KR100212473B1 - Fabrication method of micro crystalline silicon - Google Patents

Fabrication method of micro crystalline silicon Download PDF

Info

Publication number
KR100212473B1
KR100212473B1 KR1019960069420A KR19960069420A KR100212473B1 KR 100212473 B1 KR100212473 B1 KR 100212473B1 KR 1019960069420 A KR1019960069420 A KR 1019960069420A KR 19960069420 A KR19960069420 A KR 19960069420A KR 100212473 B1 KR100212473 B1 KR 100212473B1
Authority
KR
South Korea
Prior art keywords
silicon
amorphous silicon
electrochemical corrosion
wavelength
producing
Prior art date
Application number
KR1019960069420A
Other languages
Korean (ko)
Other versions
KR19980050585A (en
Inventor
김은규
민석기
Original Assignee
박원훈
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박원훈, 한국과학기술연구원 filed Critical 박원훈
Priority to KR1019960069420A priority Critical patent/KR100212473B1/en
Publication of KR19980050585A publication Critical patent/KR19980050585A/en
Application granted granted Critical
Publication of KR100212473B1 publication Critical patent/KR100212473B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Luminescent Compositions (AREA)

Abstract

본 발명은 간접천이형 에너지 밴드갭 구조를 가진 실리콘 반도체를 미세결정 구조화함으로써 직접천이형 반도체 재료에서와 같은 고효율의 광특성을 갖게 하여 가시광 영역의 광소자에 응용할 수 있도록 한 실리콘 미세결정 제조방법에 관한 것으로, 특히 전기화학부식법 및 후열처리 공정에 의한 실리콘의 나노(nano) 결정립을 제작함에 있어 실리콘 웨이퍼 및 비정질 실리콘 박막으로부터 상온에서 아주 안정되고 강한 적색발광(파장 680)과 황색발광(파장 543)을 얻도록 하였다.The present invention is directed to a method for producing a silicon microcrystal, in which a silicon semiconductor having an indirect transition energy bandgap structure is microcrystallized to have high efficiency optical characteristics as in a direct transition semiconductor material and to be applied to optical devices in the visible region. In particular, in the fabrication of nano-crystal grains of silicon by electrochemical corrosion and post-heat treatment process, very stable and strong red light emission at room temperature from silicon wafer and amorphous silicon thin film (wavelength 680). ) And yellow emission (wavelength 543) ).

즉, 본 발명은 간접천이형 에너지 밴드갭 구조를 갖는 반도체 재료로부터 발광 특성을 나타내는 미세결정 구조를 제작하는 방법을 제공함으로써 실리콘 광소자의 가능성을 제공하는 것이다.That is, the present invention provides the possibility of a silicon optical device by providing a method for producing a microcrystalline structure exhibiting light emission characteristics from a semiconductor material having an indirect transition type energy bandgap structure.

Description

실리콘 미세결정 제조방법Silicon microcrystal manufacturing method

본 발명은 양자크기 효과에 의한 발광특성을 나타내는 실리콘 미세결정 제조방법에 관한 것으로, 특히 전기화학부식법 및 급속열처리과정을 통해 상온에서 적색과 황색의 안정된 발광특성을 갖는 실리콘 나노(nano) 결정상을 구성하여 가시광 영역의 광소자에 응용할 수 있도록 한 실리콘 미세결정 제조방법에 관한 것이다.The present invention relates to a method for producing silicon microcrystals exhibiting luminescence properties by quantum size effects, and in particular, silicon crystalline phases having stable luminescence properties of red and yellow at room temperature through electrochemical corrosion and rapid thermal treatment. The present invention relates to a method for producing silicon microcrystals that can be configured and applied to optical devices in the visible region.

일반적으로 광소자용 반도체 재료는 직접천이형(direct transition) 에너지 밴드갭을 가진 III-V 족 또는 II-VI족 화합물 반도체의 삼원계 또는 사원계의 조합으로 원하는 파장의 밴드갭을 갖도록 구성하여 소자 제조에 응용하고 있다.In general, a semiconductor material for an optical device is manufactured by combining a ternary or quaternary system of a group III-V or group II-VI compound semiconductor having a direct transition energy band gap to have a band gap of a desired wavelength. It is applied to.

그러나, 화합물 반도체의 원료는 고가일 뿐만 아니라 원하는 밴드갭을 갖도록 조랍한 화합물 반도체의 성장이 어렵기 때문에 광소자 응용에 적절한 반도체 재료의 개발을 위해 많은 노력이 경주되고 있는 실정이다.However, since raw materials of compound semiconductors are expensive and difficult to grow coarse compound semiconductors to have a desired band gap, many efforts have been made to develop semiconductor materials suitable for optical device applications.

반면, 반도체 전자 소자의 8할 이상을 차지하고 있는 실리콘 반도체의 원료는 저렴하고 초고집적 소자의 개발로 원자 규모의 공정제어가 가능한 정도로 기술이 발달하였다.On the other hand, silicon semiconductor materials, which occupy more than 80% of semiconductor electronic devices, have been developed to the extent that atomic process control is possible due to the development of inexpensive and ultra-high density devices.

그러나, 실리콘 반도체는 에너지 밴드갭이 간접천이형(indirect transition)을 가지고 있기 때문에 상당히 낮은 광특성을 가지는 문제가 있다.However, silicon semiconductors have a problem of having extremely low optical characteristics because the energy band gap has an indirect transition.

이에 본 발명은 상기와 같은 종래의 문제를 해결하기 위하여 창안된 것으로, 양자크기 효과에 의한 발광특성을 나타내는 실리콘 미세결정 제조방법 즉, 전기화학부식법 및 급속열처리과정을 통해 상온에서, 적색과 황색의 안정된 발광특성을 갖는 실리콘 나노(nano) 결정상을 구성하여 가시광 영역의 광소자에 응용할 수있는 실리콘 미세결정 제조방법을 제공함에 그 목적이 있다.Therefore, the present invention was devised to solve the conventional problems as described above. The method of manufacturing silicon microcrystal exhibiting luminescent properties by quantum size effect, that is, electrochemical corrosion method and rapid heat treatment at room temperature, red and yellow. It is an object of the present invention to provide a method for preparing silicon microcrystals that can be applied to an optical device in the visible region by forming a silicon nanocrystal phase having stable light emission characteristics.

제1도는 실리콘 기판 위에 비정질 실리콘 박막을 증착시킨 모습을 나타낸 단면도.1 is a cross-sectional view showing the deposition of an amorphous silicon thin film on a silicon substrate.

제2도는 전기부식 후의 열처리 된 표면에 대한 전자현미경(SEM) 사진으로,2 is an electron micrograph (SEM) of the heat-treated surface after the electrical corrosion,

(a)는 비정질 실리콘이 없는 실리콘 기판 부분의 모습이고,(a) is a view of the portion of the silicon substrate without amorphous silicon,

(b)는 비정실 실리콘 박막 부분의 모습.(b) is the appearance of an amorphous silicon thin film portion.

제3도는 전기부식 후 열처리 된 시료에서 얻어진 광여기 발광 스펙트럼의 모습으로,3 is a photoexcitation emission spectrum obtained from a sample heat-treated after electrocorrosion.

(a)는 비정질 실리콘이 없는 실리콘 기판 부분에서의 측정 결과이고,(a) is the measurement result on the part of the silicon substrate without amorphous silicon,

(b)는 비정질 실리콘 박막 부분의 측정 결과.(b) is the measurement result of the amorphous silicon thin film portion.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 실리콘 기판 2 : 비정질 실리콘 박막(a-Si)1: silicon substrate 2: amorphous silicon thin film (a-Si)

상기와 같은 목적을 달성하기 위한 본 발명 실리콘 미세결정 제조방법은, 실리콘 기판 위에 비정질 실리콘을 부분적으로 증착하는 제1공정과, 상기 비정질 실리콘이 부분적으로 증착된 시료를 전기화학부식 시키는 제2공정과, 상기 전기화학부식 된 시료를 급속열처리 하는 제3공정으로 이루어진다.The silicon microcrystal manufacturing method of the present invention for achieving the above object, the first step of partially depositing amorphous silicon on a silicon substrate, and the second step of electrochemical corrosion of the sample partially amorphous silicon deposited; And, the third step of rapid thermal treatment of the electrochemically corroded sample.

이하, 본 발명에 대해 좀 더 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발며은 간접천이형(indirect transition) 에너지 밴드갭(energy bandgap)을 가진 실리콘 반도체를 미세결정 구조화함으로써 직접천이형(direct transition) 반도체 재료의 고효율 광특성을 이용하여 가시광 영역의 광소자에 응용할 수 있는 방법을 제공하고자 하는 것으로, 전기화학부식법 및 급속열처리법을 통해 실리콘이 나노(nano) 결정립(직립 10-9m)을 제조하여 실리콘 단결정 웨이퍼와 비정질 실리콘으로 부터 각각 상온에서 노화현상없이 안정된 적색(파장 680) 및 황색(파장 543) 발광특성을 갖도록 하는 방법을 제시하고자 한 것이다.The present invention can be applied to optical devices in the visible region using the high-efficiency optical characteristics of direct transition semiconductor materials by microcrystalline structure of silicon semiconductors with indirect transition energy bandgap. In order to provide a suitable method, silicon is prepared by nanochemical grains (10 -9 m upright) through electrochemical corrosion and rapid thermal treatment, and is stabilized without aging at room temperature from silicon single crystal wafer and amorphous silicon, respectively. Red (wavelength 680 ) And yellow (wavelength 543 It is intended to provide a method of having light emission characteristics.

그러면, 본 발명의 제조 공정에 대해 첨부도면을 참조하여 좀 더 상세히 설명한다.Then, the manufacturing process of the present invention will be described in more detail with reference to the accompanying drawings.

먼저, 제1도에 도시한 바와 같이 비저항이 1~3인 피형 실리콘 기판(1) 위에 직류 마크네트론 스퍼터링법(magnetron sputtering)으로 상온에서 400두께를 비정질 실리콘(2)을 증착함으로써 전기화학부식시 비정질 실리콘에서 결정립의 크기를 보다 미세하고 균일하게 제어할 수 있게 하며, 비교를 위하여 실리콘 기판(1)의 한쪽 부분을 비정질 실리콘(2)을 증착하지 않는다.First, as shown in FIG. 1, the specific resistance is 1 to 3 400 at room temperature by direct current magnetron sputtering on the insulated silicon substrate 1 By depositing amorphous silicon (2) in thickness, it is possible to more precisely and uniformly control the size of the crystal grains in amorphous silicon during electrochemical corrosion. Do not deposit.

다음으로, 상기 비정질 실리콘(2)이 부분적으로 증착된 시료를 HF:H2O:Ethanol 이 1:1:2의 비율로 혼합된 용액에 넣고 백금전극을 이용하여 200/의 전류밀도로 30초간 급속으로 전기화학부식을 시킨다.Next, a sample in which the amorphous silicon 2 is partially deposited is placed in a solution in which HF: H 2 O: Ethanol is mixed at a ratio of 1: 1: 2. Of Electrochemical corrosion is rapidly performed for 30 seconds at the current density of.

일반적으로, 전기화학부식법에 의한 다공질 실리콘은 파장 700부근의 발광특성을 나타내지만 점차적으로 발광특성이 나빠지며, 발광파장 또한 이동하는 등 불안정한 경향이 있어서 아직 소자 응용에는 부적합한 상태이다.Generally, porous silicon by electrochemical corrosion method has a wavelength of 700 Although it exhibits light emission characteristics in the vicinity, the light emission characteristics gradually deteriorate, and the light emission wavelength also shifts, which is unsuitable for device applications.

따라서, 본 발명에서는 전기화학부식 된 시료를 급속열처리 장치를 이용하여 질소가스 분위기로 800의 온도에서 10분간 후열처리를 시킨다.Accordingly, in the present invention, the electrochemically corroded sample is 800 in a nitrogen gas atmosphere using a rapid heat treatment apparatus. After the heat treatment for 10 minutes at the temperature of.

이로써, 열적으로 안정된 적색 및 황색의 발광특성을 나타내는 실리콘 미세결정 구조를 형성할 수 있게 된다.This makes it possible to form a silicon microcrystalline structure exhibiting thermally stable red and yellow luminescent properties.

제2도는 전기화학부식을 시킨 후에 급속열처리를 시킨 시료에 대한 전자현미경(Scanning electron microscopy, SEM) 사진으로, (a)는 비정질 실리콘(2)이 없는 실리콘 기판(1) 부분이고 (b)는 비정질 실리콘(2) 부분을 나타낸다.2 is a scanning electron microscopy (SEM) photograph of a sample subjected to rapid thermal treatment after electrochemical corrosion. (A) is a portion of a silicon substrate (1) without amorphous silicon (2), and (b) A portion of the amorphous silicon 2 is shown.

먼저, 제2(a)도는 실리콘 기판(1)의 표면에서 전기화학부식 및 급속열처리에 의해 형성된 반응물층의 모습을 나타내고 있는데, 이 층의 두께는 약 1이며 이 반응물은 실리콘과 산소로 구성된 SiOX인 것으로 분석된다.First, Figure 2 (a) shows the appearance of the reactant layer formed by electrochemical corrosion and rapid thermal treatment on the surface of the silicon substrate 1, the thickness of this layer is about 1 The reactant is analyzed to be SiO X composed of silicon and oxygen.

한편, 제2(b)는 미세한 구멍이 비교적 균일하게 형성되어 있는 비정질 실리콘(2)의 표면 모습을 나타내며, 비정질 실리콘(2) 내의 결정입자는 전기화학부식시 부식 구멍의 크기를 제어하고 열처리에 따른 재결정화 과정에서도 미세결정의 크기증가를 억제함을 알 수 있다.On the other hand, the second (b) shows the surface of the amorphous silicon (2) in which fine pores are formed relatively uniformly, the crystal grains in the amorphous silicon (2) controls the size of the corrosion hole during electrochemical corrosion, It can be seen that the recrystallization process also suppresses the increase of the size of microcrystals.

제3도는 전기화학부식 후 급속열처리 된 시료에 대한 상온에서의 광여기스펙트럼(Photoluminescence, PL) 모습을 나타낸 것으로, (a)는 실리콘 기판(1) 부분에서 (b)는 비정질 실리콘(2) 부분에서 얻은 결과이며, 이때의 광여기에는 364의 아르곤 레이저를 사용한다.FIG. 3 shows a photoluminescence spectrum (PL) at room temperature for a sample subjected to rapid heat treatment after electrochemical corrosion. This is the result obtained from Uses an argon laser.

먼저, 제3(a)도에서는 파장 680에 최대치를 가지고 반치폭 200의 스펙트럼을 볼 수 있는데, 이는 전기화학부식법에 의한 다공질 실리콘층에서 나타나는 전형적인 스펙트럼 모습이다.First, in FIG. 3 (a), the wavelength 680 Take maximum value to half width 200 You can see the spectrum of, which is typical of the appearance of porous silicon layer by electrochemical corrosion method.

일반적으로, 전기화학부식법에 의한 다공질 실리콘층에서는 이 적색의 발광특성이 Si-O-H 결합에 의해 그 근원에 있어서 특성파장의 이동 및 강도의 감쇄 등 쉽게 열화되는 열화현상이 나타나는 것이 특징인데, 본 발명의 경우는 전기화학부식 후 열처리 공정을 거치므로 전혀 열화현상이 없는 것이 특징이다.In general, in the porous silicon layer by the electrochemical corrosion method, the red luminescence property is easily deteriorated due to Si-OH bonding such as shift of characteristic wavelength and attenuation of intensity at its source. In the case of the invention, it is characterized in that there is no deterioration at all because it undergoes a heat treatment process after electrochemical corrosion.

또한, 시료의 표면에 생성된 반응막의 성분을 조사한 결과 SiOX즉, 산소빈자리(Vo) 결함을 가진 실리콘산화막으로 나타나며 이것이 적색발광의 근원인 것으로 추정된다.In addition, as a result of investigating the components of the reaction film formed on the surface of the sample, it appears as SiO x, that is, a silicon oxide film having an oxygen vacancies (Vo) defect, which is assumed to be a source of red light emission.

한편, 비정질 실리콘(2)에서는 제3(b)도에 나타난 바와 같이 파장 543에 최대치는 가지고 반치폭 100의 발광 현상이 나타나는데, 이는 상온에서 아주강한 황색발광을 보여준다.On the other hand, in the amorphous silicon 2, as shown in FIG. 3 (b), the wavelength 543 Has a maximum of half width 100 The light emitting phenomenon of appears, which shows a very strong yellow light emission at room temperature.

이 결과는 실리콘 미세결정입자의 양자크기 효과에 기인된 것으로 입자의 크기는 약 7정도로 추정된다.This result is due to the quantum size effect of the silicon microcrystalline particles, the particle size of about 7 It is estimated to be enough.

따라서, 비정질 실리콘(2)의 전기화학부식은 실리콘 기판(1)과는 달리 비정질 실리콘(2)내의 작은 결정입자가 부식을 제어할 뿐만 아니라 열처리에 따른 재결정화 과정에서도 결정입자의 크기를 제한하는 효과로 보여진다.Therefore, the electrochemical corrosion of amorphous silicon (2), unlike the silicon substrate (1), the small crystal grains in the amorphous silicon (2) not only control the corrosion but also limit the size of the crystal grains in the recrystallization process by heat treatment It is seen as an effect.

상술한 바와 같이, 본 발명의 실리콘 반도체 재료를 전기화학부식법 및 급속열처리과정을 통해 상온에서 적색과 황색의 안정된 발광특성을 갖는 실리콘 나노(nano) 결정상을 구성함으로써, 직접천이형 화합물 반도체에서와 같은 고효율의 광특성을 갖게 하여 가시광 영역의 광소자에 응용할 수 있는 효과가 있다.As described above, the silicon semiconductor material of the present invention is composed of silicon nano (phase) crystals having stable luminescence properties of red and yellow at room temperature through an electrochemical corrosion process and a rapid heat treatment process, and thus, a direct transition compound semiconductor The same high-efficiency optical characteristics can be applied to optical devices in the visible region.

Claims (4)

실리콘 기판 위에 비정질 실리콘을 부분적으로 증착하는 제1공정과, 상기 비정질 실리콘이 부분적으로 증착된 시료를 전기화학부식 시키는 제2공정과, 상기 전기화학부식된 시료를 급속열처리 하는 제3공정으로 이루어지는 것을 특징으로 하는 실리콘 미세결정 제조방법.A first step of partially depositing amorphous silicon on a silicon substrate, a second step of electrochemically etching the sample partially deposited with the amorphous silicon, and a third step of rapidly heat treating the electrochemically corroded sample. Silicon microcrystal manufacturing method characterized in that. 제1항에 있어서, 상기 비정질 실리콘은 직류 마그네트론 스퍼터링법(magnetron sputtering)으로 증착하는 것을 특징으로 하는 실리콘 미세결정 제조방법.The method of claim 1, wherein the amorphous silicon is deposited by direct current magnetron sputtering. 제1항에 있어서, 상기 전기화학부식은 HF:H2O:Ethanol이 1:1:2의 비율로 혼합된 용액에 넣고 백금전극을 이용하여 200/의 전류밀도로 30초간 급속처리함을 특징으로하는 실리콘 미세결정 제조방법.The method of claim 1, wherein the electrochemical corrosion is put into a solution in which HF: H 2 O: Ethanol in a ratio of 1: 1: 2 and using a platinum electrode 200 Of Method for producing silicon microcrystals, characterized in that rapid processing for 30 seconds at a current density of. 제1항에 있어서, 상기 급속열처리는 질소가스 분위기로 800의 온도에서 10분간 행하는 것을 특징으로 하는 실리콘 미세결정 제조방법.The method of claim 1, wherein the rapid heat treatment is a nitrogen gas atmosphere 800 Method for producing silicon microcrystals, characterized in that carried out at a temperature of 10 minutes.
KR1019960069420A 1996-12-21 1996-12-21 Fabrication method of micro crystalline silicon KR100212473B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960069420A KR100212473B1 (en) 1996-12-21 1996-12-21 Fabrication method of micro crystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960069420A KR100212473B1 (en) 1996-12-21 1996-12-21 Fabrication method of micro crystalline silicon

Publications (2)

Publication Number Publication Date
KR19980050585A KR19980050585A (en) 1998-09-15
KR100212473B1 true KR100212473B1 (en) 1999-08-02

Family

ID=19489924

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960069420A KR100212473B1 (en) 1996-12-21 1996-12-21 Fabrication method of micro crystalline silicon

Country Status (1)

Country Link
KR (1) KR100212473B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100659280B1 (en) * 2005-11-26 2006-12-19 학교법인 포항공과대학교 Fabrication method of nanocrystalline-silicon in silicon-based nanostructure

Also Published As

Publication number Publication date
KR19980050585A (en) 1998-09-15

Similar Documents

Publication Publication Date Title
Ko et al. Investigation of ZnO epilayers grown under various Zn/O ratios by plasma-assisted molecular-beam epitaxy
Tsybeskov et al. Nanocrystalline-silicon superlattice produced by controlled recrystallization
Richters et al. Enhanced surface-excitonic emission in ZnO/Al2O3 core–shell nanowires
JP5693497B2 (en) Semiconductor wafer and manufacturing method thereof
KR101311901B1 (en) ZnO CRYSTAL, ITS GROWTH METHOD AND MANUFACTURE METHOD FOR LIGHT EMITTING DEVICE
JP2009010383A (en) Zinc oxide semiconductor and method for manufacturing it
Okamoto et al. Passivation of defects in nitrogen-doped polycrystalline Cu 2 O thin films by crown-ether cyanide treatment
Shimizu-Iwayama et al. Characteristic photoluminescence properties of Si nanocrystals in SiO2 fabricated by ion implantation and annealing
Shelton et al. Ultrasmooth GaN etched surfaces using photoelectrochemical wet etching and an ultrasonic treatment
KR100212473B1 (en) Fabrication method of micro crystalline silicon
Prucnal et al. III-V quantum dots in dielectrics made by ion implantation and flash lamp annealing
JP2005039131A (en) Method for processing zinc oxide monocrystal wafer
Cantoni et al. Growth of oxide seed layers on Ni and other technologically interesting metal substrates: issues related to formation and control of sulfur superstructures for texture optimization
RU2370854C1 (en) METHOD OF MAKING NITRIDE FILM ON SURFACE OF GaSb BASED HETEROSTRUCTURE
KR102405011B1 (en) Method of manufacturing a res2 thin layer and method of manufacturing a photo detector using the same
JP7477407B2 (en) Method for manufacturing gallium oxide semiconductor
Han et al. Photoluminescence from intermediate phase silicon structure and nanocrystalline silicon in plasma enhanced chemical vapor deposition grown Si/SiO2 multilayers
Adikaari et al. Bandgap enhancement of layered nanocrystalline silicon from excimer laser crystallization
KR100366372B1 (en) METHOD FOR MANUFACTURING A METAL THIN FILM OF OHMIC CONTACT FOR LIGHT EMITTING DIODE AND LASER DIODE BASED ON ZnO OXIDE SEMICONDUCTOR
CN115323483B (en) Preparation method of two-dimensional layered transition metal sulfide based on molecular beam epitaxy
US7030000B2 (en) Method for fabricating a metallic oxide of high dielectric constant, metallic oxide of high dielectric constant, gate insulating film and semiconductor element
Riahi et al. Structural and optical characterization of CdSe nanocrystals (NCs) embedded into a porous silicon nanostructure
CN111354628B (en) Method for manufacturing gallium nitride growth substrate
KR100659280B1 (en) Fabrication method of nanocrystalline-silicon in silicon-based nanostructure
Sato et al. Correlation between defect structures and light emission in Si-nanocrystal doped SiO2 films

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060502

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee