-based oxide magnetic material used for the rotary transformer, that is, high permeability, low loss.

산화제이철의 양이 66.87중량%초과시에는 Fe3+의 과잉에 의해서 비저항이 감소하고 전류손실이 증가하며 초기 투자율의 감소가 초래된다.When the amount of ferric oxide exceeds 66.87% by weight, the excess of Fe 3+ decreases the resistivity, increases the current loss, and decreases the initial permeability.

또한 산화니켈의 양이 10.26중량% 초과시에는 소결성이 저하되어 전자기적 특성 및 기계적 강도가 저하되며, 산화구리의 양이 3.03~5.05중량%의 범위를 벗어날 때에는 재료의 유실량(loss)이 급격히 증가된다.In addition, when the amount of nickel oxide is more than 10.26% by weight, the sintering property is lowered, the electromagnetic characteristics and mechanical strength are lowered, and when the amount of copper oxide is out of the range of 3.03 to 5.05% by weight, the loss of material is rapidly increased. .

상기한 바와 같은 주성분 조성에 삼산화비스무트를 첨가하여 소결성을 증대시킴으로써 소결체의 입경(grain size)을 성장시켜 초기투자율을 증가시킨다. 삼산화비스무트 함량이 0.03 중량 %일때 초기투자율이 최대간을 나타내며 곡강도(F)와 파괴인성(Kic)값도 높은 수치를 나타낸다.By adding bismuth trioxide to the main component composition as described above, the sinterability is increased to increase the grain size of the sintered body, thereby increasing the initial permeability. When the bismuth trioxide content is 0.03% by weight, the initial permeability is maximum, and the values of bending strength (F) and fracture toughness (Kic) are also high.

제3도 및 제4도에서 알 수 있는 바와 같이, 본 발명의 Ni-Cu-Zn 산화물자성재료는 삼산화비스무트 0.03중량 %', 산화마그네슘 0.2중량 % 첨가하였을 때 파괴인성값과 곡강도 값이 최대를 나타낸다. 이때 종래기술에 비해 곡강도(F)는 37.5%, 파괴인성(Kic)은 35% 증가한 값을 보인다. 일반적으로 MgO 첨가시에는 실효비투자율이 감소하게 되나 MgO 0.1중량% 첨가시에 실효비투자율 약 10% 감소, 소결촉진제인 삼산화비스무트에 의해 초기투자율이 증대되며, 이것에 의해서 로타리 트랜스용으로 사용되는 재료의 실효비투자율 400내지 1900을 달성할 수 있으며 MgO가 입계에 개입하여 입경(grain size)을 조정하여 입계의 접촉면적을 증가시킴으로써 기계적강도가 향상된다.As can be seen in FIGS. 3 and 4, the Ni-Cu-Zn oxide magnetic material of the present invention has the maximum fracture toughness and bending strength when added 0.03 wt% of bismuth trioxide and 0.2 wt% of magnesium oxide. Indicates. At this time, the bending strength (F) is 37.5%, the fracture toughness (Kic) shows a 35% increase compared to the prior art. In general, the effective permeability decreases when MgO is added, but the effective permeability decreases by about 10% when MgO is added by 0.1% by weight, and the initial permeability is increased by bismuth trioxide as a sintering accelerator. The effective permeability of the material can be achieved from 400 to 1900, and the mechanical strength is improved by increasing the contact area of the grain boundary by adjusting the grain size by MgO intervening in the grain boundary.

본 발명의 산화물자성재료 제조방법에서, 소결공정에서 소결온도 1040℃ 미만에서는 불완전한 소결에 의해 투자율이 400 이하로 저하되어 산화물자성재료는 로타리 트랜스용으로 사용하기에 부적당하게 된다.In the method of manufacturing the oxide magnetic material of the present invention, at a sintering temperature of less than 1040 ° C., the magnetic permeability is lowered to 400 or less due to incomplete sintering, and the oxide magnetic material is not suitable for use in rotary transformers.

또한 소결온도가 1120℃ 초과시에는 과잉 소결에 의해 삼산화비스무트가 입계에 존재하게 되고 입성장(grain growth)이 급격히 증대되어 손실계수(tan δ/μi)가 증가하므로써 고투자율, 저손실의 로타리 트랜스용 산화물 자성재료가 얻어지지 않는다.In addition, when the sintering temperature exceeds 1120 ℃, bismuth trioxide is present in the grain boundary due to excessive sintering, and grain growth is rapidly increased to increase the loss factor (tan δ / μi). Magnetic material is not obtained.

본 발명의 제조방법에서 삼산화비스무트와 산화마그네슘을 하소공정 후에 첨가하는 이유는 다음과 같다. 삼산화비스무트를 하소 전에 투입하면 분말의 입성장 및 네킹(necking)이 급속히 촉진되어 미세 분말을 제조하는 분쇄공정에서 적절한 입도의 분말제조가 어려워진다.The reason for adding bismuth trioxide and magnesium oxide after the calcination process in the production method of the present invention is as follows. When bismuth trioxide is added before calcination, the particle growth and necking are accelerated rapidly, making it difficult to manufacture a powder having an appropriate particle size in the pulverization process for producing fine powder.

산화마그네슘을 하소공정 이전에 첨가하는 경우에는 산화마그네슘 자체가 스피넬(spinel)구조에 혼입되어 기계적 강도 향상이 얻어지지 않는다.In the case where magnesium oxide is added before the calcination process, magnesium oxide itself is incorporated into the spinel structure so that mechanical strength improvement is not obtained.

다음에 도면을 참고로 하여 본 발명의 대표적인 실시예를 기재한다.Next, exemplary embodiments of the present invention will be described with reference to the drawings.

[실험예 1]Experimental Example 1

ZnO 62.72중량부, MiO 10.32중량부, CuO 3.78중량부, Fe2O323.18중량부, SiO20.03중량부, MnO 0.15중량부, CaO 0.05중량부를 어트리터(att갸색)로 혼합한 후에 900℃에서 하소하였다.900 ° C after mixing 62.72 parts by weight of ZnO, 10.32 parts by weight of MiO, 3.78 parts by weight of CuO, 23.18 parts by weight of Fe 2 O 3 , 0.03 parts by weight of SiO 2 , 0.15 parts by weight of MnO, and 0.05 parts by weight of CaO with an attritor. Calcined at.

혼합물을 어트리터에서 60분간 분쇄하면서 0.01 중량부의 삼산화비TM무트를 투입 한다.Add 0.01 parts by weight of bioxide trimethane mousse while grinding the mixture for 60 minutes in the attritor.

얻어진 분말에 1.5중량부의 결합제(PVA, 고노세루사제 NH 170)를 첨가하여 프레스 성형장치에서 ****의 링코어(ring core) 를 성형하여 1080℃에서 1시간 30분동안 소결하였다.To the powder obtained was added 1.5 parts by weight of a binder (PVA, NH 170 manufactured by Konoserus Co., Ltd.) to form a ring core of **** in a press forming apparatus, followed by sintering at 1080 ° C. for 1 hour and 30 minutes.

[실험예 2]Experimental Example 2

실험예 1에서 삼산화비스무트의 첨가량을 0.03중량부로 변경하여 사용하는 것을 제외하고는, 실험예 1과 실질적으로 동일하게 실시하여 링코어를 제조하였다.A ring core was prepared in the same manner as in Experiment 1 except that the amount of bismuth trioxide added in Experimental Example 1 was changed to 0.03 part by weight.

[실험예 3]Experimental Example 3

실험예 1에서 삼산화비스무트의 첨가량을 0.05중량부로 변경하여 사용하는 것을 제외하고는, 실험예 1과 실질적으로 동일하게 실시하여 링코어를 제조하였다.A ring core was prepared in the same manner as in Experiment 1, except that the amount of bismuth trioxide added in Experimental Example 1 was changed to 0.05 parts by weight.

[실시예 1]Example 1

실험예 1에서 삼산화비스무트의 첨가량을 0.03중량부로 변경하고 삼산화비스무트 투입시에 산화마그네슘 0.1중량부를 함께 투입하는 것을 제외하고는, 실험예 1과 실질적으로 동일하게 실시하여 링코어를 제조하였다.A ring core was prepared in substantially the same manner as in Experiment 1 except that the amount of bismuth trioxide was changed to 0.03 parts by weight and 0.1 parts by weight of magnesium oxide was added together when the bismuth trioxide was added.

[실시예 2]Example 2

실시예 1에서 산화마그네슘의 첨가량을 0.2중량부로 변경하여 사용하는 것을 제외하고는, 실시예 1과 실질적으로 동일하게 실시하여 링코어를 제조하였다.A ring core was manufactured in the same manner as in Example 1, except that the amount of magnesium oxide added in Example 1 was changed to 0.2 part by weight.

[실시예 3]Example 3

실시예 1에서 산화마그네슘의 첨가량을 0.3중량부로 변경하여 사용하는 것을 제외하고는, 실시예1과 실질적으로 동일하게 실시하여 링코어를 제조하였다.A ring core was manufactured in the same manner as in Example 1, except that the amount of magnesium oxide added in Example 1 was changed to 0.3 part by weight.

[실시예 4]Example 4

실시예 1에서 산화마그네슘의 첨가량을 0.4중량부로 변경하여 사용하는 것을 제외하고는, 실시예1과 실질적으로 동일하게 실시하여 링코어를 제조하였다.A ring core was prepared in the same manner as in Example 1 except that the amount of magnesium oxide added in Example 1 was changed to 0.4 part by weight.

[비교예 1]Comparative Example 1

실시예 1에서 삼산화비스무트를 첨가하지 않는 것을 제외하고는 실시예 1과 실질적으로 동일하게 실시하여 링코어를 제조하였다.A ring core was prepared in the same manner as in Example 1 except that bismuth trioxide was not added in Example 1.

[비교예 2]Comparative Example 2

실시예 1에서 삼산화비스무트의 첨가량을 0.07중량부로 변경하여 사용하는 것을 제외하고는 실시예1과 실질적으로 동일하게 실시하여 링코어를 제조하였다.A ring core was prepared in the same manner as in Example 1 except that the amount of bismuth trioxide added in Example 1 was changed to 0.07 part by weight.

[비교예 3]Comparative Example 3

실시예 1에서 삼산화비스무트의 첨가량을 0.09중량부로 변경하여 사용하는 것을 제외하고는 실시예 1과 실질적으로 동일하게 실시하여 링코어를 제조하였다.A ring core was prepared in the same manner as in Example 1 except that the amount of bismuth trioxide added in Example 1 was changed to 0.09 part by weight.

실시예 1 내지 7 및 비교예 1 내지 3에서 얻어진 링코어에 대해서 다음과 같은 방법으로 초기투자율, 곡강도 및 파괴인성을 측정하였으며 그 결과를 도면의 그래프에 나타내었다.The initial permeability, bending strength and fracture toughness of the ring cores obtained in Examples 1 to 7 and Comparative Examples 1 to 3 were measured by the following method, and the results are shown in the graphs of the drawings.

<초기 투자율>Initial Permeability

초기투자율 측정장치(HP 4194A)를 사용하여 1MHz, 0.1mA에서 측정하였다.The initial permeability measurement device (HP 4194A) was used to measure at 1MHz, 0.1mA.

<곡강도><Bending Strength>

곡강도(F)는 3포인트 시험법에 의거하여, 하중속도 0.5mm/분, 지지점거리 30mm의 조건으로 한 조성에 대해 10개를 측정하여 하기식에 의해 산출하였다.Based on the three-point test method, the bending strength (F) was calculated by the following equation by measuring ten pieces of the composition under conditions of a load speed of 0.5 mm / min and a support point distance of 30 mm.

F=3Pℓ/2w·t2 F = 3Pℓ / 2wt 2

(식에서 P는 하중, ℓ은 지지점의 거리, t는 시험편의 두께, w는 시험편의 폭을 나타낸다).Where P is the load, l is the distance of the support point, t is the thickness of the specimen, and w is the width of the specimen.

<파괴인성><Destructive Toughness>

파괴 인성(Kic)은 IM( Intentation microstructure)법에 의거하여 측정하였으며 한가지 조성에대해 5회 측정하여 평균값을 얻었다.Fracture toughness (Kic) was measured according to the Intentation microstructure (IM) method, and the average value was obtained by measuring five times for one composition.

제1도내지 4도에 나타낸 결과로부터 알 수 있듯이, 본 발명에 따라서 Ni-Cu-Zn계 산화물 자성재료에 삼산화비스무트를 첨가하는 것에 의해 실효비투자율이 종래기술에 비해 25%향상되며 산화마그네슘 첨가에 의해 결정입계 내에 응력완화층을 개입시켜 외부의 충격에 완충작용을 할 수 있게 한 결과, 종래기술에 비해 파괴인성(Kic)이 35%, 곡강도(F)가 37.5% 향상된 높은 기계적강도를 갖는 Ni-Cu-Zn계 산화물 자성재료를 얻을 수 있다. 또한, 이러한 기계적강도의 향상에 의해 로타리 트랜스 및 연식가공이 필요한 제품의 제조공정에서 균열이나 칩이 감소되며 가공시간이 단축되므로써 낮은 생산단가로 로타리 트랜스 코어 등의 Ni-Cu-Zn계 산화물 자성재료를 제조할 수 있게 된다.As can be seen from the results shown in FIGS. 1 to 4, according to the present invention, by adding bismuth trioxide to the Ni-Cu-Zn-based oxide magnetic material, the effective permeability is improved by 25% compared to the prior art, and magnesium oxide is added. As a result of the stress relaxation layer in the grain boundary to cushion the external impact, the mechanical strength is improved by 35% in fracture toughness (Kic) and 37.5% in bending strength (F). Ni-Cu-Zn-based oxide magnetic material can be obtained. In addition, due to the improvement in mechanical strength, cracks and chips are reduced in the manufacturing process of products requiring rotary transformers and soft processing, and the processing time is shortened, resulting in low production costs. Ni-Cu-Zn oxide magnetic materials such as rotary transformer cores It can be prepared.

Claims (4)

주성분으로서 21.5~23.54중량%의 산화아연, 8.28~10.26중량%의 산화니켈, 3.03-5.05중량%의 산화제이구리, 64.23~66.87중량%의 산화제이철, 부성분으로서 0.05중량% 이하의 이산화규소, 0.2중량% 이하의 산화망간, 0.07중량% 이하의 산화칼슘 중에서 2 내지 3 성분, 및 소결촉진제로서 0.001∼0.05중량%의 삼산화비스무트와 응력 완화제로서 0,001∼0.4중량%의 산화마그네슘으로 이루어지는 Ni-CU-Zn계 산화물 자성재료.21.5 to 23.54 wt% zinc oxide as the main component, 8.28 to 10.26 wt% nickel oxide, 3.03-5.05 wt% copper oxide, 64.23 to 66.87 wt% ferric oxide, 0.05 wt% or less silicon dioxide as the minor component, 0.2 wt% Ni-CU-Zn consisting of up to 2-3 parts of manganese oxide, up to 0.07% by weight of calcium oxide, and 0.001 to 0.05% by weight of bismuth trioxide as a sintering accelerator and 0,001 to 0.4% by weight of magnesium oxide as a stress relieving agent Oxide Magnetic Materials. 21.5∼23.54중량%의 산화아연, 8.28~10.26중량%의 산화니켈, 3.03∼5.05중량%의 산화제이구리, 64.23~66.87중량%의 산화제이철, 0.05중량% 이하의 이산화규소, 0.2중량% 이하의 산화망간, 0.07중량% 이하의 산화칼슘중에서 2 내지 3성분을 혼합하고 하소 한 후에 분쇄하면서 0.001∼0.05중량%의 삼산화비스무트와 0.001∼0.4중량%의 산화마그네슘을 첨가한 다음, 압축 성형하고 소결하는 것으로 이루어지는 Hi-Cu-Zn계 산화물 자성재료의 제조방법.21.5-23.54 wt% zinc oxide, 8.28-10.26 wt% nickel oxide, 3.03-5.05 wt% copper oxide, 64.23-66.87 wt% ferric oxide, 0.05 wt% or less silicon dioxide, 0.2 wt% or less oxidation Manganese, in a calcium oxide of 0.07% or less by mixing two to three components, calcining, followed by grinding, adding 0.001 to 0.05% by weight bismuth trioxide and 0.001 to 0.4% by weight of magnesium oxide, followed by compression molding and sintering A method for producing a Hi-Cu-Zn-based oxide magnetic material. 제2항에 있어서, 소결온도는 1040℃∼1120℃범위 내인 것을 특징으로 하는 방법.The method of claim 2, wherein the sintering temperature is in the range of 1040 ℃ to 1120 ℃. 제2항의 방법에 의해 제조된 로타리 트랜스 코어.A rotary trans core made by the method of claim 2.
KR1019920025318A 1992-12-23 1992-12-23 Ni-cu-zn magnet icoxide material and producing method KR100222599B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019920025318A KR100222599B1 (en) 1992-12-23 1992-12-23 Ni-cu-zn magnet icoxide material and producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019920025318A KR100222599B1 (en) 1992-12-23 1992-12-23 Ni-cu-zn magnet icoxide material and producing method

Publications (2)

Publication Number Publication Date
KR940014165A KR940014165A (en) 1994-07-16
KR100222599B1 true KR100222599B1 (en) 1999-10-01

Family

ID=19346482

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019920025318A KR100222599B1 (en) 1992-12-23 1992-12-23 Ni-cu-zn magnet icoxide material and producing method

Country Status (1)

Country Link
KR (1) KR100222599B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100550684B1 (en) * 1999-08-19 2006-02-08 티디케이가부시기가이샤 Oxide magnetic material and chip part
KR100576410B1 (en) * 2000-01-21 2006-05-10 티디케이가부시기가이샤 Oxide magnetic materials, coil components using the same, and method for producing oxide magnetic materials and coil components

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100491973B1 (en) * 2002-11-21 2005-05-27 학교법인 포항공과대학교 ZnO-Based room temperature transparent ferromagnetic semiconductor and preparing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100550684B1 (en) * 1999-08-19 2006-02-08 티디케이가부시기가이샤 Oxide magnetic material and chip part
KR100576410B1 (en) * 2000-01-21 2006-05-10 티디케이가부시기가이샤 Oxide magnetic materials, coil components using the same, and method for producing oxide magnetic materials and coil components

Also Published As

Publication number Publication date
KR940014165A (en) 1994-07-16

Similar Documents

Publication Publication Date Title
EP2383242A1 (en) Mnzn ferrite core and manufacturing method therefor
KR20020064653A (en) Ferrite material
US6991742B2 (en) Mn-Zn ferrite and coil component with magnetic core made of same
US6440323B1 (en) Mn-Zn ferrite and production process thereof
US6436308B2 (en) Mn-Zn ferrite and production process thereof
JP7182016B2 (en) MnCoZn ferrite
KR20050025264A (en) Ferrite material, ferrite sintering material and inductor device
KR100222599B1 (en) Ni-cu-zn magnet icoxide material and producing method
JP2005132715A (en) Ni-Cu-Zn SYSTEM FERRITE MATERIAL AND ITS MANUFACTURING METHOD
US6468441B1 (en) Mn-Zn ferrite and production process thereof
JP3492802B2 (en) Low loss ferrite material
KR0155414B1 (en) Magnetic material and manufacturing method thereof
US6984337B2 (en) Mn—Zn ferrite containing less than 50 mol% Fe2O3
JPS60262405A (en) Manufacture of mn-zn ferrite
JP3653625B2 (en) High permeability Mn-Zn ferrite
JP4183187B2 (en) Ferrite sintered body
JP6732159B1 (en) MnCoZn ferrite and method for producing the same
KR100809753B1 (en) Ferrite Disk for Circulator
JP2007269503A (en) Ni-Cu-Zn BASED FERRITE MATERIAL AND METHOD OF MANUFACTURING THE SAME
JPH01228108A (en) Ni-cu-zn oxide magnetic material and manufacture thereof
JPH097816A (en) Ni-cu-zn system oxide magnetic material
JP2662810B2 (en) Ni-Cu-Zn oxide magnetic material for rotary transformer core and method for producing the same
JP7185791B2 (en) MnZn ferrite
JPH0725618A (en) Production of soft ferrite
JP7105385B2 (en) MnZn ferrite

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080623

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee